# Risk and change managementin complex systems

Proceedings of the 16th International DSM Conference Paris, France, 2 - 4 July 2014











## Risk and change management in complex systems

Proceedings of the 16th International DSM Conference Paris, France, 2 - 4 July 2014

Dependency and Structure Modelling (DSM) techniques support the management of complexity by focusing attention on the elements of a complex system and how they are related to each other. The DSM perspective can assist in understanding, designing and optimising complex systems - including products, processes and organisations.

This volume comprises peer-reviewed papers representing state-of-the-art in DSM research and applications. The papers were presented at the 16th International DSM Conference held in July 2014 in Paris, France.

ilo

0 mpl PX S a 0 ge ment

e 16th Inte July 2014

HANSER

Franck Marle Marija Jankovic Maik Maurer Danilo Marcello Schmidt Udo Lindemann (editors)







HANSER

Marle, Jankovic, Maurer, Schmidt, Lindemann Proceedings of the 16th International DSM Conference Paris, France, 2-4 July 2014

#### Note:

The CD-ROM for this book can be downloaded from www.downloads.hanser.de by searching the word "Maurer" or http://www.hanser.de/9781569904916 Your password is: maurer491 Franck Marle Marija Jankovic Maik Maurer Danilo Marcello Schmidt Udo Lindemann (editors)

### Risk and change management in complex systems

Proceedings of the 16th International DSM Conference Paris, France, 2–4 July 2014

HANSER

The Editors: Franck Marle Marija Jankovic Maik Maurer Danilo Marcello Schmidt Udo Lindemann

Distributed by Carl Hanser Verlag Postfach 86 04 20, 81631 Munich, Germany Fax: +49 (89) 98 48 09 www.hanser.de

The use of general descriptive names, trademarks, etc., in this publication, even if the former are not especially identified, is not to be taken as a sign that such names, as understood by the Trade Marks and Merchandise Marks Act, may accordingly be used freely by anyone.

While the advice and information in this book are believed to be true and accurate at the date of going to press, neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may be made. The publisher makes no warranty, express or implied, with respect to the material contained herein.

Bibliografische Information Der Deutschen Bibliothek Die Deutsche Bibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über <a href="http://dnb.d-nb.de">http://dnb.d-nb.de</a>> abrufbar.

ISBN: 978-1-56990-491-6 E-Book-ISBN: 978-3-446-XXXXX-X

All rights reserved. No part of this book may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying or by any information storage and retrieval system, without permission in wirting from the publisher.

© Carl Hanser Verlag, Munich 2014 Production Management: Steffen Jörg Coverconcept & -design: Atelier Frank Wohlgemuth, Bremen Printed and bound by Digital Print Group O. Schimek GmbH, Munich Printed in Germany

#### **Table of Contents**

| Foreword             | IX |
|----------------------|----|
| Scientific Committee | XI |

#### Part I: DSM Methods and Complexity Management

| Applying the Lessons of Matrix Representation to Box Diagrams<br>Mark Grice, Nick Kimball, Neeraj Sangal                                                                                                      | 3  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| A Viable System Model Perspective on Variant Management based on a<br>Structural Complexity Management Approach<br>Fatos Elezi, David Resch, Iris D. Tommelein, Wolfgang Bauer, Maik Maurer,<br>Udo Lindemann | 13 |
| The Explainer: A Software Aid to Solve Complex Problems<br>Donald V Steward                                                                                                                                   | 23 |
| The integration of DSM and Axiomatic Design in product design as part of a MDM process <i>Sergio Rizzuti, Luigi De Napoli</i>                                                                                 | 35 |

#### Part II: System Architecture and Product Modularity

| Towards a Capability Framework for Systems Architecting and Technology<br>Strategy<br>Andreas M. Hein, Yuriy Metsker, Joachim C. Sturm                                                                    | 45        |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| A Spectral Analysis Software to Detect Modules in a DSM Somwrita Sarkar, Andy Dong                                                                                                                        | 55        |
| Visualizing and Measuring Software Portfolio Architecture: A Flexibility<br>Analysis<br>Rober Lagerström, Carliss Baldwin, Alan MacCormack, David Dreyfus                                                 | 65        |
| Investment Decisions in Modular Product Development <i>Ali A. Yassine</i>                                                                                                                                 | 75        |
| Complex Mechatronic Product Modeling using a Multi-Solution, Multi-Insta<br>eXtended Conceptual Design Semantic Matrix<br>Serigne Dagne, Amadou Coulibaly, Mbaye Sene, François de Bertrand de<br>Beuvron | nce<br>85 |

#### Part III: DSM in Decision-Making

| Electricity Investments and Nuclear Development: Investment Choice Mode<br>based on Value Creation<br><i>Bianka Shoai Tehrani, Jean-Claude Bocquet, Toshimasa Tomoda</i>                                     | eling<br>97 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| Matrix-based decision-making for compatible systems in product planning concerning technologies for the reduction of CO2-emissions <i>Danilo Marcello Schmidt, Sebastian Alexander Schenkl, Markus Mörtl</i> | 107         |
| Modeling a decisional framework by MDMs<br><i>C. Leardi</i>                                                                                                                                                  | 117         |
| Reshuffling collaborative decision-making organization using a Decision-<br>Decision MDM<br><i>Franck Marle, Marija Jankovic, Hadi Jaber</i>                                                                 | 127         |
| Dependency Structure Modeling Framework Using Expert Survey Based G<br>Decision<br>Jukrin Moon, Dongoo Lee, Taesik Lee, Jaemyung Ahn                                                                         | roup<br>137 |
| Part IV: Clustering and Optimization                                                                                                                                                                         |             |
| Application of Dependency Structure Matrix to Airspace Sectorization and<br>Improving the Distribution of the Workload Among Controllers<br><i>Mahsa Farsad, Seyed Mohammad-Bagher Malaek</i>                | 149         |

Modeling and Simulation of Service Systems with Design Structure and Domain Mapping Matrices 157 Andreas Petz, Sebastian Schneider, Sönke Duckwitz, Christopher M. Schlick

A Clustering Method Using New Modularity Indices and GeneticAlgorithm with Extended Chromosomes167Sangjin Jung, Timothy W. Simpson

Clustering Technique for DSMs 177 Florian G.H. Behncke, Doris Maurer, Lukas Schrenk, Danilo Marcello Schmidt, Udo Lindemann

Using Importance Measures of Risk Clusters to Assist Project Management 187 *Chao Fang, Franck Marle* 

Optimal Capacity Allocation for a Failure Resilient Electrical Infrastructure 197 *Yi-Ping Fang, Nicola Pedroni, Enrico Zio* 

#### Part V: Dependencies between Tasks and Processes

| Estimation of Work Transformation Matrices for Large-Scale Concurrent<br>Engineering Projects<br><i>Christopher M. Schlick, Sebastian Schneider, Sönke Duckwitz</i> | 211 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Task Dependency Risk Visualisation using DSMs<br>Paschal Minogue                                                                                                    | 223 |
| Structure-based Compilation of System Dynamics Models for Assessing<br>Engineering Design Process Behavior<br>Daniel Kasperek, Sebastian Maisenbacher, Maik Maurer  | 233 |
| Discovering Hidden Tasks and Process Structure through Email<br>Logs for DSM<br>Lijun Lan, Ying Liu, Wen Feng Lu                                                    | 243 |

#### Part VI: Process Management in Complex Projects

| Multi-Domain Matrix As A Framework For Global Product DevelopmentProject Process257Sonia Kherbachi, Qing Yang257                                                                                                              |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| The Collaborative DSM: a new way to handle complex collaborative planning<br>and scheduling processes267Mathieu Baudin, Pierre Bonnel, Jean-Michel Ruiz                                                                       |
| Applying DSM Methodology to improve the Scheduling of functional<br>integration in the Automotive Industry 277<br><i>Thomas Gaertner, Sebastian Schneider, Christopher M. Schlick, Carsten Zibull,</i><br><i>Cedric Heuer</i> |
| An application of Knowledge Management in Design Structure Matrix for a process improvement phase 287                                                                                                                         |

Arsalan Farooq, S.M.O. Tavares, Henriqueta Nóvoa, António Araújo

#### Part VII: Managing Multiple Domains in Complex Projects

| Structured Methodology for Applying Multiple Domain Matrices (MDM) to<br>Construction Projects<br>Purva Mujumdar, Prasobh Muraleedharan, J. Uma Maheswari                                                                | o<br>299     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| Designing an integrated Project, Program and Portfolio System – A Case St<br>of Healthcare<br><i>Richard Grönevall, Mike Danilovic</i>                                                                                   | tudy<br>309  |
| Managing a complex project using a Risk-Risk Multiple Domain Matrix <i>Catherine Pointurier, Franck Marle, Hadi Jaber,</i>                                                                                               | 319          |
| Reciprocal enrichment of two Multi-Domain Matrices to improve accuracy<br>vehicle development project interdependencies modeling and analysis<br><i>Hadi Jaber, Franck Marle, Ludovic-Alexandre Vidal, Lionel Didiez</i> | of<br>329    |
| Application of Structural Domain-Spanning Criteria in an Industrial<br>Case-Study<br>Wolfgang Bauer, Daniel Kasperek, Sebastian Maisenbacher, Maik Maurer                                                                | 339          |
| Approach for recirculation of testing knowledge into product development<br>supported by matrix-based methods<br><i>Carsten Karthaus, Daniel Roth, Hansgeorg Binz, Maximilian Schenk, Bern</i><br><i>Bertsche</i>        | 349<br>d     |
| How to assess actors for an Open Innovation-project?<br>Matthias R. Guertler, Fatos Elezi, Udo Lindemann                                                                                                                 | 359          |
| Integrating Risks in Project Management<br>Elodie Rodney, Yann Ledoux, Yves Ducq, Denys Breysse                                                                                                                          | 369          |
| The new global factory: A systems perspective for addressing the complexi localization in emerging markets <i>Patrick Wehner, Hillary Sillitto, Simon Harris</i>                                                         | ty of<br>379 |
| Author Index<br>Keyword Index                                                                                                                                                                                            | 389<br>391   |