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The Laws of Complex Design Networks

Sparseness: Small fraction of the possible number of links
Small World: High clustering with short average path lengths

Heavy-tailed Distributions : Many small nodes held together by a few
hubs

Asymmetric Information Flows: incoming capacities of nodes are
much more limited than outgoing capacities

Structure-based Dynamics: Spread is determined by network structure

Robustness and Fragility: Dynamics is ultra error tolerant, yet highly
vulnerable to targeted perturbations

Sensitivity and Leverage: focusing engineering efforts on central nodes

Building Blocks: key design circuit elements evolved to perform
similar tasks

Nested Modularity: Groups form a hierarchical structure



Sparseness

Open-Source
Software

Complex Design

Networks have only a small fraction of  Networks
the possible number of links
Network Type # Nodes # Links
Linux-kernel Directed 5,420 11,460
MySQL Directed 1,501 4,245
s38417 electronic circuit Directed 23,843 33,661
Forward Logic Chip
s38584 electronic circuit  Directed 20,717 34,204
Vehicle Directed 120 417
Product Development
Pharma facility Directed 582 4,123
16 story hospital Directed 889 8,178
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Complex Design
Networks

Small World

Networks are clustered but have a small
characteristic path length

Crystal? Random?

High Modularity Low Modularity

L_ow node-to-node
distance

High node-to-node
distance




Small World Complex Design

Networks are clustered but have asmall Networks
characteristic path length

Network d drand C Crand
Linux-kernel 4.66 5.87 0.14 0.001
Open-Source
Software
MySQL 5.47 4.20 0.21 0.004
Vehicle 2.88 2.73 0.21 0.05
Pharma facility 2.63 2.77 0.45 0.02
Product Development :
16 story hospital 3.12 2.58 0.27 0.02
Microprocessor 2.09 2.40 0.415 0.1466

Equipment 3.21 2.60 0.50 0.10
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T : ~ Networks

Probability

Number of links ‘Number of links

Heavy-tailed Distributions
Right-skewed and fat-tailed in-degree and out-degree distributions

Information Bottlenecks (“Design Hubs”)

“Receivers,” “Generators” & “Brokers”

Asymmetric Information Flows

Incoming capacities of nodes are much more limited than
outgoing capacities
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Complex Design
Structure-based Dynamics Networks

Design Network structure provides direct information
about its dynamics (behavior)

Design dynamics Is controlled by the extent of coupling and
correlations in the network

Phase transitions

NE

coupling

project time/budget
change propagation

defects/error



Error/Change Propagation in Complex
Design Networks (Random Network)
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Error/Change Propagation on Complex
Design Networks (Real Design Networks)

og® n
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Complex Design

Robustness and Fragility Networks

Dynamics is ultra error tolerant, yet highly vulnerable
to “perturbations” targeted at central nodes

Sensitivity and Leverage

Preferential design policy of focusing engineering efforts
on central nodes

High vulnerability \) , o
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3-Node Subgraphs

T <]
<. o]
< <] <]
< <<



XERKEZ
NEEKEE A
2 AR KR EE
BUHNER R
R SN
TUNKRUNKZY
N RV KK
VN R 2L




MK EEKKE
MK KE
e REKERKKEK
mmmwKWMﬁm

dﬁﬁﬁﬁﬁﬁmm
TRE XXX R
RRRKKKRK
%EE&%K%M




b DB B
A R RE KK
e MW NRKKRKEH

Wﬁﬁﬁxﬁﬁmﬁ

Wmmmmmmmﬁ
IREERKEIRD

KRR ERK]

Eiva

R RKIRKKKU



4-Node Subgraphs




“Real-World” Design Network




“Randomized” Design Network

a




A Dynamic Network Model of Error/Change
Propagation on Complex Design Networks

........ a0 oo&‘ Q0 -1
P AW 7S
. S Ghi88 T TR
/ ;

1] P ’

' 1 p‘~--" *'ﬂ/l\»

———————————— ' 2 A

. : - . “Closed” W T
/ 1 \ 1 Ve
/ D ol Ry 00 Bt
\ [} -
1 ]
\ A}
‘\ !

g

$ ‘@

___________
=~

- ;’
f M
L} ﬁ -

. “Closed”

___________
- -

P — Interdependency parameter

6 — Autonomy parameter



Synchronization of Design Problem Solving Over Time
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Synchronization Probability of 3-node Motifs
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Subgraph Ranking by Synchronizability Metric
and Frequency
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Spearman’s Rank Correlations (3-Node Subgraphs)
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Spearman’s Rank Correlations (4-Node Subgraphs)
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Subgraph Frequency Classified by
Synchronlzablllty Class (3-node Subgraphs)
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Subgraph Frequency Classified by
Synchronizability Class (4-node Subgraphs)
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real freq—rand mean freq

Z-Score =
std rand
Subgraph profile (three-node subgraphs)
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Figure 10.pptx

Z-Score Classified by Synchronizability Class
(4-node, 4-edge Subgraphs)
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Z-Score Classified by Synchronizability Class

(4-node, 5-edge Subgraphs)
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Z-Score Classified by Synchronizability Class
(4-node, 6-edge Subgraphs)
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Subgraph Relative Difference Profile (RD-Score)
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RD-Score Classified by Synchronizability Class
(4 -node, 4- edge Subgrap qs)
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RD-Score Classified by Synchronizability Class
(4-node, 5-edge Subgraphs)
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RD-Score Classified by Synchronizability Class
(4-node, 6-edge Subgraphs)
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Summary

arge-scale design networks share repeated
patterns of interdependent activities (routines) that
are universal across many distinct organizations

The abundance of these design routines is highly
correlated with their ability to synchronize and
coordinate the design activity



What is the Origin of the “Magical” Patterns?

Global and properties of local subgraphs contribute to the
abundance of subgraphs

Braha D & Bar-Yam Y (2006)

“subgraphs within subgraphs” Temporal nature of design networks
and separation of time scales



Deeper Connection between engineering design and
biology?

| Diverse abundance of

_ | subgraphs in design

~ { networks. Some provide
an advantage.

Variation

Selection and Transmission |
(mimicry, copyin K Selective pressures that

: Y, copyIng, favor more synchronizable
learning, re-use, best f i

_ subgraphs
practices)

" |Increased abundance of
subgraphs that enable
better coordination and
control

New Design Networks
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‘Coupled Design Process’ Theory
(RED 2003)
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