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Abstract: The Dependency Structure Matrix (DSM) is a simple yet powerful tool in modeling the connectivity structure 
between system components. A plain DSM only assumes one-to-one connections between subsystems, which often 
prohibits its representation power. In order to alleviate such limits, we propose the use of the Factor DSM (FDSM), 
which expands the DSM into a network of variables and constraints. By such expansion, we allow multiple connections 
between several components to be modeled, expressed in constraint equations. We compare the FDSM with other types 
of augmented DSMs that target multi-connection modeling. Then, we demonstrate that the FDSM is a superset of the 
DSM, such that a DSM can be derived from an FDSM using merge and multiplication operations. Lastly, we show the 
utility of the FDSM on simple operational amplifier (opamp) feedback circuit examples, where a classic DSM struggles 
to represent the full system architecture and behavior.  
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1 Introduction 
The Dependency Structure Matrix, the Design Structure Matrix, or the Design and Structure Modeling (DSM) is a 2D 
matrix representation of a system architecture or an organizational process to facilitate the decision-making of the system 
designer. The DSM exhibits the connection structure between various elements of the system (components, processes, 
organizational groups, etc.) in a matrix format (Browning, 2001), which illustrates the overall architecture of the system 
and enables valuable analysis, such as system clustering. For instance, for the case of the component-wise DSM, the 
constituent components of the system are listed over both the row and column of the matrix. If there is a connection 
between two components A and B, the corresponding matrix element at (A, B) (and (B, A) too if the DSM is undirected) 
is marked as nonzero, with or without weight. If there is no connection between two components, the corresponding matrix 
element is unmarked or left as zero. By looking at the location of nonzeros, the connection structure of the system is 
revealed. By observing the closeness of the nonzeros, one can extract the cluster structure of the system.  

One inherent limit of the DSM is that its representation is limited to a 2D square matrix of a single type. (e.g. only 
‘component’ type elements on both row and column) The DSM only accepts the same list of elements for both rows and 
columns (hence square), and it only accepts one input and output connection between two components. In order to alleviate 
such limits, many extensions of the DSM were proposed. For instance, the Domain Mapping Matrix (DMM) extends the 
DSM by employing different row and column types (Danilovic and Browning, 2007). Similarly, the Multi Domain Matrix 
(MDM) enumerates all the elements with different types on the rows and columns of a square matrix (Maurer, 2007). On 
an MDM, one can specify connections not only from an element of type A to type A, but also connections from type A to 
B, A to C, C to C, and more.  

In this paper, we seek to extend the representation power of architectural DSMs by incorporating the concept of variables 
and constraint equations. This is inspired by the factor graph approach used in signal processing (Loeliger et al., 2017) 
and robotics (Dellaert and Kaess, 2017), which coined the term Factor DSM (FDSM). Specifically, we list all the variables 
of the component on the column, and we enumerate all the connection constraints as row elements. We mark the entry 
where the (column) variable is part of the (row) constraint with a nonzero. As a result, a sparse binary (0 or 1) rectangular 
matrix is formed with all the dependency data between variables. For example, if an output A is linked to input B with a 
constraint C, we mark the entries at (C, A) and (C, B) as one and mark all other entries zero. By this way, the system 
modeler can represent (i) multiple number of connections between components (through multiple variables assigned to 
one component), and (ii) multiple types of connection between components (through different types of constraint 
equations). Since a DSM can be extracted from an FDSM by merging variables into components, the FDSM encapsulates 
a higher resolution version of the DSM. An FDSM preserves all the (muti)connection information of a system encoded as 
multiple constraints, which is not a feature of a classic DSM. 

This paper is organized as follows: in Section 2, we give an overview of DSM variants that enable either multi-type or 
multi-connection modeling capabilities. In section 3, we introduce the construction of the FDSM with an engineering 
example. In section 4, we exhibit a case where a traditional DSM struggles to capture the change of connections between 
elements, and where an FDSM could facilitate better clustering. Section 5 summarizes and concludes the paper.  
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2 Survey of Multi-Connection DSMs 
In this section, we present a survey of DSMs that (partially) enable multi-type and multi-connection representations of a 
system. Often, several flavors of DSMs are named ‘DSM’ without additional descriptors. Yet, in order to differentiate 
multiple features of the DSM and its variants, we abide by the narrow definition of the DSM, DMM, and MDM as 
presented below, and then introduce new flavors of DSMs with specific descriptive names on them. 

The classic DSM, as presented by (Steward, 1981), (Browning, 2001), and (Browning, 2016), is a 2D matrix with an 
identical list of elements on its row and column, with matrix entries marking connections between two elements. Although 
the DSM is used for representing various types of systems, such as architectures, organizations, or processes (Browning, 
2001), often its row and column elements are composed of the same type. If it is an architectural DSM, the row/column 
elements are system components. If it is an organizational DSM, the elements are the teams. If it is a procedural DSM, the 
elements are processes. DSMs can also assign scalar weights to the entries to signify the importance of each connection. 
By allowing asymmetry, a DSM can represent the (bi) direction of the connection.  

One of the most common extensions of the DSM is the DMM. The DMM extends the DSM by allowing two distinct types 
of row elements and column elements (Danilovic and Browning, 2007). For example, components on the row and 
functions on the columns. It allows us to visualize the mapping between two domains, hence the name “Domain Mapping” 
Matrix. DMMs come in rectangular matrices, unlike square DSMs. Often, DMM is used without the notion of direction, 
only representing the undirected connection between domain elements. Yet, using multiple (transposed) DMMs can also 
represent directed flows.  

The MDM is one of the most expressive types of DSM extensions, by allowing multiple types of elements on both the 
row and column. The MDM is expressed as a square matrix (thus, identical row and column element lists) with multiple 
types of elements present on its axes (Maurer, 2007). MDMs can be thought of as a merger of multiple DSMs and DMMs 
on a single matrix, which allows both the connections between the same types of elements (DSM) and between different 
types of elements (DMM). The typical layout of the DSM, DMM, and MDM is presented in Fig. 1.  

 

Figure 1. Typical layout of the DSM, DMM, and MDM (grey: nonzero entries) 

Several extensions of the DSM were proposed to widen the application area of the classic DSM. Color coding is often 
used to express multiple domains. Some implementations of MDMs can be thought of as a color-coded version of DSMs, 
and the 1.5 domain DSM (Eppinger and Browning, 2012) color codes a ‘secondary domain’ on one axis to highlight 
connection to the secondary area of focus.  

Several extension methods are suggested to add dimensions to each matrix entry. The binary-coded DSM (James, 2011) 
uses a binary-coded entry value that encodes multiple types of different connections between the components. The DSM 
with subcells (Helmer et al., 2008) uses divided subcells for each matrix entry to show five different ways of connection 
and their influence pattern. The High-Definition DSM (HDDSM) (Tilstra et al., 2012) uses multiple layers of DSMs to 
represent different types of connections on each layer.  

Similar ideas can be applied to the DMM and MDM. The Functional Flow - Design Mapping Matrix (FF-DMM) (Bonjour 
et al., 2013) divides a single matrix entry into several matrices, similar to the subcell approach, to denote multiple 
functional flows from a single function. To our knowledge, there is limited publication related to the extended MDM, yet 
all these core techniques (color coding, subcells, entry encoding, etc) can also be used with the MDM to give it a multi-
connection capability. 
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The proposed FDSM tackles the representation of multi-connections through a novel approach. The FDSM introduces the 
concept of variables and constraints into the DSM. The FDSM, a rectangular 2D matrix, is populated with constraints on 
the row, variables on the column, and their dependencies on the matrix entries (example in Section 3). This is a different 
approach from adding dimensions to the DSM (color coding, subcells, etc) which relies on the fact that most ‘connections’ 
can be modeled as constraint equations. For example, a pipe connection can be modeled as an equality constraint of output 
water flux from A to the input water flux to B. Multiple connections can be modeled with multiple equations on the row. 
Connection between multiple objects at once can be also represented on the FDSM, as long as the connection is easily 
converted into a mathematical equation. Hence the FDSM can represent multi-type, multi-connection systems. The 
summary of the features of DSM variants and FDSM is presented in Table 1.  

Table 1. Comparison between various DSMs and the FDSM 

 DSM DMM MDM 1.5 
Domain 
DSM 

Binary 
Coded 
DSM 

DSM 
with 
Subcells 

HDDSM FF-
DMM 

FDSM 

Multiple 
Types of 
Elements 

 O O (2)    O O 

Multiple 
Number of 
Connection 

Between 
Elements 

    O O O O O 

Multiple 
Types of 

Connection 
Between 
Elements 

    O O O O O 

Connection 
Between 
Distinct 

Types of 
Element 

 O O O    O O 

Directed 
Connection 

(In/Out) 

O (1) O O O O O O (3) 

Weighted 
Connection 

O O O O  O O O (3) 

Concept of 
Equation / 
Constraint 

        O 

Concept of 
Variable 

        O 

1) Directivity may be included using multiple DMMs, but often DMM is used without the notion of directivity. 
2) Some of elements may carry secondary types, but their primary type stays the same in both row and column. 
3) FDSMs can theoretically accept directivity (using two or more FDSMs) and weighted entries, but their utility is not yet 
established. 

3 Construction of FDSM 
In this section, we describe how the FDSM is inspired from factor graphs, and then show how to construct an FDSM for 
an electric circuit example.  

3.1 Factor Graph and FDSM 
Factor graphs represent the division (factorization) of a certain global function. (Loeliger, 2004) Let us assume that we 
have a global function 𝑓 parameterized with five parameters 𝑝!, . . . , 𝑝S, which can be factored into smaller sub-functions 
𝑓!, 𝑓6, 𝑓T	 as below: 

𝑓(𝑝!, 𝑝6, 𝑝T, 𝑝U, 𝑝S) 	= 	𝑓!(𝑝!, 𝑝6)	𝑓6(𝑝T, 𝑝U, 𝑝S)	𝑓T(𝑝6,𝑝T,𝑝U) (1) 
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Often the global function models a probability distribution, where the factored dependency structure arises naturally. The 
factor graph associated with Eq. (1) describes the factorization structure of the function using a form of bipartite graph, as 
shown in Fig. 2. Here, a function node parameterized with a certain parameter is connected to that particular parameter 
node, and vice versa. For example, the function node 𝑓!(𝑝!, 𝑝6) , parameterized with 𝑝!, 𝑝6 is connected to both parameter 
nodes 𝑝!, 𝑝6. 

 

Figure 2. Factor graph representation of Eq. (1) 

One important observation here is that although the factor graph originally intended to model the factorization structure 
of the function, the resulting factor graph does not explicitly display the (factorized) relation between the sub-functions. 
That being said, the exact same method can be used to display all kinds of functional relations between parameters, whether 
or not they are a result of a functional factorization. For instance, let’s say that a system can be described five parameters 
𝑝!, . . . , 𝑝S, with three operational constraints 𝑓!, 𝑓6, 𝑓T	. Even in this case, we can derive the same factor graph without a 
notion of ‘factorization.’ This extended concept of factor graph is widely used for signal processing (Loeliger et al., 2017), 
robotics (Dellaert and Kaess, 2017), and many more. Thus, we use such an extended concept of factor graph notation to 
derive the FDSM.  

 

Figure 3. Matrix representation of the factor graph (grey: nonzero entries) 

 

Since the factor graph comes in a bipartite graph form, it is natural to think about the matrix representation of such a graph. 
Often, an undirected bipartite graph can be converted into a single rectangular matrix, one type of node being row elements, 
and the other type of node being the column elements. In this paper, we only consider a binary adjacency matrix: we mark 
a connection with 1, and a disconnection with 0. For example, the factor graph in Fig. 2 can be converted into a matrix in 
Fig. 3. We seek to use such rectangular matrices from bipartite factor graphs as a basis for the FDSM. By visualizing the 
system in a matrix form, we can start applying all the methods developed around the concept of the DSM directly onto the 
FDSM.  
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3.2 FDSM Construction Example 

 

Figure 4. Opamp feedback circuit example 

 

Let us consider an opamp feedback circuit depicted in Fig. 4. The circuit is composed of three circuit elements: resistor 
𝑅!and 𝑅6, with an opamp 𝑂𝑃!. On a DSM, these three elements appear as fully connected: 𝑅! connected to 𝑅6, 𝑅6 
connected to 𝑂𝑃!, and 𝑂𝑃! connected to 𝑅!. The DSM resulting from the example is given in Fig. 5. It is worth observing 
that some elements are interconnected through multiple ports: for example, 𝑅6 is not only connected to 𝑂𝑃! through the 
(-) input port (left top side of the opamp), but also to the output port (rightmost corner of the opamp). Still, on a DSM, 
these multiple connections are often rendered as a single (weighted) matrix entry, unless more entries are defined for all 
the electrical nodes 

 

Figure 5. Opamp feedback circuit DSM (grey: nonzero entries) 

 

On the other hand, a factor graph can be generated from the following set of governing equations:  

𝑉!! 	−	𝑉!6 	= 	 𝐼!𝑅! (2) 

𝑉6! 	−	𝑉66 	= 	 𝐼6𝑅6 (3) 

𝑉0 	−	𝑉V 	= 	 𝐼0𝑅# (4) 

𝑉9 	= 	𝐴(𝑉V 	−	𝑉0) (5) 

𝑉#" 	= 𝑉!!  (6) 

𝐼#" 	= 𝐼!   (7) 

𝑉!6 	= 𝑉6!  (8) 

𝑉!6 	= 𝑉0  (9) 
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𝐼! 	= 	 𝐼0 	+	𝐼6  (10) 

𝑉V 	= 0   (11) 

𝑉66 	= 𝑉9  (12) 

𝑉66 	= 𝑉9RB  (13) 

𝐼6 		+	𝐼9 	= 	 𝐼9RB  (14) 

The equations are derived from general electric circuit principles, such as Ohm's law (Eq. (2, 3, 4)) or Kirchoff's law (Eq. 
(7, 10, 14)). The first four equations are governing equations for each component, and the others are generated from wired 
electric connections. The resulting FDSM from the governing equations is in Fig. 6. Here, multiple electric connections 
are rendered as multiple entries with several variables and constraints, unlike a single entry on a DSM. On an FDSM, even 
multiple constraints arising from a single connection are captured. For example, both the voltage condition and the current 
condition from a single electric wiring are fully represented with an FDSM. 

 

Figure 6. Opamp feedback circuit FDSM (grey: nonzero entries) 

 

 

Figure 7. Merged opamp circuit FDSM and Reconstructed DSM (grey: nonzero entries) 

 

The resulting FDSM holds all the electrical connection information in the DSM. The preceding DSM can be reconstructed 
from FDSM by (i) merging the variables from each components into one (and removing system variables such as 𝑉9RB), 
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(ii) performing (merged FDSM)T ✕ (merged FDSM) and removing diagonal entries. The reconstruction process is 
identical to the DMM to DSM conversion, except the added merge operation due to the multi-variable nature of the FDSM. 
The reconstructed DSM, which is identical to the original, is given in Fig. 7.  

3.3 FDSM Benefits and Limitations 
In terms of benefit, the FDSM holds an abundance of information about the system compared to the classic DSM. Since a 
DSM can be losslessly extracted from an FDSM, the FDSM can be considered as a system information superset of the 
DSM. Furthermore, many types of components or connections can be included in the FDSM as long as they are abstracted 
into the form of mathematical equations. For example, a physical connection (position constraint) and an electric 
connection (voltage and current constraints) can be both represented in the FDSM without any specific modification. 
Different types of system components, such as physical components versus organizational components, can be both 
represented on the FDSM without additional type setting or coloring.  

The FDSM also exhibits some fundamental limitations. First, the definition of a single variable and a single constraint can 
be fuzzy. The DSM can suffer from fuzzy delineation of components, and the FDSM can similarly suffer from ‘drawing 
the line’. For instance, two equal-to-zero constraints can be merged into one equality constraint with the sum of the original 
constraints in absolute value form. It is unclear if two binary variables encoded into one parameter vector should appear 
as two separate columns or one. Second, since it only records the dependency structure between variables and constraints, 
it cannot distinguish the constraints with different forms but the same dependency structure. For example, an affine 
constraint versus a nonlinear constraint with the same dependency relation cannot be distinguished on the FDSM except 
for their row labels.  

3.4 FDSM Related Concepts in Systems Engineering 
Although the FDSM was originally inspired by the factor graph notation in the signal processing domain, it is possible to 
find similar concepts in the domain of Systems Engineering. Donald Steward, the inventor of the term DSM, gleans over 
the concept of ‘structural matrix,’ which models a large system of equations into a dependency matrix with equations on 
the row, variables on the column (Steward, 1965). The structural matrix was demonstrated in the context of equation 
partitioning and tearing. A similar concept is also visible from the Multidisciplinary Design Optimization (MDO) domain, 
labeled Functional Dependence Table (FDT) (Chen et al., 2005, Tosserams et al., 2010). The FDT carries design functions 
on the row, and the design variables on the column. The FDT is used in MDO problem decomposition and reconstruction 
(Chen et al., 2005, Tosserams et al., 2010). EXtended DSM (XDSM, Lambe and Martins, 2012) is also a concept that 
explicitly displays variables and functions.  Yet, these concepts were not utilized and examined in the context of the DSM. 
The FDSM, which is targeted for a (physical) system modeling, mirrors the components visible on the DSM by multiple 
state variables and can be converted to a DSM (Section 3.2), which may not be a feature for the other concepts. Also, we 
observe the FDSM under the concept of (physical) system clustering (Section 4.2), which is the key deviation from similar 
concepts.   

4 FDSM Advantages 
In this section, we give two examples demonstrating the advantages of an FDSM over a conventional DSM. First, we 
show the advantage of the FDSM when the connection between components is modified and the expected system behavior 
changes. Second, we show the benefit of the FDSM on clustering when multiple components are connected with multiple 
ports.  

4.1 FDSM With Modified Connections  

 

Figure 8. DSM for opamp broken feedback cases (grey: nonzero entries) 
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Consider the same opamp example from section 3. If the feedback connection through 𝑅6 is broken, the opamp circuit 
goes into feed-forward mode, and the output voltage goes to infinity. Yet, there are two ways to break the feedback: (i) 
disconnect the left leg of 𝑅6 which is connected to 𝑅! and 𝑂𝑃!, or (ii) disconnect the right leg of 𝑅6 which is connected to 
𝑂𝑃! only. Either way, the expected circuit behavior is the same (infinite output), but the resulting DSMs are considerably 
different (Fig. 8). This can be considered as an artifact of the existence-of-connection centric approach of the DSM. The 
DSM considers components and connections only, but does not encode many details about connections themselves. 
However, for certain cases like the opamp example, the inner workings of the connection (which is modeled with variables 
and constraints in the FDSM) heavily govern the system characteristic rather than the existence of the connection between 
components.  

 

Figure 9. FDSM for opamp broken feedback cases (grey: nonzero entries) 

 

The FDSM representation of both cases (Fig. 9) exhibits only minimal differences (2 entries out of 35 entries) and the 
difference captures only the change in the current constraint on the different breakage point. The overall sparsity structure 
of the two FDSMs are similar, signalling that the behavior of two systems must be close to each other. The exact behavior 
of the circuit can be further extracted from the list of constraints, too. As a consequence, we argue that the FDSM is better 
suited for the mathematical modeling phase of the system, contrary to the DSM which is better suited for engineering 
communication thanks to its simplicity.  

4.2 FDSM for Cluster Analysis 

 

Figure 10. A double gain stage circuit 

 

The most common analysis performed on DSMs is cluster analysis. For certain cases, the FDSM can shed light on the 
finer details of the multi-connection network of components, which can result in better clustering. Consider the double 
gain stage opamp circuit example below (Fig. 10). We illustrate that an FDSM may generate better clustering than a DSM 
that fits the general intuition of electrical engineers.  

For electrical engineers, it is natural to see the circuit as two distinct gain stages. The first one being the group of 𝑅!, 𝑅6, 
and 𝑂𝑃! with a gain of -𝑅6/𝑅!. The second stage being the group of 𝑅T, 𝑅U, and 𝑂𝑃6 with a gain of -𝑅U/𝑅T. If the 
representation by DSM/FDSM is sound, we can expect that the two separate gain stages would be visible as two clusters 
on the DSM.  
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Figure 11. Clustered double gain stage circuit DSM, Left: (𝑅!, 𝑅", 𝑂𝑃!) - (𝑅#, 𝑅$, 𝑂𝑃"), Right: (𝑅!, 𝑅", 𝑂𝑃!, 𝑅#) - (𝑅#, 𝑅$, 𝑂𝑃") 

 

Fig. 11 depicts two different clusters along six components. The left being the desired clustering result, and the right being 
the alternative clustering result. Although the fitness of the clustering result can vary by the figure of merit, it is worth 
noting that the alternative clustering (right) confines more nonzeros within the cluster boundary, thus it can be deemed as 
a desirable clustering result. Yet, in terms of electronic circuitry, the clustering of (𝑅!, 𝑅6, 𝑂𝑃!, 𝑅T) is awkwardly unnatural, 
since 𝑅T performs no role for the first gain stage (𝑅!, 𝑅6, 𝑂𝑃!).  

 

Figure 12. Clustered double gain stage circuit FDSM, Left: (𝑅!, 𝑅", 𝑂𝑃!) - (𝑅#, 𝑅$, 𝑂𝑃"), Right: (𝑅!, 𝑅", 𝑂𝑃!, 𝑅#) - (𝑅#, 𝑅$, 𝑂𝑃") 

 

On the other hand, for the FDSM representation of the twin gain stage circuit, the desired (𝑅!, 𝑅6, 𝑂𝑃!) by (𝑅T, 𝑅U, 𝑂𝑃6) 
clusters naturally arise from the FDSM (Fig. 12, left). The concept of cluster on the FDSM is slightly different from DSM, 
since the rows and columns are not equivalent on an FDSM. The (𝑅!, 𝑅6, 𝑂𝑃!, 𝑅T) clustering (right) generates an 
awkwardly sparse cluster, which would not be the desired result of any clustering algorithm. Here, we considered the 
constraint row to be the part of the cluster if it contains any of the column variables from the cluster, thus allowing 
membership of a single row to multiple clusters.  

Here, we can observe that the FDSM generates clusters somewhat more familiar to the engineer (at least for this particular 
example) than the DSM. We contend that this is due to the fact that the intuition of ‘cluster’ for engineers is often formed 
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around the functional relation of the components (which is better represented in terms of variables and constraints) rather 
than the concept of connections (which is better represented in terms of connections on a DSM).  

5 Conclusion 
In this paper, we proposed a novel approach of using the concept of constraints and variables for constructing a Factor 
DSM, inspired by the factor graph approach used in estimation problems. We contend that classic DSMs often only 
represent the existence of connections between components, but not the detailed information on the specific nature of the 
connections. By modeling the connections using constraints and detailing the components with multiple variables, we 
demonstrate that FDSMs can be useful in representing a system with multiple connections, multiple variables, and multiple 
constraints. We demonstrate that the exact DSM can be extracted from the FDSM using a few matrix operations, hence, 
FDSM encodes (undirected) DSM without loss, but with more system constraint information. We display the advantages 
of the FDSM over the classic DSM using two examples, and show that an FDSM could be better at robustly representing 
a multi-connection network of components under connection modification, and be better at displaying the cluster structure 
more akin to that of the engineering intuition. We argue that this is due to the fact that the intuition of linkage and cluster 
is often generated based on the functional role of components, which is better represented by the network of variables and 
constraints than the existence of (physical) connection. 
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