26" INTERNATIONAL DEPENDENCY AND STRUCTURE MODELING CONFERENCE, DSM 2024
STUTTGART, GERMANY, 24 — 26 September, 2024

Generating a Design Structure Matrix with a Large Language Model
Edwin C.Y. Koh

Design and Artificial Intelligence Programme | Engineering Product Development Pillar
Singapore University of Technology and Design

Keywords: large language model, retrieval augmented generation, dependency modelling, design automation

1 Introduction

The Design Structure Matrix (DSM) has been applied as an analysis tool in various areas including the modelling of
product, organization, and process architecture [Eppinger and Browning 2012]. DSM is known for its simplicity and
conciseness in representation and exists in the form of a N x N square matrix that maps the relationships between the set
of N system elements [Yassine and Braha 2003]. This implies that the set of N system elements and the relationships
between them are necessary data to be collected for DSM analysis.

A series of DSM use cases documented in [Eppinger and Browning 2012] reveals that data collection is traditionally
carried out through surveys and interviews. For instance, Clarkson, Simons, and Eckert [2012, pp58] present a DSM use
case at an industry partner and stated that chief engineers, deputy chief engineers, and 17 senior engineers were involved
in providing inputs to generate a DSM of a helicopter for design change evaluation. Suh and de Weck [2012, pp 43]
describe another DSM use case at a different organization and indicated that 140 person hours were spent in creating a
DSM of a digital printing system consisting of 84 components. Sosa et al. [2012, pp 105] discuss the use of an organization
architecture DSM at an aerospace company to identify communication patterns between and within design teams and
revealed that a four-month period was used to interview lead engineers of different teams to generate the DSM. The
examples underline how time-consuming and costly it can be to put together a DSM manually.

This work presents a workflow that uses a Large Language Model (LLM) to support the generation of DSM. The proposed
workflow, referred to as Auto-DSM, seeks to identify system components (i.e. DSM headings) and the relationships
between them (i.e. DSM entries) by querying prescribed data (e.g. proprietary data) through an LLM. A prototype of the
workflow was developed in this work to examine its feasibility and a no-code version is made available online:
https://drive.google.com/file/d/18TIXWhzZGz6z9Y SgVEFIAnB 1qSUcpAHO/view?usp=sharing

2 Previous work

Applications of Design Structure Matrix (DSM) are well documented in research publications as reported by Eppinger
and Browning [2012]. DSM approaches are also discussed in topic-specific reviews, such as the review on process
improvement by Wynn and Clarkson [2018] and the review on engineering systems changeability by Sullivan et al [2023].
A detailed review on DSM is therefore not reproduced here. Instead, this section focuses the discussion on the automation
of DSM generation.

The pioneering work of Dong and Whitney [2001] is recognized as the first to attempt the automation of DSM generation.
The work builds on design theory to generate DSMs by extracting the relationships between design parameters and
functional requirements. A method that specifically uses a language-based approach for DSM generation was introduced
by Wilschut et al. [2018], which utilizes design-related text written in a specific grammatical structure by trained
personnel. The work highlights the potential of using natural language in DSM generation and offers insights on how
similar research can be adapted. For example, Sarica et al. [2020] present a technology semantic network (TechNet) that
builds on patent data to support the retrieval of unique relational knowledge between entities. These language-based
methods were not applied in DSM generation but have the potential to be extended to establish the dependencies between
system elements in a DSM. An extensive review on the use of natural language processing in design is available in
[Siddharth et al. 2022]. To date, the utilization of a Large Language Model (LLM) to automate DSM generation has not
yet been documented.

3 Auto-DSM: Automated DSM generation using an LLM

This work explores the use of an off-the-shelf LLM to query prescribed data, such as organization-specific proprietary
data, for DSM generation. The entire workflow is illustrated in Figure 1. In the first instance, relevant data in the form of
a document is split into smaller parts for text embedding and stored in a vector store. A set of 2 predefined questions
pertinent to DSM generation will subsequently be used to query the vector store to retrieve relevant splits that may contain
answers to the questions posed. The first question queries the vector store to identify the system elements of the system
analyzed — “Identify the main {product} components that make up a {product}. Output the answer as a list and a python

DSM 2024 1

Generating a Design Structure Matrix with a Large Language Model

list. Do not output anything else. If you don't know the answer, strictly state **I don't know** instead of making up an
answer.” The variable {product} can be any product system of interest to be inserted into the question (e.g. replace with
“engine” to create a DSM of an engine). Once the list of system elements is identified, each element will be sequentially
fed into the second question to query the relationships between the system elements found — “Are {Element A} and
{Element B} {linkage-type} linked? State **Yes** or **No**. If you don't know the answer, strictly state **I don't
know** instead of making up an answer.” For this question, the entries for {Element A} and {Element B} are
systematically inserted based on the list derived from the first question. The variable {linkage-type} can be defined to
specifically examine a linkage type (e.g. replace with “mechanically” to examine mechanical links) or left empty to
identify unspecified links. Finally, a DSM is constructed based on the answers derived from the first question (i.e. DSM
headings) and the answers derived from the second question (i.e. DSM entries).

’ Questions

Query L Send questions
vector store to LLM
) Embed and Retrieve) Reformat
Spl.lt document store T — Send splits — 12 3 4
into parts vectors splits ______ UM intoaDsSM !
— 5
3
a4
Document Splits Vector Store Relevant Splits LM DSM

Figure 1. A workflow that uses an LLM to establish DSM headings and entries based on organization-specific proprietary data.

In this work, a no-code executable (.exe) prototype was developed to demonstrate and examine the proposed workflow.
The LangChain library ‘langchain.text splitter’ is used for text splitting, where each split is set as 1000 characters with an
overlap of 150 characters with the next split (see https://python.langchain.com/docs/get_started/introduction.html for
further information on LangChain). Next, embedding will be done using an OpenAl Large Language Model (LLM)
through ‘langchain.embeddings.openai’ and stored in a vector store through ‘langchain.vectorstores’. Splits that are
relevant to the 2 predefined questions will be retrieved using the ‘RetrievalQA’ function from ‘langchain.chains’, where
retrieval is based on ‘similarity’ and four splits will be retrieved in each retrieval (i.e. same as the default setting). The
retrieved splits and the questions are processed using the ‘ChatOpenAl’ function from ‘langchain.chat models’, which
will access the OpenAl ‘gpt-3.5-turbo” LLM with ‘temperature’ set as ‘0’ to produce near identical results in repeated
queries. The results produced (i.e. DSM headings and entries) will subsequently be arranged in a DSM format. The DSM
headings identified will be kept unmodified. However, the DSM entries produced will be converted with ‘1’ representing
a **Yes** answer from the second question, ‘0’ representing **No**, and ‘5’ representing **I don't know**. All diagonal
entries will be assigned as ‘1°. Lastly, a comma-separated values (.csv) file of the DSM generated will be created as shown
in Figure 2.

Thermally insulated compartment ‘

Thermally Heat pum Compress Conden: Heat pump
Thermally 1 0 0 Compressor
Heat pum 0 1 0 Condenser
Compress 0 1 1 Amended for Evaporator
Condense 0 0 1 Victalizationin Expan5|o.n valve
Evaporato 0 0 0 - Refrigerant

- this document
Expansion 0 0 0 Temperature control thermostat
Refrigeran 0 5 1 Door(s)
Temperdt g L 0 Shelves or drawers for food storage
Door(s) 0 0 0
Shelves or 0 0 0
. has a link l:l do not know

l:l has no link . itself

Figure 2. Original csv version from prototype (left) and resized square version in this document (right).

4 A test case based on a diesel engine example

This section documents a test case that examines the feasibility of using Auto-DSM in generating a DSM of a diesel
engine. A diesel engine was used in this work as its components (i.e. system elements) and their interdependencies are
well documented, allowing comparisons to be made. Five settings with different combinations of input data used in Auto-

DSM 2024 2

Edwin C.Y. Koh

DSM were examined in this work. Setting 1 uses a handbook on the design and development of heavy-duty diesel engines
[Lakshminarayanan and Agarwal 2020] as the input data for Auto-DSM to examine the scenario of using a rich input
dataset (also known as [1] in this document). Setting 2 uses another handbook on diesel engines [Mollenhauer and
Tschoeke 2010] as a comparison (aka [2]). Setting 3 uses 1,634 YouTube comments on diesel engines documented by
[Koh 2022] to examine the use of unstructured lower quality input data (aka [3]). Setting 4 examines the merits of
expanding the size of input data by combining the two handbooks as the input data used [Lakshminarayanan and Agarwal
2020; Mollenhauer and Tschoeke 2010] (aka [1, 2]), while Setting 5 further appends YouTube comments documented by
[Koh 2022] to examine the effect of adding lower quality input data to the dataset (aka [1, 2, 3]). A python implementation
of ChatGPT (gpt-3.5-turbo, temperature=0) was also used in this work to examine the value-add in using Auto-DSM
instead of using an LLM directly. A manually generated diesel engine DSM documented by Keller et al. [2005] was used
in this work as a reference (aka [4], see Figure 3). Figure 4 shows the results generated when components were set as [4].

1 2 3 4 5 6 7 8 9 101112 13 14 15 16 17 18 19 20 21 22

1
2
Component List from [4] i
1 Cylinder Head Assembly 12 Fuel Injection Assembly 5 t
2 Cylinder Block Assembly 13 Adapter Plate & Flywheel Housing Y
3 Piston & Rings & Gudgeon Pin 14 Flywheel & Ring Gear ;
4 Connecting Rod 15 Starter Motor o |
5 Crankshaft & Main Bearings 16 Sump ig
6 Valve Train 17 Oil Pump 12
7 Cam Shaft 18 Gear Train 13
8 Push Rods 19 Turbocharger 1: [1
9 High Pressure Fuel Pipes 20 Aircharge Cooler 16
10 Engine Control Module 21 Exhaust Manifold 17 H
11 Fuel Pump 22 Wiring Harness 1:
20
21 |
22

Figure 3. A DSM of a diesel engine reproduced from [4], showing mechanical links (see Keller et al. [2005]).

12 3456 7 8 9 101112131415 161718 19 20 21 22 1234567 8 910111213141516171819202122 12345678 91011121314151617 1819202122
1 1 1
2 b 3
3 3 3
4 [4] A
5 | |l 5 s]
d ‘ ; m
7 7 -
s : - -
s ’ L o | I
10) 10 10
11 11 ll:h
1 1 12 I
13 13 13
14 14 4[] :H
15 15 CCl 15[
16| 16| 16 |
17] 17] [|
18 18 18
19 19) 19
20] 29] 2
21 21 [21 |
22) 22) 1 22 1
ChatGPT (gpt-3.5-turbo) Auto-DSM with [1] Auto-DSM with [2]

18 19 20 21 22 123456 7 89 101112131415 16171819 202122 1 2 3456 7 8 9101112131415161718 192021 22

; #ﬂwf

[[]

0 N oL B W N

i §

©
©

RS BEaiE"
:H 15 :H

15|
16 -
17|

l 18|

19 19
— 20

21 J

Auto-DSM with [3] Auto-DSM with [1, 2] Auto-DSM with [1, 2, 3]

Figure 4. DSMs generated with ChatGPT and Auto-DSM based on engine components from [4].

DSM 2024 3

Generating a Design Structure Matrix with a Large Language Model

Table 1 shows a summary of the results. Given that the DSM in [4] has 22 components (i.e. a 22 x 22 DSM), there are 462
DSM entries in [4] labelled as either ‘has a link” or ‘has no link’. Out of these 462 entries, Auto-DSM with [3] produced
the most entries with either a ‘has a link’ or a ‘has no link’ label (i.e. 430 entries, 93.1%). This implies that it has the fewest
entries labelled as ‘do not know’ when compared with the other settings. Auto-DSM with [3] also produced the highest
number of entries identical with the DSM in [4] (357 entries, 77.3%). All settings of Auto-DSM outperformed the direct
use of ChatGPT (gpt-3.5-turbo, temperature=0) in terms of generating entries with a useful label and in terms of generating
identical entries with respect to the reference DSM in [4].

Table 1. Summary of results on DSMs generated based on engine components in [4].

Methods Entries with a useful label Identical DSM entries as [4]

(Quantity) (As % of *) (Quantity) (As % of ™)
DSM from [4] *462 100.0% 62 100.0%
ChatGPT on [4] 305 66.0% 244 52.8%
Auto-DSM with [1] on [4] 379 82.0% 315 68.2%
Auto-DSM with [2] on [4] 398 86.1% 329 71.2%
Auto-DSM with [3] on [4] 430 93.1% 357 77.3%
Auto-DSM with [1, 2] on [4] 401 86.8% 335 72.5%
Auto-DSM with [1, 2, 3] on [4] 409 88.5% 342 74.0%

5 Closing remarks

This document presents the Auto-DSM workflow, which uses a Large Language Model (LLM) to support the automation
of DSM generation. The goal is to improve productivity as manual DSM generation can be time-consuming and costly. A
prototype of the workflow was developed in this work and a test case involving a diesel engine was carried out to examine
its feasibility. The results generated show promise with Auto-DSM reproducing as high as 77.3% of DSM entries that are
identical to those manually generated by experts. A no-code version of the prototype is available online to serve as a
construct for future research and to support industry adoption. An extended discussion of this work is available in Koh
[2023].

References

Clarkson PJ, Simons C and Eckert C (2012) Agusta Westland Helicopter Change Propagation. In Eppinger SD and Browning TR (Eds.),
Design structure matrix methods and applications, 58-62. MIT press. Cambridge, MA.

Dong Q and Whitney D (2001) Designing a requirement driven product development process. In: Proceedings of the ASME
international conference on design theory and methodology, Pittsburgh, PA, 1-11.

Eppinger SD and Browning TR (2012) Design structure matrix methods and applications. MIT press. Cambridge, MA.

Koh ECY (2022) Design change prediction based on social media sentiment analysis. Artificial Intelligence for Engineering Design,
Analysis and Manufacturing 36, €24, 1-16.

Koh, ECY (2023) Using a Large Language Model to generate a Design Structure Matrix. arXiv:2312.04134. Preprint. 1-16.

Keller R, Eger T, Eckert CM and Clarkson PJ (2005) Visualising change propagation. In: Proceedings of the International Conference
on Engineering Design, Melbourne, 1-12.

Lakshminarayanan PA and Agarwal AK (2020) Design and development of heavy duty diesel engines: A handbook. Springer Singapore.

Mollenhauer K and Tschoeke H (2010) Handbook of diesel engines. Springer-Verlag Berlin Heidelberg.

Sarica S, Luo J and Wood K (2020) Technet: technology semantic network based on patent data. Expert Systems with Applications
142, 112995.

Siddharth L, Blessing L and Luo J (2022) Natural Language Processing in-and-for design research. Design Science 8, €21, 1-76.

Suh ES and de Weck O (2012) Xerox digital printing technology infusion. In Eppinger SD and Browning TR (Eds.), Design structure
matrix methods and applications, 43-48. MIT press. Cambridge, MA.

Sullivan BP, Nava EA, Rossi M and Terzi S (2023) A systematic literature review of changeability in engineering systems along the
life cycle. Journal of Engineering Design 34(12), 1046-1098.

Sosa M, Eppinger S and Rowles C (2012) Pratt & Whitney jet engine development. In Eppinger SD and Browning TR (Eds.), Design
structure matrix methods and applications, 105-108. MIT press. Cambridge, MA.

Wilschut T, Etman LFP, Rooda JE and Vogel JA (2018) Generation of a function-component-parameter multi-domain matrix from
structured textual function specifications. Research in Engineering Design 29(4), 531-546.

Wynn DC and Clarkson PJ (2018) Process models in design and development. Research in Engineering Design 29, 161-202.

Yassine A and Braha D (2003) Complex concurrent engineering and the design structure matrix method. Concurrent Engineering 11(3),
165-176.

Contact: Edwin C.Y. Koh, DAI / EPD, Singapore University of Technology and Design. Email: edwin_koh@sutd.edu.sg

DSM 2024 4

