36. DfX-Symposium 2025

TechMB: Exploring the Potential of Vision Language Models for Interpreting Technical
Drawings

Leonhard Kunz'*, Mario Klostermeier', Kokulan Thanabalan?, Tatjana
Legler’, Martin Ruskowski'

' University of Kaiserslautern-Landau (RPTU), Gottlieb-Daimler-Strale 42, 67663 Kaiserslautern, Germany
2 Trier University, Campus Il, BehringstralRe 21, 54296 Trier, Germany

* Korrespondierender Autor:
Leonhard Kunz
Gottlieb-Daimler-Stral3e 42,
67663 Kaiserslautern,
Germany
@ +49 631/205757009
< leonhard.kunz@rptu.de

Abstract

Vision Language Models (VLMs) have gained widespread
adoption among end users. Their versatility has also sparked
interest in applying them to more domain-specific challenges.
This paper investigates the principal suitability of small-scale
VLMs in the task of evaluating the manufacturability of parts
based on a technical drawing by providing the Technical
drawings for Manufacturability Benchmark (TechMB). A selection
of small-scale VLMs is then tested using this benchmark. The
results indicate that the models show potential for text extraction
and interpretation of domain-specific terminology. However, they
struggle with the reasoning about the manufacturing of the
depicted parts and partly even with the delivery of concise and
precise answers necessary for the targeted task.
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1. Introduction

Design for Manufacturability (DfM) ensures that product designs can be efficiently and
reliably produced. However, applying DfM best practices remains largely manual and
experience-driven. Less experienced designers often fall into time-consuming feedback loops
involving production and quality assurance [1]. Here, automated validation tools can provide
immediate feedback on design violations, improving efficiency [2].

These tools typically analyze product geometries based on predefined rule sets.
Commercial CAD-integrated software such as DFMPro [3] and the Boothroyd-Dewhurst DFMA
suite [4] identify violations like small radii or deep pockets directly within the geometry.
Although robust and deterministic, rule-based approaches are limited by their static nature and
often require manual adaptation to different manufacturing environments [5].

More recently, Al-based approaches have gained attention. Machine learning models are
data-driven methods that can capture subtle and context-specific patterns in manufacturing.
However, they require large efforts in dataset preparation and may produce incorrect results
due to their probabilistic nature. As a result, such models are still primarily found in research
or early-stage applications and are not yet widely used in industry [6,7].

This paper investigates the capabilities of small Vision Language Models (VLMs), referred
to as VLMs, in assessing product designs regarding DfM best practices. For this, it introduces
the Technical drawings for Manufacturability Benchmark (TechMB) for visual understanding
and reasoning on technical drawings and tests it on a selection of small-scale VLMs.

The structure of the paper is as follows: Section 2 reviews related work. Section 3 describes
the proposed benchmark. Section 4 presents and discusses the results using several open-
weight VLMs. Section 5 concludes the paper.

2. Related Literature

DfM validations ensure that a product design is compatible with cost-effective and efficient
manufacturing processes. Traditionally, rule-based systems are used for this task [5].
However, recently data-driven alternatives gained traction due to progress in machine learning
[6]. The work presented here builds the groundwork for the project XDP-Opt, which attempts
to utilize a VLM to analyze technical drawings to detect problems with learned DfM rules [8].
Therefore, in the following, we will firstly assess the advantages and drawbacks of rule-based
and data-driven DfM methods. Secondly, we will analyze the functionality and benchmarking
of VLMs.

2.1. Comparing rule-based and data-driven approaches to DfM validations

The formulation of DfM rulesets offers several clear advantages. Their deterministic nature
yields reliable validation results, as each check follows a precisely defined logic derived from
expert knowledge, industry standards, or fundamental manufacturing constraints. Because
rules can be encoded directly from specialists’ experience, their decision paths remain
transparent, easily audited, and relatively simple to trace [9]. This immediate feedback loop
helps designers iterate quickly and ensures that process-specific considerations are taken into
account from the outset [11].

However, to capture all relevant factors (e.g., materials, geometries, tool capabilities), rules
inevitably become complex and highly parametric. Even then, they remain strictly limited to the
cases anticipated during rule definition [9, 10]. Any novel feature or emerging manufacturing
technique requires experts to update the rulebase accordingly. Maintaining and extending a
comprehensive ruleset therefore demands deep specialist knowledge of both the underlying
manufacturability constraints and the rule-definition formalism itself [12]. From an
organizational standpoint, that also means instituting clear governance over who may modify



the rules to avoid conflicting or redundant entries. As a result, rule-based systems can become
cumbersome to keep maintained, particularly in fast-evolving production environments [13].

Historically, most commercially available DfM software is currently built around a rule-based
core. They are well integrated with common CAD systems and process the 3D model of the
product to simplify validation checks [3, 4].

By contrast, data-driven DfM validation begins from a very different premise. Here,
statistical models learn implicit design-to-manufacturability relationships from well-
documented artifacts, such as root-cause-analysis reports, version histories with annotated
change rationales, and process-parameter logs [14]. However, the high nonlinearity of
machine learning models often renders their outputs opaque, reducing their interpretability
[15]. Moreover, to establish robust correlations between geometric features and
manufacturability outcomes, large volumes of high-quality, representative data must be
collected and curated. This data-acquisition effort typically represents the largest investment
in any purely data-driven approach [16].

However, particularly machine learning models can adapt automatically to complex, non-
linear relationships in the design space, often detecting subtle interactions that simple rules
cannot capture [17]. As new designs and production data accumulate, these systems can
continuously integrate new correlations through novel data without requiring manual
intervention from experts [18]. Table 1 offers a quick summary and a broad comparison of both
approaches.

Table 1: Comparative summary of rule-based and data-driven DfM validations

Aspect Rule-based approach Data-driven approach

Expert-defined rules and

Knowlede Source Historical data

standards
Flexibility Limited to predefined cases High adaptability to new patterns
Maintenance Manual updates by specialists Continuously from novel data
Transparency WeII. c.ompreher?dible through Potentially difficult to comprehgnd
explicit formulation through high model non-linearity
Data Requirements Minimal Substantial high-quality data

In practice, first commercial DfM software suites now incorporate machine learning models
to extend the capabilities of rule-based evaluations. They are, e.g., enhancing the weighting
of errors based on criticality, learning to detect critical past design patterns, or rule-prefiltering
[19, 20]. Nonetheless, many applications are currently targeted at printed circuit board design
and are closely integrated with proprietary tool chains.

Agnostic DfM validation tools that leverage the artifacts of the design process (e.g., CAD
files, technical drawings, etc.) that are utilizing the strengths of data-driven approaches are
sparse and not yet in commercial use [17]. To leverage these artifacts, they must contain all
definitions relevant for manufacturing. Technical drawings are still the de facto standard in the
communication between design and production in most manufacturing environments. Even
though their highly standardized form carries all relevant information, they are seldomly
considered as the basis for DfM validation, as their human-readable format makes them
inherently difficult to be processed algorithmically [21]. However, advancements in computer
vision and machine learning are beginning to address this challenge by segmenting and
interpreting components within engineering drawings [21].



2.2. Vision Language Benchmarks for the manufacturing domain

Multimodal foundation models represent a class of large machine learning models that are
pre-trained on general data with different modalities (e.g., text, images, audio). Most of these
models are based on transformer architectures and have specialized encoders for specific
modalities. VLMs specifically are built to process and align visual inputs and natural language.
They can be used for a wide array of tasks, such as image captioning, visual question
answering, visual reasoning, or cross-modal retrieval [22].

The majority of VLMs are trained on a range of data sources, mainly obtained through
webscraping. These cover a broad range of all topics and image/text types available on the
internet [23]. The availability of benchmarks consisting of domain-specific datatypes and tasks
is essential to assessing the usefulness of different models for specific applications. They help
to determine the most suitable model for further fine-tuning on domain-specific data. As such,
the benchmark dataset needs to represent the underlying task and datatypes well enough to
allow such a conclusion [24].

Several benchmark datasets for VLMs have been proposed in the past few years covering
the engineering domain [25, 26, 27]. Some more general benchmarks try to explore the
physical reasoning capabilities of VLMs [28] or datatype-specific reasoning on tables or
diagrams [29]. However, the manufacturing domain is currently still underexplored in this field.
Specifically, there are currently no public benchmarks for the evaluation of technical drawings.
And data on visual reasoning tasks regarding DfM assessments based on technical drawings
are currently a research gap.

3. Benchmark

In this paper, we address the lack of available vision language benchmarks on technical
drawings. The proposed TechMB benchmark is derived from the chain of thought behind
manual DfM validations. Thus, we will first analyze the chain of thought behind DfM and collect
and label the dataset accordingly. The TechMB benchmark is made publicly available on
Huggingface'.

3.1. Chain of thought DfM validation

Score-based manufacturing evaluation systems are a good starting point to determine the
relevant indicators for manufacturability. Typically, these involve an assessment of the overall
part definitions, like material declarations and tolerance guidelines. Then an identification of
the geometric features and the allocation of suitable manufacturing processes. The
manufacturability is then assessed based on feature parameters and process or tool
constraints [30]. Derived from these considerations, we propose the following chain of thought:

What is the material declaration?

What general tolerance schemes are used?

What are the overall dimensions of the part?

What geometric features need to be manufactured?

What is the primary manufacturing process?

Does the choice of material, tolerances, and the overall geometric features lead to
manufacturability problems for the choice of manufacturing process?

S o

1 https://huggingface.co/datasets/WSKL/techmb
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The questions in the TechMB dataset are based in content on the questions formulated
above.

3.2. Data Collection

The data for TechMB consists of manually created and annotated technical drawings.
These technical drawings are created manually from the Fusion 360 Gallery segmentation
dataset, which contains a wide variety of 3D models submitted by users of the CAD package
Autodesk Fusion 360 [31]. The dataset was created to train and test models for segmentation
of geometries in the associated modeling operations, like extrusions, revolutions, fillets,
chamfers, ect. As such, it contains a high variety of objects of different topological and
operational complexity. The TechMB dataset uses a random subset of 180 models of the
Fusion 360 segmentation dataset (Version s2.0.1). The technical drawings are created from
these manually by 6 different authors, each a (bachelor or master) student of mechanical
engineering with entry-level experience in CAD modeling and the creation of technical
drawings. The drawings are created using 8 different drawing templates with a variety in the
arrangement and content of the title blocks. Nonetheless, the parts in [31] come without a
functional context of what the parts are designed for. Thus, the definition of functional
tolerances (default as well as specific) or materials is chosen freely. Figure 1 illustrates the
process of dataset creation, of which step 3 presents most of the manual efforts.

Material declaration
S & +i
| Default tolerance schema |

1 g s

i. _ ‘ ) d:;a»‘. =T .l
3. create technical drawing 4. label manually
r : : . e : : question

What is the most suitable primary
manufacturing process for producing
the geometry?

A: Milling.

B: Turning.

C: Casting.

D: Injection Molding.

E: Sheet Metal Fabrication.

answer
A

Figure 1: Dataset creation process, including all manual efforts.

3.3. Data Labeling

The labels were assigned manually without being cross-checked by a second person. Some
of them represent objective ground truths (e.g., direct text recognition); some labels are not
unambiguous (particularly for visual reasoning tasks). Two strategies are employed to
circumvent this problem as far as possible. The first strategy is the reformulation of a question
as multiple choice. Thus, constraining the possible answer space. This helps the human
annotator to choose the most likely answer and at the same time simplifies the automatic
evaluation of the generated answer of a VLM. The second strategy separates reasoning and
recognition tasks by transferring the problem to an example case and using information from
the image. Thus, visual understanding can be tested, and the answer is specifically funneled
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to an unambiguous case. An example is the recognition of general tolerances from the
technical drawing and their application to a generic length. Figure 2 shows examples of the
second tactic. The application of these tactics also helps to avoid debated metrics for the
answer correctness, like BLEU or ROUGE scores. Nonetheless, not all questions could be
successfully applied to all drawings if the ambiguity was still too high to allow the determination
of a subjective ground truth.

image question

— : : | How does the default tolerance affect the
dimensioningsin the drawind?

) | answer
77777777777 L [@3.6 mm-> +- 0.2 mm ]

P @7.3 mm and @14.5 mm> +-0.5 mm
1.8 mm > 0.2 mm

targetseparation

H H question

What is the permissible deviation for an

L = || unspecified length of 18 mm, according to the
. default tolerance note, given in the technical

drawing?

answer
[ +-0.5 mm ]

Figure 2: One question reformulation strategy applied to an example. It shows the separation of detection and
reasoning onto a different target (the unspecified length of 18 mm). It simplifies the expected answer
structure, decreases ambiguity, and makes it not necessary to extract both, dimensions as well as the
default tolerance specification.

We furthermore distinguish the tasks for the VLM in the TechMB dataset into Optical
Character Recognition (OCR), Visual Understanding (VU), and Visual Reasoning (VR). OCR
means the simple recognition and extraction of specific text from the drawing. VU is the
comprehension and understanding of visual elements in the drawing, like geometric features
or the interpretation of tolerance specifications in domain-specific terminology. VR then
declares the interpretation of the drawing as a whole of the depicted part and the reasoning of,
e.g., a suitable manufacturing process. Table 2 shows the division of the quest dataset
regarding the task as well as the answer evaluation type. The latter includes exact matches of
ground truth strings and given answer (e.g., the material declaration: “POM”), and multiple-
choice questions. Altogether, the TechMB dataset contains 947 question-answer pairs.

Table 2: Questions with their associated types and the count of each question and type in the TechMB Dataset.

Task ID |Type |Question Count
t031 OCR What is the material specification of the depicted part? 180 |360
t033 What is the default tolerance schema for unspecified dimensions? 180 |(38%)
What is the permissible deviation for an unspecified length of 18 mm, 178
112 according to the default tolerance note, given in the technical drawing?
A: 0.01 mm.\nB: 0.02 mm.\nC: 0.05 mm.\nD: 0.1 mm.\nE: 0.2 mm.\nF: 0.5
mm.\nG: 1.0 mm\nH: no specification.
VU |Whatis the maximum extent of the depicted part along each dimension 155 438
214 (width, height, and depth)? (46%)
\A: [27.3;1.7;1.1].\nB:[21.8;2.9;1.5].\nC:[21.4;1.8;1.2].\nD:[20.0;2.2;1.2].
215 Which of the following geometric features are present in the part? 105

A: Through-hole.\nB: Blind hole.\nC: Pocket.\nD: Chamfer.\nE: Fillet.




What is the most suitable primary manufacturing process for producing the | 134
geometry?

A: Milling.\nB: Turning.\nC: Casting.\nD: Injection Molding.\nE: Sheet Metal
Fabrication.

t311

Does the choice of material, tolerances, and the overall geometric features 15

VR lead to manufacturability problems in the choice of manufacturing process? 149
A: Sharp internal corner that cannot be milled.\nB: Overly tight tolerance on (16%)
a non-critical surface.\nC: Unreachable hole for drilling.\nD: Bending radius
323 to small.\nE: Hole depth exceeds tool length or depth-to-diameter ratio is too

high.\nF: Thin wall that may deform during machining or casting.\nG:
Threaded hole too close to edge, risking tool breakage or deformation.\nH:
Chamfer or fillet are missing on critical mating edges.\nl: Material
incompatible with specified feature.\nJ: No manufacturability issue.

The TechMB dataset is provided in tabular form to simplify iterative processing. In
conclusion, the final dataset contains the following fields in every row:

= task_id: ID of the specific question as declared in Table 2.

= eval_type: Classifier for the expected answer type (answer matching or multiple/single
choice).

= drw_id: ID of the corresponding drawing, which is the same as the part ID in the
Autodesk Fusion 360 dataset [31].

= image: Bit64-encoded image of the exported technical drawing.

= drw_complexity: Numeric complexity of the drawing.

= question: The question text.

= answer: The expected answer corresponding to the answer type.

= label_confidence: The confidence of the assorted labels in manual labeling (low,
medium, high).

4. Results and Discussion

The following section describes a benchmark test conducted with 15 VLMs from different
model families implemented in the VLMEval package [32]. The tested VLMs are a selection of
open-weight models below 8 billion parameters, excluding larger models and service models
available only via their APIs. This selection is drawn from a class of “desktop” VLMs that can
be deployed locally, enabling direct integration into CAD applications. The selection of models
in this benchmark prioritizes diversity in both architectural design and parameter count. The
objective is to establish a broad comparative foundation that reflects a wide range of model
families. Multiple versions of specific model series are included. Within each series, different
model sizes are selected to enable a detailed analysis of scaling effects. Model evaluation is
conducted in a zero-shot setting. Each model receives a technical drawing accompanied by a
single, isolated question, without any additional example data. Questions are presented
independently, preventing the models from carrying information across tasks or forming a
coherent representation of the drawing. This setup allows for a focused assessment of each
model’'s ability to answer individual questions accurately. To standardize the interaction and
facilitate automated evaluation, each question is embedded within a uniform system prompt:

# **Context:™*

You are an expert in analyzing technical drawings and manufacturing processes. Your
task is to analyse technical drawings of components and answer different questions
regarding the content and the validity of the depicted component.

# “*Task**

Analyse the technical drawing provided and answer the following question for the
drawing and the depicted part:



{question}

# **Response Format**

{answer format}

If you are not absolutely certain about the correct answer, return instead ???.

Limit your answer strictly to the given format and do not give any additional explanations.

This system prompt provides additional context and explicitly defines the expected
response format, whether as free-text or multiple-choice. This structure improves consistency
across responses and ensures compatibility with automated evaluation methods. Automatic
evaluation is performed using predefined reference answers and is subsequently verified
through manual review. Responses are classified in binary terms as either correct or incorrect,
with no partial credit assigned. Final performance scores are calculated as the mean accuracy
across all questions for each model.
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Figure 3: Accuracy per question for all evaluated visual language models (VLMs). The dashed line in tasks t112,
t214, and t311 indicates the performance of a random guesser.

The results are summarized in Figure 3, which presents the accuracy achieved per question
for each model. For the single-choice questions t112, 1214, and t311, a dashed line indicates
the expected performance of a random guesser, serving as a baseline for comparison. Notably,
several models perform below this random baseline for questions t112 and t214, suggesting a
failure to produce meaningful or valid outputs. No model demonstrates consistently strong
performance across the full set of questions. From the perspective of practical deployment, the
current quality of responses remains inadequate. Interestingly, for question t323, which
involves visual reasoning and is among the more complex tasks, several models achieve
relatively high accuracy. This suggests that some models are capable of handling isolated
instances of high cognitive demand. Nonetheless, the overall findings indicate that small,
locally deployable models, that have not been specifically fine-tuned, are presently limited in
their ability to provide reliable user assistance in the investigated tasks. It should also be
acknowledged that alternative prompt formulations may yield substantially improved
performance.



5. Conclusion

The presented work introduces the TechMB dataset as a benchmark for the
manufacturability evaluations of parts based on their technical drawings. The drawings are
manually created from 3D models from the Autodesk Fusion 360 Segmentation dataset. They
are manually annotated based on several questions regarding the content of the drawing and
individual manufacturability reasoning. TechMB contains in total 947 question-answer pairs
targeting simple text feature extraction or more complex understanding of the drawing as well
as reasoning on the depicted part. The study includes a benchmark test with 15 VLMs up to 8
billion parameters. The results indicate that the out-of-the-box performance of the tested open-
weight models is not sufficient for this specific task.

Future tests with larger models might show improved performance but would defeat the
point of a local application integrated into the CAD environment. Iterative prompt engineering
could potentially mitigate particularly problems with the generation of concise and viable
answers. Task specific fine-tuning could also help to achieve a higher answer quality but would
potentially require high amounts of specific data that is currently not available publically.
Nonetheless, the fine-tuning could also involve a broader range of contextual data, like extracts
from textbooks, or written DfM guidelines. This kind of information could also be utilized using
Retrieval Augmented Generation Pipelines. Lastly, frameworks like Federated Learning could
help to open the door to a privacy-preserving usage of private data and therefore mitigate the
limits of a fine-tuning strategy.
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