Join Now!

Join our welcoming International Design Community.

Read about the many benefits of becoming and remaining a member.

Full, Associate, Departmental and Institutional Membership available.

Complete this application form to join now.

Design Science Journal
Theses repository

Performance-Based Computational Synthesis of Parametric Mechanical Systems

Performance-Based Computational Synthesis of Parametric Mechanical Systems

Year: 2004

Author: Alex C. Starling

Supervisor: Prof. Kristina Shea

Institution: University of Cambridge

Pages: 1-217

Abstract

This research seeks to develop a synthesis formalism to aid and enhance the design of
mechanical systems by harnessing the power of the computer. For computer-assisted
generative design to be effective for exploring purposeful design possibilities to a
given specification, many tasks that to date are performed manually or as part of
designer-intensive computer-based processes must be approached in new ways.
This research contributes a new type of production system, a parallel grammar for
mechanical systems, developed using a Function-Behaviour-Structure representation,
to generate and modify a variety of designs. Geometric and topological constraints are
used to bound the design space, termed the language of the grammar, to ensure the
validity of designs that can be generated with the grammar. Four case studies are
considered, namely the design domain of mechanical clocks and watches, the redesign
of an electromechanical camera winding mechanism, power drill design and the
generation of alternative vehicle gearbox configurations. For verification purposes,
the parallel grammar is used by hand to recreate existing designs. Computational
generation of novel design configurations is driven by performance-based evaluation
of designs using geometry-based metrics and behavioural analysis of automatically
generated simulation models. Multi-objective stochastic search, in the form of a
hybrid pattern search developed as part of this research, is used to generate Pareto sets
of optimally directed designs. The work is validated through an investigation into the
generation of novel transaxle gearbox designs in collaboration with an automotive
power transmission design company.

Keywords: computational synthesis, design search, design synthesis, grammaticaldesign, parallel grammar, performance-based design, vehicle transmission design

Join Now!

Join our welcoming International Design Community.

Read about the many benefits of becoming and remaining a member.

Full, Associate, Departmental and Institutional Membership available.

Complete this application form to join now.

Keywords
Design 2010