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Abstract 

Increasing competitive pressure and shorter product life cycles 
necessitate more efficient development processes. Although 
CAD models contain valuable design knowledge, particularly 
design feature information (DFI) such as parameters and 
modelling logic, this potential has remained largely untapped. 
However, modern technologies such as knowledge graphs, 
graph neural networks and natural language processing offer 
new opportunities for exploiting this information. This paper 
presents a structured methodology for identifying and evaluating 
DFI-based applications that can improve product development. 
Based on a literature review, expert interviews and iterative 
evaluation, eight applications were developed to address key 
challenges, ranging from design reuse and model quality 
analysis to manufacturing integration and requirements 
traceability. The results demonstrate the potential of DFI to act 
as a semantic bridge between engineering disciplines, paving the 
way for future research and the industrial implementation of 
knowledge-based CAD applications. 
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1. Motivation 

In today’s rapidly evolving industrial landscape, companies are under high pressure to 
innovate quickly while maintaining high standards of quality, efficiency, and cost-effectiveness. 
One of the primary levers for achieving these objectives is the digitalization of product 
development. Modern product creation processes heavily rely on computer-aided systems 
such as CAD (Computer-Aided Design), CAE (Computer-Aided Engineering), and CAM 
(Computer-Aided Manufacturing). These systems produce and manage vast amounts of data 
during the design and engineering phases [1]. 

While geometric data (such as B-Rep models) is commonly exchanged and reused, the 
underlying logic of the design is often lost or ignored. Yet, the intent of the designer is captured 
during the creation of CAD models using parametric features, constraints, sketches, and 
feature dependencies. This body of knowledge is referred to as Design Feature Information 
(DFI). DFI holds the key to understanding how and why a part was designed in a particular 
way. It enables better support for downstream processes such as simulation, manufacturing, 
and quality control. However, current data exchange standards and practices focus almost 
exclusively on geometry, leaving DFI underutilized [2]. 

At the same time, emerging technologies from the fields of artificial intelligence and data 
science - particularly knowledge graphs, deep learning, and natural language processing - 
have shown promise in structuring and interpreting complex technical data. However, 
integrating artificial intelligence into product development processes is happening at a slow 
pace and requires substantial effort [3, 4]. Applying these tools to DFI promises the opportunity 
to enhance effective use of design knowledge across the product lifecycle. This paper is 
motivated by the need to systematically explore and exploit the value of DFI. 

2. State of the Art 

2.1. Product Development Tools and Challenges 

Modern product development involves multiple overlapping disciplines and digital systems. 
The core systems like CAD, CAE, CAM, or CAP generate technical data during various phases 
of design, simulation, planning, and manufacturing. These CAx tools are mostly supported by 
Product Data Management (PDM) and Product Lifecycle Management (PLM) systems, which 
organize and store technical documents, versions, and metadata [5]. Despite the digital 
maturity of these tools, several systemic challenges remain unresolved. According to [6], 
model-based product development lacks structured mechanisms for design retrieval and 
reuse, which often causes engineers to reinvent existing components. Yet, effective reuse 
strategies can reduce development time by up to 30% [7]. Increasing model complexity further 
complicates the understanding of internal CAD structures, which negatively affects design 
performance and increases risk for errors [8]. Additionally, insufficient model quality can lead 
to significant overhead during reuse or data exchange [9]. The traceability of requirements to 
design elements is also frequently missing, especially due to heterogeneous and unstructured 
information formats. Finally, while manufacturability is a critical consideration in design, the 
transfer of related knowledge into production workflows remains poorly integrated [10]. 

2.2. Knowledge Graphs and Deep Learning 

A knowledge graph is a structured representation of information that represents entities and 
their relationships. According to [11], it acquires and integrates information into an ontology 
and applies reasoner to derive new knowledge. An ontology provides formalized structures for 
domain-specific knowledge representation, facilitating shared understanding and 
interoperability in data-driven systems. In the area of CAD, knowledge graphs also have gained 
increasing attention, especially in their application within CAD [12]. 
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When combined with AI techniques, knowledge graphs improve applications such as 
recommendation systems, semantic search or anomaly detection. Deep learning, especially 
Graph Neural Networks (GNN), further enhances these capabilities by learning from the 
structure and attributes of graphs. GNNs create embeddings that can be used for clustering, 
classification, and prediction [13]. More recently, Large Language Models (LLMs) have shown 
promise in combination with knowledge graphs [14]. 

2.3. Design Feature Information 

DFI is not a fixed termin in literature. Related terms are design sequence, model tree, 
feature tree, feature graph, model graph or feature representation. It can be defined as all 
design-related digital objects extractable from the CAD modeling process, which capture the 
process and logic of CAD model creation (see Figure 1). 

 
Figure 1: Dependency visualization of a parametric-associative part using parent-child functionality in CATIA V5. 

Unlike geometric representations, DFI can be modeled as a graph that expresses not only 
what the shape is, but also how and why it was created. For analyzing and discussing DFI, the 
paper focuses on a single CAD model, and thus on a component as a self-contained system. 
The relationships between assemblies (i.e. the conditions between two components) are not 
considered. Additionally, the types and relationships of DFIs can vary depending on the design 
tool used. The design graphs analyzed were created using CATIA V5. Furthermore, the 
modelling process can be displayed in different formats, such as sequence or graph. For 
further processing and tool-dependent reasons, the DFIs are displayed as a graph (see Figure 
2). A detailed analysis of the graph reveals the nodes and relationships shown in Table 1. 

Table 1: Type of nodes, type of dependencies and their description. 

Nodes Description Examples 

Metadata 
Information about the CAD 
document or the author, not directly 
related to the model 

PartDoc, Author 

Design Element Constructive elements for defining 
the geometry and shape of a model 

Translate, Assemble, Plane, Line, Extrude, Point, 
Add, Circle, AxisSystem, LinearRepartition 

Structural Element Structuring elements for organizing 
geometry and parameters GeoSets, ParameterSet 

Parameters Values that define the dimensions 
and properties of the model 

RealParam, Length, BoolParam, StrParam, 
Direction, IntParam, Angle, Thickness 

Relations Links or dependencies between 
parameters and elements Formula 
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Figure 2: Example dependency graph of a parametric-associative part from a Lego brick. 

Approaches for combining knowledge graphs and CAD are varied. A key focus lies in design 
assistance, such as the extraction of procedural knowledge and support for the designer during 
modeling through rule-based design recommendation [15] or feature prediction using machine 
learning models [16]. Other approaches target the retrieval and reuse of design components, 
employing similarity-based search mechanisms [17] or identifying recurring design patterns for 
reuse in new designs [18]. Complementary work addresses the structural analysis of CAD 
models, examining aspects such as feature complexity and dependency [19]. This research 
thread is promising, but still immature. However, the growing availability of data and advances 
in AI technologies are accelerating its development and expanding its potential impact. 

 

3. Problem Statement and Research Objectives 

Although CAD systems store rich design information internally, current practices do not 
exploit this information to its full potential. Most research and industrial applications still rely on 
geometric models and keyword-based metadata for search, analysis, and automation. 
Although the geometrical form is widely available and accessible to learning models [16, 20 
bis 22], it does not present knowledge about the process and logic of CAD model creation. 
Technological advancements in knowledge graphs and deep learning provide enormous 
application potential to product creation due to new processing and inference techniques [13]. 
Promising results from these advancements should be transferable to design, planning, 
manufacturing, and production [10]. Research on this transfer is still in the early stages with a 
need to evaluate proposed approaches [23]. The potential of DFI combined advances in 
processing and inference technologies makes addressing global competition-induced 
efficiency challenges in product creation valuable. The question of how to utilize DFI is 
therefore stated as a problem. This leads to the following research question:  

 
In what ways can DFI be used to enhance product creation using modern technologies? 
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Table 2: Solution Requirements and Constraints. 

Symbol Requirement Description 

R1 Embrace technological advancements 

R2 Solve painpoint in design and product creation 

R3 Provide value to legacy design databases 

Symbol Constraint Description 

C1 Use of DFI as an essential part 

C2 Use of part information only 

 
In order to answer the research question, the requirements (R) and constraints (C) for the 

solution set have been defined as refinements of the question or practical limitations (see Table 
2). Extracting DFI via APIs has been possible since the advent of feature-based design, with 
research focusing on specific use cases. Earlier algorithms were limited by the technology 
available at the time. Emerging technologies such as deep learning and knowledge graphs 
offer great potential, yet remain underutilised. Solutions should leverage these technologies 
(R1). As discussed in Section 2.1, applications should either address current challenges or 
unlock untapped potential (R2). Generative design has an impact on the early stages of 
product development, making new approaches necessary to add value to design databases 
and knowledge-driven processes (R3). Extracted DFI is a deterministic source of design intent 
and forms the basis of application value in this thesis (C1). Due to the large volume of CAx 
data, only partial information is considered, excluding assemblies (C2). 

4. Methodology 

In order to systematically explore and validate the potential of DFI-based applications, a 
three-phase methodology is adopted (see Figure 3). 

 
Figure 3: Methodology for identifying and evaluating DFI-based applications. 

4.1. Phase 1: Application Formalization 

Based on a literature review and analysis of existing tools, an initial set of potential 
application areas is identified. These were formalized by defining, the problem scope, input 
and output data types, technical integration steps, potential technologies and algorithms, as 
well as integration points along the product lifecycle. Example of starting concepts were: 

 Model structure analysis, comparable to [19] 
 Modeling sequence analysis, comparable to [16]. 
 Automatic conversion of DFI into a neutral exchange format. 

Application
formalization

Application
evaluation

Expert 
interviews

Phase 1 Phase 2 Phase 3
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4.2. Phase 2: Expert Interviews 

Structured interviews were carried out with eight domain experts from academia and 
industry to gather insights. The sample included three CAD design specialists with practical 
experience in automotive and mechanical engineering, as well as five systems engineers and 
knowledge management experts specializing in PLM integration from different companies in 
Germany. The interviews were conducted primarily online over a period of three months and 
were organized into four thematic sections: expert self-assessment, an introduction to the DFI 
concept and example models, a discussion of potential application candidates, and an open 
ideation and refinement phase. 

4.3. Phase 3: Application Evaluation 

The final phase focuses on finalizing and assessing the identified applications of DFI. After 
incorporating insights from literature and expert interviews, this phase filters and structures the 
applications based on their data requirements (CAD, PDM, PLM) and fulfillment of defined 
requirements and constraints (see Table 2). Ultimately, eight applications are presented. 

5. Results and Discussion 

A total of eight applications (A1 to A8) were identified that systematically exploit the potential 
of DFI to improve product development processes. These applications were developed based 
on literature analysis, expert interviews and iterative evaluation. They represent concrete 
approaches for making structured modeling information from CAD systems usable. Key 
challenges are addressed such as design reuse, model quality, requirements tracking and 
manufacturing integration using modern technologies such as graph neural networks, 
knowledge graphs and natural language processing. The applications were classified 
according to the data input (see Figure 4) - i.e. whether they exclusively require CAD data 
(DFI), additional PDM data (e.g. version trees, documents) or also PLM data (planning and 
production information). 

 
Figure 4: Application categorization by input data. 

PLM 
data 

PDM 
data  

CAD 
data 

A1: Similarity
analysis

A2: Feature
blocks

A3: Model
improvement

A4: Feature
block

management

A8: Lifecycle
graph

integration

A7:
Requirements

deduction

A6:
Manufacturing

prediction

A5: Design
integration



 

7 
 

5.1. Applications using CAD data 

5.1.1. A1: Design Similarity Analysis 

As model similarity analysis has been manual in the past, design retrieval and automated 
comparison capabilities should have been established. Current solutions mostly rely on 
geometrical and keyword-based similarities [2, 16, 18]. However, these inputs convey little, if 
any, modelling intent, even though this should be the desired measure of comparison for reuse. 

This application uses the semantic structures within DFI to perform a similarity analysis of 
CAD models. In contrast to conventional methods that are primarily based on geometry or 
metadata, A1 enables a comparative evaluation based on the modeled design intent. This 
could be implemented by converting the DFI into a feature knowledge graph structure, which 
is embedded using graph embedding techniques. The aim is to increase efficiency in the reuse 
of existing designs, for example through automated suggestions of similar components. 

5.1.2. A2: Feature Blocks 

Partial design reuse remains difficult due to lack of modular, reusable substructures within 
CAD models. Common features are often repeated manually. A2 focuses on the identification 
of reusable substructures (feature blocks) in CAD models. These modular design patterns are 
extracted from the graph structure, analyzed and evaluated using learning-based methods 
such as GNNs. Thus, these feature blocks can be classified, cataloged and made available 
across different projects. During new part design, the system could suggest frequently reused 
feature blocks based on geometric context and function (e.g., mounting patterns). The 
application aims to increase design modularity and provide standardized building blocks.  

Initial approaches for this application are already being researched. [18] use hierarchical 
tree clustering to identify reusable patterns in DFI. Additionally, they provide five characteristics 
that are necessary for good design patterns. [24] finds and classifies patterns of holes that 
other patterns can substitute for specific parts. 

5.1.3. A3: Model Improvement 

This application tackles the issues of design complexity and quality deficiencies in existing 
CAD models. It identifies design patterns that are inefficient, difficult to reuse, or potentially 
error-prone. These patterns are then compared with 'good' examples in a multi-stage analysis 
process, after which automated suggestions for improvement are generated. Additionally, 
model components with high automation potential can be identified (e.g. for naming or 
parameter settings). The application is intended to assist with model optimization. 

Regarding this application, [19] provides design quality metrics applicable to DFI together 
with a methodology for an assistance system communicating model quality. [9] find a way to 
utilize DFI for model repair. Ranking design patterns for their quality may require additional 
manual labeling to enable learning-based algorithms. Another part of automation analysis 
could be the preparation for CAE tasks like finite element analysis. 

5.2. Applications using PDM Data 

5.2.1. A4: Feature Block Management 

Feature blocks evolve over time. Keeping track of changes and variant-specific adaptations 
is challenging, especially across versions and product lines. Based on A2, A4 introduces a 
systematic approach to manage feature blocks across versions and variants. For this purpose, 
PDM data such as version trees and change notes are also integrated. Not only are feature 
blocks identified, but also tracked, and synchronized across model histories. This enables 
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transparent tracking of structural changes within assemblies or product families, 
documentation of changes, and promotion of reuse at the modular level. One possible use 
case is that, when updating a critical design feature, engineers are informed of all the affected 
parts and can propagate or isolate the change as required. 

As this application is an extension to application A2, the referenced literature remains 
relevant. Additionally, [25] introduces a version management approach for parametric design 
models. Commercial solutions like the 3D Experience Compare app provide visual 
comparisons between models. 

5.2.2. A5: Design Integration (Design Knowledge Assistant) 

Understanding the design structure of an existing model can be complex and time-
consuming. Design knowledge should be retrievable in a human-friendly format to help 
overcome misunderstandings. A5 links DFI with natural language, enabling interactive access 
to design knowledge. A knowledge graph, generated from CAD and PDM data, forms the basis 
of an assistance system that can respond to domain-specific queries using a large language 
model. This application is designed to improve understanding of existing CAD models. It not 
only accesses structured data, but also context-related documents and histories. 

[26] provides a general knowledge base construction method for multimodal input. The part 
knowledge base construction process described by [15] is limited. [27] describes a recent 
approach for question answering combining LLM with 3D CAD knowledge. It does not seem 
that an approach using DFI and part versioning exists yet. 

5.3. Applications using PLM Data 

5.3.1. A6: Manufacturing Prediction 

Manufacturing planning is often decoupled from design. Late-stage manufacturability 
checks lead to costly redesigns and delays. This application uses DFI and production data 
(PLM) to predict manufacturing information such as machining processes and sequences. 
Production patterns are recognized based on structured DFIs and transferred to new parts. 
GNNs or transformer-based models are used to derive production templates from comparable 
parts. The aim is to take manufacturing aspects into account as early as the design phase and 
thus make production planning more efficient. 

[28] present a methodology to create machining program templates from part structure, 
using inference and semantic matching. This approach could be used as a benchmark for 
evaluating the new application. For capturing process intent for preselecting machining 
templates, [29] generate a process knowledge graph from DFI, which could be an intermediate 
step in increasing prediction accuracy. 

5.3.2. A7: Requirements Deduction 

Requirements are documented separately from CAD, making it hard to trace decisions or 
validate compliance. To better integrate product planning and product design, requirements 
need to be mapped to regions of design features. This allows better requirements tracing and 
more intuitive knowledge management. The seventh application involves the semantic 
derivation of technical requirements from the model structure. Linking DFI with planning 
documents (e.g. specifications and functional specifications) enables the automatic 
assignment of requirements to model areas. This application could be an important step 
towards automated requirements tracing and promotes consistency between the planning and 
design phases. 
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[30] created a similar application structure to retrieve parts that fit planning documents. [31] 
have performed semantic mapping of requirements to components, but applying this to certain 
features or feature blocks seems even more promising. 

5.4. A8: Lifecycle Graph Integration 

A8 broadens the scope of application to cover the entire product lifecycle. DFI is integrated 
into a cross-domain lifecycle knowledge graph linking requirements, design features, 
production steps, and quality measures. The aim is to create a lightweight, semantically sound 
extension to digital twins or digital threads. The Lifecycle Graph enables complete traceability 
across process and system boundaries, opening up new possibilities for product analysis, 
traceability, and systemic learning. 

[32] translate semantic design rules into a knowledge base in preparation for design rule 
recommendation. A similar process could be used for this application. A mapping procedure 
of requirements and gearbox component models is presented by [31]. Relevance of a lifecycle 
graph, also known as an engineering graph, is increasing. Such systems are able to integrate 
a whole product database into one graph [33]. Industry relevance has been recognized as well. 

6. Conclusion and Outlook 

This research study investigates the potential of DFI as a strategic knowledge resource in 
product development. Through the formalization of DFI, validation of its industrial relevance 
via expert interviews and evaluation of specific use cases, this research demonstrates how 
semantically enriched feature data can lay the groundwork for intelligent engineering 
applications. Eight application scenarios were developed and classified, ranging from design 
reuse and model quality improvement to requirement tracing and lifecycle integration. Each 
application leverages modern technologies, such as GNNs, knowledge graphs or natural 
language processing, to make design intent, modelling patterns and legacy decisions 
accessible, explainable and reusable. 

Future work should focus on the technical implementation and empirical validation of 
selected applications, paying particular attention to scalability, data availability, and integration 
into existing engineering workflows. Developing uniform data standards for feature graphs and 
linking them with PDM and PLM systems is an important step towards industrial 
implementation. Further increasing the practical benefits could be achieved by extending the 
Feature Knowledge Graph to include probabilistic conclusions, user interactions or 
collaborative processing. Ultimately, DFI-based systems could serve as a semantic memory 
layer within model-based development environments, converting CAD data into a valuable 
source of technical knowledge. 
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