DESIGN PREFERENCE ELICITATION: EXPLORATION AND LEARNING

DS 68-10: Proceedings of the 18th International Conference on Engineering Design (ICED 11), Impacting Society through Engineering Design, Vol. 10: Design Methods and Tools pt. 2, Lyngby/Copenhagen, Denmark, 15.-19.08.2011

Year: 2011
Editor: Culley, S.J.; Hicks, B.J.; McAloone, T.C.; Howard, T.J. & Dong, A.
Author: Ren, Yi; Papalambros, Panos
Section: Design Methods and Tools Part 2
Page(s): 149-158

Abstract

We study design preference elicitation, namely discovery of an individual’s design preferences, through human-computer interactions. In each interaction, the computer presents a set of designs to the human subject who is then asked to pick preferred designs from the set. The computer learns from this feedback in a cumulative fashion and creates new sets of designs to query the subject. Under the hypothesis that human responses are deterministic, we investigate two interaction algorithms, namely, evolutionary and statistical learning-based, for converging the elicitation process to near-optimally preferred designs. We apply the process to visual preferences for three-dimensional automobile exterior shapes. Evolutionary methods can be useful for design exploration, but learning-based methods have a stronger theoretical foundation and are more successful in eliciting subject preferences efficiently.

Keywords: STATISTICAL LEARNING; GENETIC ALGORITHM; DESIGN PREFERENCE ELICITATION; ACTIVE LEARNING

Download

Please sign in to your account

Cookies help us deliver our services. By using our services, you agree to our use of cookies.  

Join Now!