Knowledge Base Repository

In addition to research papers, the Design Society is developing several valuable resources for those interested in the study of design. These include a repository of PhD theses, a library of case studies and transcripts of design activities, and an archive of our newsletters. Please note that these resources are accessible exclusively to Design Society members.

Machine learning for parametric cost estimation of axisymmetric components

Manuguerra, Luca; Mandolini, Marco; Germani, Michele; Sartini, Mikhailo


Type:
Year:
2023
Editor:
Kevin Otto, Boris Eisenbart, Claudia Eckert, Benoit Eynard, Dieter Krause, Josef Oehmen, Nadège Troussier
Author:
Series:
ICED
Institution:
UNIVPM Università Politecnica delle Marche
Section:
Design Methods
Page(s):
2485-2494
DOI number:
Abstract:
Machine learning (ML) is a well-established research topic in Industry 4.0 is boosting its adoption. ML is also used for manufacturing cost estimation during design. Such approaches are commonly used to estimate the cost of mass-produced parts. Many consolidated historical data are available for training the regression models. Unfortunately, very often, such a database of data is not available.

The paper defines an ML approach for parametric cost estimation of axisymmetric components. The data for training the ML model derives from automatic software for analytically estimating the manufacturing cost. With a proper set of simulations, the tool can generate a large amount of data for training. The paper presents the steps for developing a parametric cost model using ML. The approach is based on CRoss Industry Standard Process for Data Mining method. The proposed method was used to develop one cost model (to estimate the total cost that considered raw material and manufacturing cost). The obtained Relative Error is 23.52% ± 1.37%, coherent with E2516 − 11, Standard Classification for Cost Estimate Classification System.
Keywords:

This site uses cookies and other tracking technologies to assist with navigation and your ability to provide feedback, analyse your use of our products and services, assist with our promotional and marketing efforts, and provide content from third parties. Privacy Policy.