Knowledge Base Repository

In addition to research papers, the Design Society is developing several valuable resources for those interested in the study of design. These include a repository of PhD theses, a library of case studies and transcripts of design activities, and an archive of our newsletters. Please note that these resources are accessible exclusively to Design Society members.

Supporting Multidisciplinary Vehicle Modeling
Towards an Ontology based Knowledge Sharing in Collaborative Model Based Systems Engineering Environment


Type:
Year:
2015
Supervisor:
Bernard Yannou
Institution:
CentraleSupélec
Page(s):
203
Abstract:
Simulation models are widely used by industries as an aid for decision making to explore and optimize a broad range of complex industrial systems’ architectures. The increased complexity of industrial systems (cars, airplanes, etc.), ecological and economic concerns implies a need for exploring and analysing innovative system architectures efficiently and effectively by using simulation models. However, simulations designers currently suffer from limitations which make simulation models difficult to design and develop in a collaborative, multidisciplinary design environment. The multidisciplinary nature of simulation models requires a specific understanding of each phenomenon to simulate and a thorough description of the system architecture, its components and connections between components. To accomplish these objectives, the Model-Based Systems Engineering (MBSE) and Information Systems’ (IS) methodologies were used to support the simulation designer’s analysing capabilities in terms of methods, processes and design tool solutions. The objective of this thesis is twofold. The first concerns the development of a methodology and tools to build accurate simulation models. The second focuses on the introduction of an innovative approach to design, product and integrate the simulation models in a “plug and play" manner by ensuring the expected model fidelity. However, today, one of the major challenges in full-vehicle simulation model creation is to get domain level simulation models from different domain experts while detecting any potential inconsistency problem before the IVVQ (Integration, Verification, Validation, and Qualification) phase. In the current simulation model development process, most of the defects such as interface mismatch and interoperability problems are discovered late, during the IVVQ phase. This may create multiple wastes, including rework and, may-be the most harmful, incorrect simulation models, which are subsequently used as basis for design decisions. In order to address this problem, this work aims to reduce late inconsistency detection by ensuring early stage collaborations between the different suppliers and OEM. Thus, this work integrates first a Detailed Model Design Phase to the current model development process and, second, the roles have been re-organized and delegated between design actors. Finally an alternative architecture design tool is supported by an ontology-based DSL (Domain Specific Language) called Model Identity Card (MIC). The design tools and mentioned activities perspectives (e.g. decisions, views and viewpoints) are structured by inspiration from Enterprise Architecture Frameworks. To demonstrate the applicability of our proposed solution, engine-after treatment, hybrid parallel propulsion and electric transmission models are tested across automotive and aeronautic industries.

This Content is Available for Members Only

Are you a registered member?

If so, you can can sign-in to the website and get immediate access.

Not a Member Yet?

Membership is open to people with recognised qualifications and/or experience in the fields of design research, design practice, design management, and design education. Apply NOW

Why Join the Design Society?

This site uses cookies and other tracking technologies to assist with navigation and your ability to provide feedback, analyse your use of our products and services, assist with our promotional and marketing efforts, and provide content from third parties. Privacy Policy.