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Abstract 

Vision Language Models (VLMs) have gained widespread 
adoption among end users. Their versatility has also sparked 
interest in applying them to more domain-specific challenges. 
This paper investigates the principal suitability of small-scale 
VLMs in the task of evaluating the manufacturability of parts 
based on a technical drawing by providing the Technical 
drawings for Manufacturability Benchmark (TechMB). A selection 
of small-scale VLMs is then tested using this benchmark. The 
results indicate that the models show potential for text extraction 
and interpretation of domain-specific terminology. However, they 
struggle with the reasoning about the manufacturing of the 
depicted parts and partly even with the delivery of concise and 
precise answers necessary for the targeted task. 
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1. Introduction 

Design for Manufacturability (DfM) ensures that product designs can be efficiently and 
reliably produced. However, applying DfM best practices remains largely manual and 
experience-driven. Less experienced designers often fall into time-consuming feedback loops 
involving production and quality assurance [1]. Here, automated validation tools can provide 
immediate feedback on design violations, improving efficiency [2]. 

These tools typically analyze product geometries based on predefined rule sets. 
Commercial CAD-integrated software such as DFMPro [3] and the Boothroyd-Dewhurst DFMA 
suite [4] identify violations like small radii or deep pockets directly within the geometry. 
Although robust and deterministic, rule-based approaches are limited by their static nature and 
often require manual adaptation to different manufacturing environments [5]. 

More recently, AI-based approaches have gained attention. Machine learning models are 
data-driven methods that can capture subtle and context-specific patterns in manufacturing. 
However, they require large efforts in dataset preparation and may produce incorrect results 
due to their probabilistic nature. As a result, such models are still primarily found in research 
or early-stage applications and are not yet widely used in industry [6,7]. 

This paper investigates the capabilities of small Vision Language Models (VLMs), referred 
to as VLMs, in assessing product designs regarding DfM best practices. For this, it introduces 
the Technical drawings for Manufacturability Benchmark (TechMB) for visual understanding 
and reasoning on technical drawings and tests it on a selection of small-scale VLMs.  

The structure of the paper is as follows: Section 2 reviews related work. Section 3 describes 
the proposed benchmark. Section 4 presents and discusses the results using several open-
weight VLMs. Section 5 concludes the paper. 

2. Related Literature 

DfM validations ensure that a product design is compatible with cost-effective and efficient 
manufacturing processes. Traditionally, rule-based systems are used for this task [5]. 
However, recently data-driven alternatives gained traction due to progress in machine learning 
[6]. The work presented here builds the groundwork for the project XDP-Opt, which attempts 
to utilize a VLM to analyze technical drawings to detect problems with learned DfM rules [8]. 
Therefore, in the following, we will firstly assess the advantages and drawbacks of rule-based 
and data-driven DfM methods. Secondly, we will analyze the functionality and benchmarking 
of VLMs. 

2.1. Comparing rule-based and data-driven approaches to DfM validations 

The formulation of DfM rulesets offers several clear advantages. Their deterministic nature 
yields reliable validation results, as each check follows a precisely defined logic derived from 
expert knowledge, industry standards, or fundamental manufacturing constraints. Because 
rules can be encoded directly from specialists’ experience, their decision paths remain 
transparent, easily audited, and relatively simple to trace [9]. This immediate feedback loop 
helps designers iterate quickly and ensures that process-specific considerations are taken into 
account from the outset [11]. 

However, to capture all relevant factors (e.g., materials, geometries, tool capabilities), rules 
inevitably become complex and highly parametric. Even then, they remain strictly limited to the 
cases anticipated during rule definition [9, 10]. Any novel feature or emerging manufacturing 
technique requires experts to update the rulebase accordingly. Maintaining and extending a 
comprehensive ruleset therefore demands deep specialist knowledge of both the underlying 
manufacturability constraints and the rule‐definition formalism itself [12]. From an 
organizational standpoint, that also means instituting clear governance over who may modify 
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the rules to avoid conflicting or redundant entries. As a result, rule-based systems can become 
cumbersome to keep maintained, particularly in fast-evolving production environments [13]. 

Historically, most commercially available DfM software is currently built around a rule-based 
core. They are well integrated with common CAD systems and process the 3D model of the 
product to simplify validation checks [3, 4]. 

By contrast, data-driven DfM validation begins from a very different premise. Here, 
statistical models learn implicit design‐to‐manufacturability relationships from well‐
documented artifacts, such as root‐cause‐analysis reports, version histories with annotated 
change rationales, and process‐parameter logs [14]. However, the high nonlinearity of 
machine learning models often renders their outputs opaque, reducing their interpretability 
[15]. Moreover, to establish robust correlations between geometric features and 
manufacturability outcomes, large volumes of high-quality, representative data must be 
collected and curated. This data-acquisition effort typically represents the largest investment 
in any purely data-driven approach [16]. 

However, particularly machine learning models can adapt automatically to complex, non‐
linear relationships in the design space, often detecting subtle interactions that simple rules 
cannot capture [17]. As new designs and production data accumulate, these systems can 
continuously integrate new correlations through novel data without requiring manual 
intervention from experts [18]. Table 1 offers a quick summary and a broad comparison of both 
approaches. 

Table 1: Comparative summary of rule-based and data-driven DfM validations 

Aspect Rule-based approach Data-driven approach 

Knowlede Source Expert-defined rules and 
standards Historical data 

Flexibility Limited to predefined cases High adaptability to new patterns 

Maintenance Manual updates by specialists Continuously from novel data 

Transparency Well comprehendible through 
explicit formulation 

Potentially difficult to comprehend 
through high model non-linearity 

Data Requirements Minimal Substantial high-quality data 

 
In practice, first commercial DfM software suites now incorporate machine learning models 

to extend the capabilities of rule-based evaluations. They are, e.g., enhancing the weighting 
of errors based on criticality, learning to detect critical past design patterns, or rule-prefiltering 
[19, 20]. Nonetheless, many applications are currently targeted at printed circuit board design 
and are closely integrated with proprietary tool chains. 

Agnostic DfM validation tools that leverage the artifacts of the design process (e.g., CAD 
files, technical drawings, etc.) that are utilizing the strengths of data-driven approaches are 
sparse and not yet in commercial use [17]. To leverage these artifacts, they must contain all 
definitions relevant for manufacturing. Technical drawings are still the de facto standard in the 
communication between design and production in most manufacturing environments. Even 
though their highly standardized form carries all relevant information, they are seldomly 
considered as the basis for DfM validation, as their human-readable format makes them 
inherently difficult to be processed algorithmically [21]. However, advancements in computer 
vision and machine learning are beginning to address this challenge by segmenting and 
interpreting components within engineering drawings [21]. 
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2.2. Vision Language Benchmarks for the manufacturing domain 

Multimodal foundation models represent a class of large machine learning models that are 
pre-trained on general data with different modalities (e.g., text, images, audio). Most of these 
models are based on transformer architectures and have specialized encoders for specific 
modalities. VLMs specifically are built to process and align visual inputs and natural language. 
They can be used for a wide array of tasks, such as image captioning, visual question 
answering, visual reasoning, or cross-modal retrieval [22]. 

The majority of VLMs are trained on a range of data sources, mainly obtained through 
webscraping. These cover a broad range of all topics and image/text types available on the 
internet [23]. The availability of benchmarks consisting of domain-specific datatypes and tasks 
is essential to assessing the usefulness of different models for specific applications. They help 
to determine the most suitable model for further fine-tuning on domain-specific data. As such, 
the benchmark dataset needs to represent the underlying task and datatypes well enough to 
allow such a conclusion [24].  

Several benchmark datasets for VLMs have been proposed in the past few years covering 
the engineering domain [25, 26, 27]. Some more general benchmarks try to explore the 
physical reasoning capabilities of VLMs [28] or datatype-specific reasoning on tables or 
diagrams [29]. However, the manufacturing domain is currently still underexplored in this field. 
Specifically, there are currently no public benchmarks for the evaluation of technical drawings. 
And data on visual reasoning tasks regarding DfM assessments based on technical drawings 
are currently a research gap. 

3. Benchmark 

In this paper, we address the lack of available vision language benchmarks on technical 
drawings. The proposed TechMB benchmark is derived from the chain of thought behind 
manual DfM validations. Thus, we will first analyze the chain of thought behind DfM and collect 
and label the dataset accordingly. The TechMB benchmark is made publicly available on 
Huggingface1. 

3.1. Chain of thought DfM validation 

Score-based manufacturing evaluation systems are a good starting point to determine the 
relevant indicators for manufacturability. Typically, these involve an assessment of the overall 
part definitions, like material declarations and tolerance guidelines. Then an identification of 
the geometric features and the allocation of suitable manufacturing processes. The 
manufacturability is then assessed based on feature parameters and process or tool 
constraints [30]. Derived from these considerations, we propose the following chain of thought: 

1. What is the material declaration? 
2. What general tolerance schemes are used? 
3. What are the overall dimensions of the part? 
4. What geometric features need to be manufactured? 
5. What is the primary manufacturing process? 
6. Does the choice of material, tolerances, and the overall geometric features lead to 

manufacturability problems for the choice of manufacturing process? 

 
1 https://huggingface.co/datasets/WSKL/techmb  

https://huggingface.co/datasets/WSKL/techmb


 

5 
 

The questions in the TechMB dataset are based in content on the questions formulated 
above. 

3.2. Data Collection 

The data for TechMB consists of manually created and annotated technical drawings. 
These technical drawings are created manually from the Fusion 360 Gallery segmentation 
dataset, which contains a wide variety of 3D models submitted by users of the CAD package 
Autodesk Fusion 360 [31]. The dataset was created to train and test models for segmentation 
of geometries in the associated modeling operations, like extrusions, revolutions, fillets, 
chamfers, ect. As such, it contains a high variety of objects of different topological and 
operational complexity. The TechMB dataset uses a random subset of 180 models of the 
Fusion 360 segmentation dataset (Version s2.0.1). The technical drawings are created from 
these manually by 6 different authors, each a (bachelor or master) student of mechanical 
engineering with entry-level experience in CAD modeling and the creation of technical 
drawings. The drawings are created using 8 different drawing templates with a variety in the 
arrangement and content of the title blocks. Nonetheless, the parts in [31] come without a 
functional context of what the parts are designed for. Thus, the definition of functional 
tolerances (default as well as specific) or materials is chosen freely. Figure 1 illustrates the 
process of dataset creation, of which step 3 presents most of the manual efforts. 

 
Figure 1: Dataset creation process, including all manual efforts. 

3.3. Data Labeling 

The labels were assigned manually without being cross-checked by a second person. Some 
of them represent objective ground truths (e.g., direct text recognition); some labels are not 
unambiguous (particularly for visual reasoning tasks). Two strategies are employed to 
circumvent this problem as far as possible. The first strategy is the reformulation of a question 
as multiple choice. Thus, constraining the possible answer space. This helps the human 
annotator to choose the most likely answer and at the same time simplifies the automatic 
evaluation of the generated answer of a VLM. The second strategy separates reasoning and 
recognition tasks by transferring the problem to an example case and using information from 
the image. Thus, visual understanding can be tested, and the answer is specifically funneled 

1. importmodel from[31] 2. create drawingtemplate

3. create technicaldrawing 4. label manually

Material declaration
&

Default tolerance schema

What is the most suitable primary
manufacturing process for producing
the geometry?

A: Milling.
B: Turning.
C: Casting.
D: Injection Molding.
E: Sheet Metal Fabrication.

question

A

answer
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to an unambiguous case. An example is the recognition of general tolerances from the 
technical drawing and their application to a generic length. Figure 2 shows examples of the 
second tactic. The application of these tactics also helps to avoid debated metrics for the 
answer correctness, like BLEU or ROUGE scores. Nonetheless, not all questions could be 
successfully applied to all drawings if the ambiguity was still too high to allow the determination 
of a subjective ground truth. 

 
Figure 2: One question reformulation strategy applied to an example. It shows the separation of detection and 

reasoning onto a different target (the unspecified length of 18 mm). It simplifies the expected answer 
structure, decreases ambiguity, and makes it not necessary to extract both, dimensions as well as the 
default tolerance specification. 

We furthermore distinguish the tasks for the VLM in the TechMB dataset into Optical 
Character Recognition (OCR), Visual Understanding (VU), and Visual Reasoning (VR). OCR 
means the simple recognition and extraction of specific text from the drawing. VU is the 
comprehension and understanding of visual elements in the drawing, like geometric features 
or the interpretation of tolerance specifications in domain-specific terminology. VR then 
declares the interpretation of the drawing as a whole of the depicted part and the reasoning of, 
e.g., a suitable manufacturing process. Table 2 shows the division of the quest dataset 
regarding the task as well as the answer evaluation type. The latter includes exact matches of 
ground truth strings and given answer (e.g., the material declaration: “POM”), and multiple-
choice questions. Altogether, the TechMB dataset contains 947 question-answer pairs. 

Table 2: Questions with their associated types and the count of each question and type in the TechMB Dataset. 

Task ID Type Question Count 

t031 
OCR 

What is the material specification of the depicted part? 180 360 
(38%) t033 What is the default tolerance schema for unspecified dimensions? 180 

t112 

VU 

What is the permissible deviation for an unspecified length of 18 mm, 
according to the default tolerance note, given in the technical drawing?  
A: 0.01 mm.\nB: 0.02 mm.\nC: 0.05 mm.\nD: 0.1 mm.\nE: 0.2 mm.\nF: 0.5 
mm.\nG: 1.0 mm\nH: no specification. 

178 

438 
(46%) t214 

What is the maximum extent of the depicted part along each dimension 
(width, height, and depth)? 
\A: [27.3;1.7;1.1].\nB:[21.8;2.9;1.5].\nC:[21.4;1.8;1.2].\nD:[20.0;2.2;1.2]. 

155 

t215 
Which of the following geometric features are present in the part? 
A: Through-hole.\nB: Blind hole.\nC: Pocket.\nD: Chamfer.\nE: Fillet. 

105 

What is the permissible deviation for an
unspecified length of 18 mm, according to the
default tolerance note, given in the technical
drawing?

image

question

+-0.5 mm

answer

How does the default tolerance affect the
dimensionings in the drawing?

question

Ø3.6 mm +- 0.2 mm
Ø7.3 mm and Ø14.5 mm +-0.5 mm
1.8 mm ±0.2 mm

answer

targetseparation

open question
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t311 

VR 

What is the most suitable primary manufacturing process for producing the 
geometry?  
A: Milling.\nB: Turning.\nC: Casting.\nD: Injection Molding.\nE: Sheet Metal 
Fabrication. 

134 

149 
(16%) 

t323 

Does the choice of material, tolerances, and the overall geometric features 
lead to manufacturability problems in the choice of manufacturing process?  
A: Sharp internal corner that cannot be milled.\nB: Overly tight tolerance on 
a non-critical surface.\nC: Unreachable hole for drilling.\nD: Bending radius 
to small.\nE: Hole depth exceeds tool length or depth-to-diameter ratio is too 
high.\nF: Thin wall that may deform during machining or casting.\nG: 
Threaded hole too close to edge, risking tool breakage or deformation.\nH: 
Chamfer or fillet are missing on critical mating edges.\nI: Material 
incompatible with specified feature.\nJ: No manufacturability issue. 

15 

 
The TechMB dataset is provided in tabular form to simplify iterative processing. In 

conclusion, the final dataset contains the following fields in every row: 

 task_id: ID of the specific question as declared in Table 2. 
 eval_type: Classifier for the expected answer type (answer matching or multiple/single 

choice). 
 drw_id: ID of the corresponding drawing, which is the same as the part ID in the 

Autodesk Fusion 360 dataset [31]. 
 image: Bit64-encoded image of the exported technical drawing. 
 drw_complexity: Numeric complexity of the drawing. 
 question: The question text. 
 answer: The expected answer corresponding to the answer type. 
 label_confidence: The confidence of the assorted labels in manual labeling (low, 

medium, high). 

4. Results and Discussion 

The following section describes a benchmark test conducted with 15 VLMs from different 
model families implemented in the VLMEval package [32]. The tested VLMs are a selection of 
open-weight models below 8 billion parameters, excluding larger models and service models 
available only via their APIs. This selection is drawn from a class of “desktop” VLMs that can 
be deployed locally, enabling direct integration into CAD applications. The selection of models 
in this benchmark prioritizes diversity in both architectural design and parameter count. The 
objective is to establish a broad comparative foundation that reflects a wide range of model 
families. Multiple versions of specific model series are included. Within each series, different 
model sizes are selected to enable a detailed analysis of scaling effects. Model evaluation is 
conducted in a zero-shot setting. Each model receives a technical drawing accompanied by a 
single, isolated question, without any additional example data. Questions are presented 
independently, preventing the models from carrying information across tasks or forming a 
coherent representation of the drawing. This setup allows for a focused assessment of each 
model’s ability to answer individual questions accurately. To standardize the interaction and 
facilitate automated evaluation, each question is embedded within a uniform system prompt: 

# **Context:** 
You are an expert in analyzing technical drawings and manufacturing processes. Your 
task is to analyse technical drawings of components and answer different questions 
regarding the content and the validity of the depicted component. 
# **Task** 
Analyse the technical drawing provided and answer the following question for the 
drawing and the depicted part: 
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{question} 
# **Response Format** 
{answer format} 
If you are not absolutely certain about the correct answer, return instead ???. 
Limit your answer strictly to the given format and do not give any additional explanations. 

 
 This system prompt provides additional context and explicitly defines the expected 

response format, whether as free-text or multiple-choice. This structure improves consistency 
across responses and ensures compatibility with automated evaluation methods. Automatic 
evaluation is performed using predefined reference answers and is subsequently verified 
through manual review. Responses are classified in binary terms as either correct or incorrect, 
with no partial credit assigned. Final performance scores are calculated as the mean accuracy 
across all questions for each model. 

 
Figure 3: Accuracy per question for all evaluated visual language models (VLMs). The dashed line in tasks t112, 

t214, and t311 indicates the performance of a random guesser. 

The results are summarized in Figure 3, which presents the accuracy achieved per question 
for each model. For the single-choice questions t112, t214, and t311, a dashed line indicates 
the expected performance of a random guesser, serving as a baseline for comparison. Notably, 
several models perform below this random baseline for questions t112 and t214, suggesting a 
failure to produce meaningful or valid outputs. No model demonstrates consistently strong 
performance across the full set of questions. From the perspective of practical deployment, the 
current quality of responses remains inadequate. Interestingly, for question t323, which 
involves visual reasoning and is among the more complex tasks, several models achieve 
relatively high accuracy. This suggests that some models are capable of handling isolated 
instances of high cognitive demand. Nonetheless, the overall findings indicate that small, 
locally deployable models, that have not been specifically fine-tuned, are presently limited in 
their ability to provide reliable user assistance in the investigated tasks. It should also be 
acknowledged that alternative prompt formulations may yield substantially improved 
performance. 
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5. Conclusion 

The presented work introduces the TechMB dataset as a benchmark for the 
manufacturability evaluations of parts based on their technical drawings. The drawings are 
manually created from 3D models from the Autodesk Fusion 360 Segmentation dataset. They 
are manually annotated based on several questions regarding the content of the drawing and 
individual manufacturability reasoning. TechMB contains in total 947 question-answer pairs 
targeting simple text feature extraction or more complex understanding of the drawing as well 
as reasoning on the depicted part. The study includes a benchmark test with 15 VLMs up to 8 
billion parameters. The results indicate that the out-of-the-box performance of the tested open-
weight models is not sufficient for this specific task. 

Future tests with larger models might show improved performance but would defeat the 
point of a local application integrated into the CAD environment. Iterative prompt engineering 
could potentially mitigate particularly problems with the generation of concise and viable 
answers. Task specific fine-tuning could also help to achieve a higher answer quality but would 
potentially require high amounts of specific data that is currently not available publically. 
Nonetheless, the fine-tuning could also involve a broader range of contextual data, like extracts 
from textbooks, or written DfM guidelines. This kind of information could also be utilized using 
Retrieval Augmented Generation Pipelines. Lastly, frameworks like Federated Learning could 
help to open the door to a privacy-preserving usage of private data and therefore mitigate the 
limits of a fine-tuning strategy. 

Acknowledgement 

This research was funded by the Deutsche Forschungsgemeinschaft (DFG, German 
Research Foundation) - Projektnummer (543073350) - Acronym: XDP-Opt. The following 
people have enabled this work by creating technical drawings Niklas Krell, Pascal 
Wohnsiedler, Matthias Bohr, Eljas Völker, Nico Conrad. We are thankful for their support.  

References 
[1] Alam, Md Ferdous et al..: From Automation to Augmentation: Redefining Engineering Design and 

Manufacturing in the Age of NextGen-AI. In: An MIT Exploration of Generative AI (2024) 
[2] HCL Software: HCL DFMPro for leading Aerospace and Defense Manufacturer. URL 

https://dfmpro.com/case-study/dfmpro-for-aerospace-industry/. - abgerufen am 2025-07-11 
[3] HCL Software: Powerful Design for Manufacturing Software | HCL DFMPro. URL https://dfmpro.com/. - 

abgerufen am 2025-07-11 
[4] Boothroyd Dewhurst: DFMA® Software: Design for Manufacture and Assembly. URL https://www.dfma.com/. 

- abgerufen am 2025-07-11 
[5] Campi, Federico; Favi, Claudio; Germani, Michele; Mandolini, Marco: CAD-integrated design for 

manufacturing and assembly in mechanical design. In: International Journal of Computer Integrated 
Manufacturing Bd. 35 (2022), Nr. 3, S. 282–325 

[6] Zhang, Ying; Yang, Sheng; Dong, Guoying; Zhao, Yaoyao Fiona: Predictive manufacturability assessment 
system for laser powder bed fusion based on a hybrid machine learning model. In: Additive Manufacturing 
Bd. 41 (2021), S. 101946 

[7] Makatura, Liane et al.: Large Language Models for Design and Manufacturing. In: An MIT Exploration of 
Generative AI (2024) 

[8] Submitted: Kunz, Leonhard et al.: XDP-Opt: Experience-Based Design Process Optimization for Industrial 
Manufacturing. In: Potsdam, 2025, [Manuscript submitted] 

[9] Hedberg, Thomas D.; Hartman, Nathan W.; Rosche, Phil; Fischer, Kevin: Identified research directions for 
using manufacturing knowledge earlier in the product life cycle. In: International Journal of Production 
Research Bd. 55 (2017), Nr. 3, S. 819–827 

[10] Cao, Jianpeng; Vakaj, Edlira; Soman, Ranjith K.; Hall, Daniel M.: Ontology-based manufacturability analysis 
automation for industrialized construction. In: Automation in Construction Bd. 139 (2022), S. 104277 

[11] Chirumalla, Koteshwar et al. Exploring feedback loops in the industrialization process: A case study. In: 
Procedia Manufacturing Bd. 25 (2018), S. 169–176 



 

10 
 

[12] Kang, SungKu et al.: Extraction of Formal Manufacturing Rules from Unstructured English Text. In: 
Computer-Aided Design Bd. 134 (2021), S. 102990 

[13] Lee, Hyeonji et al.: Rule-based design verification for mechanical parts with dynamic rule subset selection. In: 
Scientific Reports Bd. 15 (2025), Nr. 1, S. 17153 

[14] Papageorgiou, Konstantinos et al.: A systematic review on machine learning methods for root cause analysis 
towards zero-defect manufacturing. In: Frontiers in Manufacturing Technology Bd. 2 (2022), S. 972712 

[15] Watson, David S.: Conceptual challenges for interpretable machine learning. In: Synthese Bd. 200 (2022), 
Nr. 2, S. 65 

[16] Escobar, Carlos A.; McGovern, Megan E.; Morales-Menendez, Ruben: Quality 4.0: a review of big data 
challenges in manufacturing. In: Journal of Intelligent Manufacturing Bd. 32 (2021), Nr. 8, S. 2319–2334 

[17] Ghadai, Sambit; Balu, Aditya; Sarkar, Soumik; Krishnamurthy, Adarsh: Learning localized features in 3D 
CAD models for manufacturability analysis of drilled holes. In: Computer Aided Geometric Design Bd. 62 
(2018), S. 263–275 

[18] Antony, Jibinraj et al.: Adapting to Changes: A Novel Framework for Continual Machine Learning in Industrial 
Applications. In: Journal of Grid Computing Bd. 22 (2024), Nr. 4, S. 71 

[19] Kim, Namjae et al.: A new era DFM solution for yield enhancement using machine learning (ML). In: Lafferty, 
N. V.; Grunes, H. (Hrsg.): DTCO and Computational Patterning III. San Jose, United States: SPIE, 2024 
— ISBN 9781510672147 9781510672154, S. 35 

[20] GLOBALFOUNDRIES: GLOBALFOUNDRIES and Cadence Add Machine Learning Capabilities to DFM Signoff 
for GF’s Most Advanced FinFET Solutions. URL https://gf.com/gf-press-release/globalfoundries-and-
cadence-add-machine-learning-capabilities-dfm-signoff-gfs-most/. - abgerufen am 2025-07-11. 
— GlobalFoundries 

[21] Zhang, Wentai et al.: Component segmentation of engineering drawings using Graph Convolutional 
Networks. In: Computers in Industry, Bd. 147 (2023), S. 103885 

[22] Ghosh, Akash et al.: Exploring the Frontier of Vision-Language Models: A Survey of Current Methodologies 
and Future Directions, arXiv (2024) 

[23] Zhang, Jingyi; Huang, Jiaxing; Jin, Sheng; Lu, Shijian: Vision-Language Models for Vision Tasks: A Survey. 
In: IEEE Transactions on Pattern Analysis and Machine Intelligence Bd. 46 (2024), Nr. 8, S. 5625–5644 

[24] Rädsch, Tim et al.: Bridging vision language model (VLM) evaluation gaps with a framework for scalable and 
cost-effective benchmark generation, arXiv (2025) 

[25] Doris, Anna C. et al.: DesignQA: A Multimodal Benchmark for Evaluating Large Language Models’ 
Understanding of Engineering Documentation. In: Journal of Computing and Information Science in 
Engineering Bd. 25 (2025), Nr. 2, S. 021009 

[26] Li, Ming; Zhong, Jike; Chen, Tianle; Lai, Yuxiang; Psounis, Konstantinos: EEE-Bench: A Comprehensive 
Multimodal Electrical and Electronics Engineering Benchmark. In: 2025, S. 13337–13349 

[27] Yi, Dongyi et al.: MME-Industry: A Cross-Industry Multimodal Evaluation Benchmark, arXiv (2025) 
[28] Chow, Wei et al.: PhysBench: Benchmarking and Enhancing Vision-Language Models for Physical World 

Understanding, arXiv (2025) 
[29] Masry, Ahmed et al.: ChartQA: A Benchmark for Question Answering about Charts with Visual and Logical 

Reasoning, arXiv (2022) 
[30] Yeo, Changmo; Cheon, Sanguk; Mun, Duhwan: Manufacturability evaluation of parts using descriptor-based 

machining feature recognition. In: International Journal of Computer Integrated Manufacturing Bd. 34 (2021), 
Nr. 11, S. 1196–1222 

[31] Lambourne, Joseph G.et al.: BRepNet: A Topological Message Passing System for Solid Models. In: 2021, 
S. 12773–12782 

[32] Duan, Haodong at al.: VLMEvalKit: An Open-Source ToolKit for Evaluating Large Multi-Modality Models. In: 
Proceedings of the 32nd ACM International Conference on Multimedia. Melbourne VIC Australia: ACM, 2024 
— ISBN 9798400706868, S. 11198–11201 


