PREDICTING EMERGING PRODUCT DESIGN TREND BY MINING PUBLICLY AVAILABLE CUSTOMER REVIEW DATA

DS 68-6: Proceedings of the 18th International Conference on Engineering Design (ICED 11), Impacting Society through Engineering Design, Vol. 6: Design Information and Knowledge, Lyngby/Copenhagen, Denmark, 15.-19.08.2011

Year: 2011
Editor: Culley, S.J.; Hicks, B.J.; McAloone, T.C.; Howard, T.J. & Chen, W.
Author: Tucker, Conrad; Kim, Harrison
Section: Design Information and Knowledge Management
Page(s): 43-52

Abstract

In this work, the authors present a robust framework to enrich new product design process by dynamically capturing customer preference trends. The framework autonomously captures customer preference trends from publicly available product review data which is abundantly available but grossly underutilized. The method overcomes a major challenge that has plagued the product design community – the lack of large scale, realistic customer data and its meaningful interpretation to guide new product design process. The challenge is from conventional, prevalent use of customer surveys or focus group interviews that are usually costly and time consuming while the size of available data is usually small scale. The framework is composed of three steps – retrieval of customer review texts, mining product feature texts, and predicting future trend of product preference.

Keywords: TREND MINING; TEXT MINING; PRODUCT DESIGN; ONLINE CUSTOMER REVIEWS

Download

Please sign in to your account

This site uses cookies and other tracking technologies to assist with navigation and your ability to provide feedback, analyse your use of our products and services, assist with our promotional and marketing efforts, and provide content from third parties. Privacy Policy.