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ABSTRACT 
We study design preference elicitation, namely discovery of an individual’s design preferences, 
through human-computer interactions. In each interaction, the computer presents a set of designs to the 
human subject who is then asked to pick preferred designs from the set. The computer learns from this 
feedback in a cumulative fashion and creates new sets of designs to query the subject. Under the 
hypothesis that human responses are deterministic, we investigate two interaction algorithms, namely, 
evolutionary and statistical learning-based, for converging the elicitation process to near-optimally 
preferred designs. We apply the process to visual preferences for three-dimensional automobile 
exterior shapes. Evolutionary methods can be useful for design exploration, but learning-based 
methods have a stronger theoretical foundation and are more successful in eliciting subject preferences 
efficiently.  
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INTRODUCTION 
User preference plays an intricate and yet essential role in engineering design. There is no universal 
acknowledgement on how preferences should be measured, modelled and elicited. Systematic 
elicitation of preferences can augment insights with rigorous optimization processes and reveal 
potential trade-offs between engineering and marketing objectives [1]. Standard econometric practice 
models for preferences using utility theory and model (parameter) estimation require extensive market 
or survey data. Such models have been adopted and extended in recent engineering design research [2-
4], mainly to demonstrate how we can solve a design problem while incorporating consumer 
preference considerations. There are some limitations to adopting these models. The data acquired for 
preference model estimation can handle rather limited design attributes (or variables) since increasing 
the number of attributes raises the prediction error of the preference model when data size stays the 
same. Further, the questionnaires used for acquiring data from user surveys, either for discrete choice 
or choice-based conjoint approaches, tend to be tedious and thus bias the models. Researchers have 
suggested ways to enhance the data collection efficiency (e.g., Hoyle et al. on D-efficient sampling 
[5], Abernethy et al. on adaptive sampling [6]). These works have mathematical merit but limited 
practical appeal as a human-computer interaction mechanism. In the present work, we are interested in 
eliciting individual design preferences rather than aggregate ones. Indeed, such preferences may be 
elicited not just from users but also from any other stakeholder in the design process: designers, 
marketers, or producers. To pursue the goal of efficient preference elicitation with an appealing 
interaction experience, we investigate two algorithmic approaches for generating design choices for 
the subject: evolutionary and statistical learning-based. Our findings show that statistical learning-
based methods can limit the number of repetitive iterations while evolutionary methods can be more 
useful for design concept exploration. We demonstrate these findings in experiments where subjects 
express preferences on automobile exterior shape designs. These experiments are limited and further 
validation will be necessary. 

The paper is organized as follows. Section 2 elaborates the problem and reviews the relevant 
literature. Section 3 introduces briefly the online 3D parametric modelling and interaction program we 
developed for this study. We then delve into the preference elicitation algorithms using the 
evolutionary and statistical learning methods in Sections 4 and 5, respectively. Section 6 concludes the 
paper with discussion on some drawbacks of the proposed algorithms and provides directions for 
future improvement.  



PROBLEM FORMULATION AND LITERATURE REVIEW 
The following notation and assumptions will be used throughout the paper. Let p⊂ℜD  be a 
continuous design space where any ∈x D  represents a design with p  variables. Assume that an 
individual’s preference is a function defined on D , i.e., (·) : f →ℜD . The objective of preference 
elicitation is then to find an x  that returns ‘near-optimal’ ( )f x . This is an optimization problem with 
an objective function unknown to the analyst but known to the subject. ‘Near optimal’ means that the 
termination point will be in the vicinity of the optimum according to some termination criterion, but 
the precise optimum may not be found. The subject-computer interaction is designed in the fashion of 
a numerical search algorithm, where in each iteration the subject is presented with a set of designs and 
asked to evaluate them. The computer learns from this feedback and presents new designs based on its 
accumulated knowledge about this subject’s preferences. The termination criterion is that the subject 
can no longer discriminate the presented design with respect to his or her preference.  

Below we look first into research addressing this problem using evolutionary computation. This 
type of study usually assumes the existence of a preference measure ( )f x  derived from user 
interaction. We then introduce a statistical learning method called active learning [7] and show in a 
later section that searching based on active learning will be effective even when the preference 
measure does not exist explicitly. 

Interactive Evolutionary Computation (IEC) 
IEC is a branch of evolutionary computation where the fitness of designs is assigned by the user. 
Notable contributions include work by Sims (1991) for interactive genetic algorithm (IGA) [8], 
Johanson and Poli (1998) for interactive genetic programming (IGP) [9], and Tokui and Iba (2000) for 
combined interactive GA and GP [10]. Kelly and Papalambros introduced an IGA to elicit user 
preference on car silhouette design [11]. A comprehensive review of IEC by Takagi (2001) pointed 
out that a major obstacle for IEC to be practical is human fatigue, meaning that population size, 
number of generations and eventually the size of the design space limit IEC performance [12]. 
Although remedies to this obstacle have been studied [12], an essential difficulty with IEC is that 
asking the user to assign real-valued or ranking fitness iteratively is not a natural way to express 
preferences and thus causes fatigue. Choice-based user feedback is more appealing. Econometric 
studies are more in favour of choice-based analyses than rating or ranking-based ones. We believe the 
same applies to the preference elicitation problem here. However, choice responses are binary, i.e., 1 
for designs picked as “preferred” and 0 for “not preferred”, and thus will not work as fitness values as 
required in IEC. 

Statistical Learning and Active Learning 
In order to utilize choice responses during an interaction, we resort to a statistical learning-based 
method. The idea is to use the binary choices data, i.e., ‘preferred’ and ‘not preferred’, as classification 
labels for each design and to create a decision boundary from each observation. Iterative interactions 
help to refine these boundaries, which approximate the separation between preferred and not preferred 
designs from the user. 

Like for evolutionary methods, the key question here is how the next generation of designs can 
be generated from user feedback so that the elicited preferences become more refined. We examined 
the classification problem previously in the context of black-box optimization [13], and realized that 
the same problem occurs in active learning. Therefore, we review some of the most relevant 
developments in active learning below and we adopt a modified version of the SIMPLE algorithm 
developed by Tong and Koller [7] in the later demonstration.  

Formally, let a classification problem be finding a set of decision boundaries for observations 

1{ }n
j j=x  with labels 1{ }n

j jy = . When the size of observations is large, querying labels can be costly. 

Active learning refers to methods where the algorithm starts by querying labels for a subset of 1{ }n
j j=x  

and, from that, finds new query samples using the current classifier. This approach potentially helps to 
reduce the number of queries and still ‘learn’ sufficiently well [7]. Formulating the classification task 
using a support vector machine (Vapnik, 1998 [14]), Tong and Koller proved that efficient queries can 
be made by cutting the space of the classifier coefficients into equal halves. Research in computer 



science has examined the balance between exploration (querying without using knowledge gained) 
and exploitation (querying with all knowledge gained, like by Tong and Koller) to achieve more stable 
performance on different problems (Osugi, 2005 [15] and Baram 2004 [16]). Research in marketing 
science has looked also into a similar problem. Toubia and Hauser (2003) improved the sampling 
efficiency of Choice-Based Conjoint (CBC) analysis by adapting questions based on user feedback 
[17]. They showed that, under a linear utility assumption, asking a user to choose among designs is 
equivalent to cutting the utility space. Since utility estimation can be improved by reducing the volume 
of the utility space, a good question to ask is one that cuts the remaining utility space into equal 
halves, ensuring the utility space to be halved after each iteration. Toubia and Simester (2003) showed 
that compared to traditional methods (e.g., CBC with random or efficient fixed samples and adaptive 
conjoint analysis), their adaptive CBC resulted in better estimations of the utility coefficients 
especially when the number of questions is limited [18]. Not surprisingly, the use of active learning to 
enhance adaptive CBC became evident. Chapelle and Harchaoui (2005) showed that, under the 
assumption of linear utility and discrete attribute levels, estimating the utility coefficients can be 
considered exactly as an active learning problem, with utility coefficients analogous to classifier 
coefficients [19]. The same view is shared by Abernethy et al. (2007) where the authors further argued 
that robustness of utility estimation is enhanced by introducing the concept of complexity control from 
SVM [6]. 

The difference between our method here and those on statistical learning-based conjoint analysis 
[6, 17-21] is that we do not search for the optimal utility estimates; rather, we search for users' 
preferred designs directly from the design space.  
 

ONLINE 3D PARAMETRIC MODELLING AND INTERACTION 

Parametric Modelling 
The automobile exterior three-dimensional (3D) parametric model developed in this study uses 151 
control points and 32 Bezier surfaces. The control points are then controlled by 33 variables ranging 
from 0 to 1. Therefore every point in the 33-dimensional unit box represents a design. Figure 1 
demonstrates some random designs generated by the program. A parametric model can represent only 
limited geometric styles. In future studies, a set of different modeling codes will need to be combined 
to represent a richer range of designs.  
 

  
Figure 1 A variety of random designs created from the 3D parametric modeling program. The program 

utilizes the WebGL library so that the user-computer interaction can happen directly online. 

Online Interaction 
The parametric modeling program was implemented using WebGL [22] that provides application 
programming interfaces (APIs) for 3D visualization in web browsers. Using the AJAX platform [23], 
the client-side user inputs are transferred back to the server-side where the accumulated user data are 
processed and the algorithm creates new samples. Our current implementation ensures rapid response 
from the server side, while relatively high-end computers are needed to process the visualization code 
in real-time on the client-side. 
 



GENETIC ALGORITHM APPROACH 

Generational and Steady-State GAs 
A generational GA refers to the case where information about previous generations will be obsolete 
when a new generation comes into existence. Thus the mechanism of creating a new generation 
depends only on the fitness of the current generation. In contrast, a steady-state GA keeps record of all 
generations created so far and of their fitness. The new generation in this case is created using the 
accumulated knowledge. Assuming that the preference of a user is fixed, i.e., the preference function 
is deterministic, a steady-state GA is favoured since it utilizes more information than the generational 
one. However, there is a drawback. Consider when real-valued fitness is assigned. Comparison of 
fitness cross generations is less meaningful since the user assigns fitness only by comparing designs 
within a generation, and the accumulated fitness may not reflect reality. 

Fitness Calculation 
In order to circumvent the drawback of steady-state GA but utilize its advantages, we design a fitness 
calculation scheme as follows: In each iteration, all existing designs, including the new generation, are 
shown to the user. The user is asked to select preferred designs. A design that has been picked in 
previous iterations can be picked again. We then define the fitness as the normalized count of a design 
being selected. The advantages of this scheme are: (1) the user can update preferences throughout the 
interaction, and (2) binary choice is a more natural way for users to express their preferences than 
rankings or ratings. The disadvantage of the scheme, however, is that it assumes a higher count to 
correspond to a more preferred design. This may not be the case. As an example, design A that appears 
early can be picked repeatedly because it is a design relatively better than the others present; once a 
better design B comes into play, the user may drop A and pick B which will have only one count. This 
is akin to situations described in voting processes (see, e.g., Saari [24]). More sophisticated schemes 
can be developed to address this issue, but this learning-based method is a simple way to address 
binary choice user feedback.  

Parent Selection, Crossover and Mutation Schemes 
The parent selection, crossover and mutation schemes are standard in our implementation. Although 
there exists a variety of parent selection schemes differing in computational cost, the difference is 
trivial for this study since only four new designs are generated each time due to the limited screen 
space available. A multi-armed roulette wheel is thus used for parent selection and Figure 2 shows its 
procedure.  
 

 
 

Figure 2 An illustration of a multi-armed roulette wheel parent selection. The pie is sliced into four 
segments representing fitness of the four candidates. A multi-armed roulette wheel is rotated randomly 

to the shown position. Thus chromosomes 1 and 2 are picked once and chromosome 4 is picked 
twice. The resulting parents are the set (1, 2, 4, 4). 

 
 The four parental chromosomes are paired deterministically in the pattern of (1, 3) and (2, 4). We 
utilize two random parameters to perform the crossover for pairs: the first parameter is used to split 
one chromosome  into two pieces: 
 

 
 



 Once each chromosome in a pair is split, we use the second parameter α  to calculate the 
children  and : 
 

 
 

 
 The split and recombination parameter allows fusion of design features from parents as can be 
observed in Figure 3. 
 
 

 
Figure 3 An example of crossover. Here the two grayed designs are parents and the white one is a 
child. The child acquires the hood design of the first parent and the silhouette design of the second 

parent. Due to the linear combination parameter , these two features of the child are not exactly the 
same as those from the parents. 

 
 Mutation takes place for every design variable in the form: 
 

 
 
where  is the th mutated variable,  and  are the upper and lower boundaries of variables. 
Further, the random mutation is controlled by: 
 

 
 
Here  is a realization of the standard normal distribution. Normal distribution is used because 
two thirds of the realization will lay within one deviation; therefore the mutation is usually small, but 
significant mutation is also allowed with non-zero chance. The exponential term is used to force 
mutation shrinkage. The two parameters  and  are determined using two criteria: 1) The probability 
of having mutation greater than 0.1 at the 20th

Figure 4

 iteration should be less than 5% (all variables are 
between 0 and 1), ensuring algorithm convergence; and 2) the probability of having mutation greater 
than 0.8 at the first iteration should be greater than 5%, allowing a significant mutation to explore the 
designs space.  shows these two probabilities as functions of  and , according to which the 
choice  and  will satisfy the requirements. 
 

 
Figure 4 The two criteria as functions of  and : (mutation greater than 0.1 at the 20th iteration) on 

the left and (mutation greater than 0.8 at the first iteration) on the right. 



Genetic Algorithm Drawbacks 
The setup discussed above can be useful when we explore the design space interactively. However, 
besides the issue with fitness calculation and the ambiguity of setting up the parameters, it is also 
possible the GA will not converge if there are multiple preferred designs. In reality, this is often the 
case, e.g., a user may prefer both a sporty-looking vehicle and a safe-looking one although the two are 
very different in terms of the underlying design variables.  
 

STATISTICAL LEARNING APPROACH 
We investigate a statistical learning approach with the motivation that an IGA by nature cannot handle 
binary choice data properly and will not converge to multiple preferred designs. Since binary data are 
natural for classification, we attempt to represent regions of preferred designs using decision 
boundaries, and use an iterative process to refine these boundaries. This iterative process is inspired by 
the active learning technique reviewed earlier. Below we discuss modifications made to the active 
learning algorithm for it to work properly in this study. 

Interaction Using Active Learning 
First, we describe the interaction procedure: In the first iteration, the computer generates a set of  
designs using a Latin-Hypercube design. The user evaluates designs and labels them as preferred or 
not preferred. Let the number of preferred design be . The computer then creates the decision 
boundaries based on the user feedback using support vector machine. In the fashion of the SIMPLE 
active learning algorithm proposed by Tong and Koller,  new designs are created on the current 
decision boundaries and presented to the user, along with the  preferred designs from the previous 
turn. Thus the best designs so far are always compared with other new designs. Figure 5 summaries 
this procedure.  
 

 
Figure 5 Pseudo code for the statistical learning-based preference elicitation algorithm. 



  
 Two major differences exist between the preference elicitation study and the active learning 
study: 1) in active learning, labels are deterministic, meaning that once a label is revealed, it will not 
change further. This does not hold in preference elicitation. Indeed a preferred design can become not 
preferred once a better design is presented. We will demonstrate empirically that by preserving the 
best designs in the comparison set allows active learning to work for preference elicitation; 2) the size 
of samples in active learning is usually finite, thus one can enumerate all unlabeled samples to find the 
one closest to the decision boundary. In preference elicitation, however, we have the entire design 
space to explore, in which case forcing new samples to be on the decision boundary requires a 
Newton-Raphson iteration as shown in Figure 6. 
 

 
Figure 6 Pseudo code for a Newton-Raphson iteration to project a random sample back to the 

decision boundary. 
 
 It should be noted that although random sampling and projection works in the current 
demonstration, it would be better for the new samples to be far away from any existing ones to 
enhance exploration. However, such a sampling scheme requires the global optimum of the following 
nonlinear program: 
 

 
 

 
Here  is the th labeled sample and  is a Euclidean distance. The objective and the constraint are 
highly nonlinear, and so a global optimum is hard to obtain within a time tolerable to the user. Thus 
random sampling is used, though it is less sound theoretically. 

Demonstration 
We demonstrate that assuming the user has a most-preferred target design in mind, the search 
algorithm can approximate this design during the interactions using binary choice information only. 
The target design we used here is a Nissan 350Z as shown in Figure 8. This design is picked because 
such a model can be approximated with the current model implementation. Figure 7 shows the first 
twelve iterations. Each iteration contains 8 designs and user-preferred designs are highlighted.  
 We briefly explain how user decisions were made in these 12 iterations. As users, during the 
early stages, we focus mainly on silhouette design: we pick the more sporty-looking designs, i.e., 
curvy silhouette, lower hood orientation, and longer hood. With these sporty-looking designs 
presented, we then scrutinize the windshield angle: in Figure 8, we prefer a front windshield angle 
larger than the rear one. This preference is then learned gradually by the computer as can be confirmed 
by the fact that within the last two iterations, most designs present acquire this feature. We further 
look for designs with a good approximation of the target hood style. Such an effort was not fully 
successful since the final design picked from the 12th

 

 iteration has a different headlight style from the 
target. However, considering the limited total observations made, the result is encouraging. 



 
Figure 7. The first twelve iterations of a recorded interaction. The demonstration assumes 

that the user is looking for a roaster design resembling a Nissan 350Z. In each iteration, the 
computer shows 8 designs and the highlighted ones are those chosen by the user. The 

designs are of different perspective views since the user is allowed to rotate, pan and zoom 
each individual design. 

 
 
 

 
Figure 8 Comparison between the interaction results at the 12th iteration and a real target design.  
 



CONCLUSION AND FUTURE WORK 
The engineering design community has been long interested in preference elicitation. Successfully 
eliciting consumer preference in a certain market enables better analysis and design of the product, 
from a holistic rather than purely functional perspective. Traditional elicitation tools such as choice-
based conjoint with utility models have drawbacks: studies show that user decision making in surveys 
does not always follow utility theory [23]; also, choice-based questionnaires can be long and tedious. 
Inspired by evolutionary computation and statistical learning, we investigated and implemented search 
algorithms to make the user-computer interaction more appealing while attempting to elicit the user 
preference at a lower time cost. The results show that while the interactive genetic algorithm can be 
used for design exploration, the learning algorithm is theoretically more preferred for binary choice 
data and can learn user preference effectively. 
 Further improvements possible for the proposed statistical learning-based algorithms include: (1) 
a more effective sampling scheme is needed to explore the design space better while constraining the 
new samples on the decision boundary; (2) considering that the search algorithm keeps the interaction 
records of each user and that the users may have some clustered preferences, the algorithm can be 
made more efficient when history records are used for the current search; some early simulations have 
proved this concept but a user-oriented algorithm has not yet been developed; (3) the car model we 
used in the demonstration has 31 variables in total; this large number of design variables is a major 
factor in slowing down algorithmic learning; segmenting the design into stages will make the 
interaction more efficient since users are likely to focus on only part of the design features (silhouette, 
hood, rear and so on.); how the design should be segmented requires expertise in that specific domain; 
(4) finally, the parametric car models require more details for users to perceive the designs better. The 
results presented here are largely theoretical.0020Experimenting with actual subjects is the natural 
next step in this entire line of research. 
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