Knowledge Base Repository

In addition to research papers, the Design Society is developing several valuable resources for those interested in the study of design. These include a repository of PhD theses, a library of case studies and transcripts of design activities, and an archive of our newsletters. Please note that these resources are accessible exclusively to Design Society members.

The Application of Self Organizing Maps in Conceptual Design

Matthews, Peter C


Type:
Year:
2002
Author:
Supervisor:
Ball, Nigel; Blessing, Luciënne; Wallace, Ken
Institution:
Cambridge University Engineering Department
Page(s):
181
Abstract:
In engineering design, there is a need for designers to have a good understanding of the design domain. This will typically take the form of some model of the domain. However, such models do not necessarily exist for the early stages of the design process. Designers need to rely on coarse models to guide them through this stage. These models tend to be the result of several years of experience of the domain, and as a result are not necessarily explicit. This research addresses the issue of extracting coarse design domain models using previous design examples. The approach adopted is to rerepresent the design space using Self Organizing Maps (SOM). This rerepresentation is analysed using novel techniques developed in this dissertation to extract a set of relationships. Due to the coarseness of these relationships, they are referred to as heuristics. This is to emphasise that the relationship is not guaranteed to hold, however, it is likely to increase the probability of a good or successful conceptual or preliminary design. For comparison purposes, the same heuristics extraction method is also performed using Principal Components Analysis (PCA) instead of the SOM approach as the core data analysis algorithm. Three case studies illustrate and verify the heuristics extraction method. These investigate the design of autonomously guided vehicles, gas turbine combustors, and aircraft wings. These represent non-linear design domains, that are not necessarily fully understood. Of these case studies, the rst two generated heuristics that were successfully veri ed by domain experts while the third (aircraft wings) highlighted conditions where the method does not initially produce a coarse model that is useful for designers. This research contributes to the machine learning, data mining and mechanical design domains. The machine learning and data mining domains are extended by developing a means of providing an explicit understanding of the inner representation that a SOM generates. The research provides a novel method for analysing a given mechanical design domain, and helping to extract the implicit knowledge that resides within previous designs.
Keywords:

This Content is Available for Members Only

Are you a registered member?

If so, you can can sign-in to the website and get immediate access.

Not a Member Yet?

Membership is open to people with recognised qualifications and/or experience in the fields of design research, design practice, design management, and design education. Apply NOW

Why Join the Design Society?

This site uses cookies and other tracking technologies to assist with navigation and your ability to provide feedback, analyse your use of our products and services, assist with our promotional and marketing efforts, and provide content from third parties. Privacy Policy.