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Abstract 

Striving for unique selling points leads to an increase in product 
requirements, which are prevalently written in natural language. 
In order to mitigate inherent ambiguities in these requirements 
specifications, methods of Model-Based Systems Engineering, 
like use case diagrams, can be utilized. However, creating 
model-based requirements is time-consuming. Thus, two novel 
pipelines for the automatic generation of use case diagrams are 
proposed and discussed with focus on reducing the amount of 
needed annotated training data. The first pipeline combines 
named entity recognition with active learning. The second 
pipeline utilizes generative large language models and prompt 
engineering. Both pipelines are exemplarily applied to a 
requirements specification from the automotive industry.  
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1. Introduction 

The pursuit for unique selling points and fulfilment of sophisticated customer needs leads 
to an increase in complexity during product development. Requirements engineering 
contributes to the elicitation and satisfaction of said needs. A requirement describes the need 
of a stakeholder or a functionality of the system to be developed [1]. System requirements are 
used to describe latter [2]. Their documentation is still predominantly based on natural 
language [1], [3]. This allows for comprehensibility without special training and flexible use [1]. 
Nevertheless, the application of natural language causes problems due to inherent ambiguities 
[1] and an insufficient controllability of modern product’s increasing complexity [3]. For this 
reason, in the context of Model-Based Systems Engineering (MBSE), model-based 
requirements are a common approach to overcome said limitations [4], by combining context 
modelling and behaviour modelling. The context modelling captures the relations between 
functionalities and actors involved, for example by use case diagrams, while the behaviour 
modelling details the behaviour of the process described by the requirements. [1] 

Creating model-based requirements is primary a manual task so far. For complex products 
with an increasing number of requirements, this practice is time-consuming and error-prone 
and thus offers potential for automation [5]. Against this background, the objective of this paper 
is a contribution towards the automatic generation of use case diagrams for MBSE from textual 
natural language requirements by applying techniques of natural language processing (NLP) 
with the aim of reducing the amount of needed training data. 

The remainder of this paper is structured as follows. In Section 2 the state of the art is 
presented. Section 3 derives the emerging research need followed by the detailed explanation 
of the proposed pipelines in Section 4. The paper closes with the presentation of the results 
and their critical discussion in Section 5 and a conclusion in Section 6. 

2. State of the art 

Context modelling by use case diagrams can be used to capture the functionality of a 
system from an actor’s perspective. In the Systems Modeling Language (SysML), it consists 
of three fundamental elements and relationships between them. The use case itself defines 
typical interactions of the actors with the system aiming to add value from its use. It is depicted 
by oval shapes containing the use case name [1]. The interconnection between use cases 
comprise “include”, “extend”, and “generalize” relationships [6]. Use cases contribute to the 
system of interest with their behaviour. The system of interest is modelled by a block [6]. Actors 
represent entities which are outside to the system of interest and can represent humans, 
external systems or organizations, among others. Actors interact with the system by the use 
case, also see examples in Figure 4 to 6. This is modelled with an association relationship [6]. 

Against this background, there exist numerous approaches assisting the developer with the 
generation of use case diagrams by applying techniques of NLP. An early work in this research 
field by DEEPTIMAHANTI AND SANYAL [7] offers the capability to generate use case diagrams 
based on structured natural language requirements. The approach incorporates reconstruction 
rules to normalize the requirements, pronoun resolution and extraction rules based on noun 
and verb phrases. A more recent and extensive approach by TIWARI ET AL. [8] processes 
requirements with a rule-based engine. It extracts use case name, actors, dependencies, basic 
and alternative flows, as well as pre- and postconditions. The user’s feedback is included by 
conducting a questionnaire as part of the approach. Both approaches have in common, that 
the requirements must follow specific sentence templates. A first step towards generalization 
is taken by MALIK ET AL. [9] by abrogating the need for strict adherence to requirement 
templates. The proposed approach combines the application of NLP techniques with network 
science. Former is utilized to extract the relevant information from the natural language 
requirement text whereas the latter allows linking the entities accordingly. 



 

3 
 

All of the aforementioned approaches have in common, that the manual definition of rules 
plays a crucial role for successfully extracting use case diagrams. Even if the limitation to well-
structured requirement formulations can be overcome by sophisticated approaches, it is still 
bounded to the hardly achievable completeness of the defined rules and thus requires 
significant manual effort. Thus, the application of machine learning based NLP techniques is a 
promising answer to this. Instead of defining sets of rules, it is sufficient to annotate 
requirements with labels. VEMURI ET AL. [10] use supervised learning to train a Naive 
Bayes (NB) classifier which can then identify actor and use case name from the requirement 
text. The use case diagram is generated based on the results of the NB classifier. This is 
complemented by mapping the relationships between the use cases. A similar approach is 
pursued by TIWARI ET AL. [11] who train a named entity recognition (NER) to identify actors and 
use case names. The authors compare four different machine learning classifiers for this task. 
However, their research does not comprise relationships between the entities and the 
generation of a formal use case diagram. VINEETHA AND SAMUEL [12] extend latter approach 
[11] to multi-word use case names. Furthermore, the here applied multinomial NB classifier 
yields to better results comparing to TIWARI ET AL. [11]. These approaches require a substantial 
degree of training, which depends on the availability of both high-quality and high-quantity 
training data. 

A number of strategies have been developed with the objective of addressing the large 
amount of training data required for the successful application of machine learning algorithms. 
A potential solution to this is active learning (AL). The iterative learning process builds on an 
initial training step with little annotated data. A query function identifies data samples which 
are then labelled by the oracle e.g., a human expert [13]. AL allows to achieve higher 
accuracies with less labelled training data compared to passive learning [13]. The application 
of AL in combination with NER is part of existing research [14], [15]. According to BROWN ET 
AL. [16], task-agnostic generative large language models (LLMs) allow to overcome the 
finetuning process overall by prompting. Instead of adjusting the weights of the LLM based on 
labelled training data, the given context of the prompt helps to get the desired results from the 
LLM. This significantly reduces necessity of labelled training data. Here, few-shot prompting 
provides several examples of the task within the prompt. The number of examples can be 
further reduced to one or zero, resulting in one-shot and zero-shot prompting, respectively. 
Zero-shot prompting is equivalent to merely explanatory prompts [16]. 

3. Research need 

As shown in the previous section, the automatic generation of use case diagrams is part of 
current research activities. However, the identified approaches often are not suitable for the 
practical application in an industrial environment. Here, it is necessary to incorporate multiple 
natural language requirements within a single use case [17]. In the context of large scale 
practical applications, requirements are generally not standardized but exhibit different 
sentence templates leading to an inhomogeneous requirements specification [17]. Comparing 
the practical demands with existing research reveals that rule-based approaches are 
unsuitable due to the excessive effort involved in establishing the rules manually. This labour-
intensive step can be mitigated by applying machine learning algorithms. However, the general 
application of machine learning techniques requires substantial and sound training data. 
Existing approaches are either bound to a specific application scenario when using little 
annotated training data [10] or utilize large training sets requiring over 20 thousand examples 
[11], [12]. Since gathering suitable training data is expensive and time-consuming [18], 
reducing the amount of required annotated training data for practical applications is necessary. 
This leads to the following research question:  

How can the dependency on training data be reduced for the automatic generation of use 
case diagrams from interrelated and inhomogeneous natural language requirements? 
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4. Automatic generation of use case diagrams without extensive training data 

In order to close the gap stated above, two new pipelines for the automatic generation of 
use case diagrams from natural language requirements are proposed focusing the practical 
applicability by reducing the amount of required training data. System requirements form the 
data basis and are raised for different features which correspond to superordinate sets of 
system requirements [1]. Examples are human-machine interaction, passenger comfort, and 
maintenance. Both pipelines are described in detail in the subsequent sections. The necessity 
and extend of training data as well as the quality of the resulting use case diagrams are subject 
to the discussion, see Figure 1. To keep the focus on the reduction of training data, the scope 
of the pipelines is limited to simple use case diagrams with one use case and its related entities 
per diagram each. 

 
Figure 1: Methodology of this research paper 

4.1. Active learning and named entity recognition 

Based on the application of NER for extracting relevant entities for use case diagrams as 
originally described in [11], the here proposed pipeline aims to reduce the needed amount of 
annotated requirements by utilizing the AL framework in the training step, see Figure 2. The 
application step utilizes different NLP techniques to generate the use case diagram. 

 
Figure 2: Active learning (AL) and named entity recognition (NER) pipeline for generating use case diagrams 

AL starts with an initial training step based on a pool of labelled data. Here, the initial 
training data is labelled following the BIO tagging method marking the beginning, inside, and 
outside of entities. In contrast to VINEETHA AND SAMUEL [12], the entities are system, actor as 
well as verb and object as basis for the use case name. Similar to the work of LUO ET AL. [14], 
a transformer-based pretrained language model is finetuned for the NER task. The here 
proposed pipeline finetunes the language model “MiniLM” [19]. After the initial training step, a 
query function suggests new training examples if the model accuracy is below a certain 
threshold. This is the most critical step [15] as newly appended requirements need to be 
informative in terms of being diverse and representative for the overall requirements 
specification. To guarantee the positive influence on the model performance and ensure the 
reduction of training data, a task-specific query function is developed. First, the confidence of 
the current NER model for the individual entities is calculated on the unseen requirements. By 
combining all entities, a weighted confidence value is obtained. Second, the least confident 
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requirements for each feature of the training pool are identified for manual labelling. A human 
expert is required to annotate this excerpt of the requirements specification manually. The 
obtained annotated examples are appended to the training pool and additionally included in 
the model training in the next iteration. Each training iteration begins with the original pretrained 
language model to prevent overfitting. The iterative nature of AL with focus on informative 
training examples helps to reduce the amount of manual labelling both in advance and during 
training. 

After training the NER model, it can be applied to unseen data. For the proposed 
application, the NER model generates a candidate list for system, actor, verb, and object 
forming a use case, by extracting one or more entities from each natural language 
requirement.  

The consolidation is necessary to reduce the candidate entities to the required elements 
for the use case diagram. This means a reduction to a single element in terms of the system. 
For this, a frequency-based approach is selected. If the relative frequency of one candidate 
system entity exceeds a threshold value, it is selected for the diagram. Otherwise, the most 
common candidates are assessed in detail to identify potential semantic duplicates. For 
instance, “vehicle” and “vehicle system” refer to the same system entity. The semantic 
similarity is estimated via cosine similarity based on embeddings obtained from the Sentence-
BERT (SBERT) network [20] using the pretrained transformer model “all-MiniLM” [21]. In case 
of a cosine similarity close to 1, which indicates high semantic similarity, the most frequent of 
the reviewed candidates is returned. Otherwise, the developer is required for manual 
intervention.  

To maintain coherent system models, it is common to define sets of approved model 
elements, such as released actors. The candidate actors are filtered and mapped to the 
released actors by calculation SBERT embeddings of both. The vectorized representations 
are examined for similarity by calculating the cosine similarity. If a candidate vector is 
semantically similar to a released vector, it is appended to the list of elements for the use case 
diagram. Otherwise, the candidate actor is neglected. This approach yields to a set of actors 
which are allocated to the use case. 

Lastly, the use case name needs to be consolidated based on the extracted verb and object 
entities. The use case name compounds as verb object tuple representative for the entire set 
of requirements linked to the specific use case. For this, the online lexical database WordNet 
[22] is consulted. The basic entries in WordNet are referred to as so-called synsets [23]. A 
synset covers different semantic meanings of a given word. For example, the NER extracts 
the verb "adjust" from a requirement. To capture the meaning in the sense of "adjusting the 
driver's seat", meaning altering a position, the correct synset needs to be identified. For 
instance, another synset for "adjust" relates to "adjusting to a situation" in the sense of getting 
used to something. Similar as described in JURAFSKY AND MARTIN [23], the approach for word 
sense disambiguation uses contextualized word embeddings. The most probable synset for 
each extracted candidate verb and object entity is identified by comparing the entity in the 
context of the requirement text with the entity in the context of the synset's example sentence. 
The synset with the highest cosine similarity is identified as the most suitable fit. Hypernyms 
have broader meaning [23] and thus are suited to generalize the use case name. An extended 
list of candidate verbs is generated by adding the hypernyms of the chosen word senses. The 
extended candidate list is ranked against the originally extracted candidate verbs by word 
embeddings and cosine similarity in order to obtain the best suited verb for the use case name. 
Similarly, the object entities are consolidated without deriving hypernyms but instead 
comparing the semantic similarity amongst the extracted object entities. The combination of 
both results yields the use case name. 

The last step is the rule-based linking of the individual entities to generate a simple use 
case diagram with one use case per diagram. 
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4.2. One-shot prompt engineering 

The second pipeline uses the generative LLM “Mixtral 8x7B instruct” [24] which is instructed 
by an iterative one-shot prompting strategy. The prompt engineering strategy employs 
numerous strategies as outlined by FAGBOHUN ET AL. [25], with chain-of-thought factored 
decomposition prompting being the most relevant. This strategy breaks down complex tasks 
and helps the model to “think” which leads to more relevant outputs. Figure 3a depicts the 
prompt engineering strategy in general. Figure 3b gives insight to the alternating structure of 
user and assistant messages within the individual tasks. 

 
Figure 3: One-shot prompting pipeline for generating use case diagrams 

At the beginning, a prompt explains the role to the model as this helps to improve the 
output quality for the specific domain [26]. The LLM is requested to resemble the activities of 
a developer and create simple use case diagrams based on natural language input 
requirements. The subsequent prompt instructs the model to create a functional summary of 
the input requirements in order to assess a general understanding of the content of the 
requirements. One-shot prompting is explained in the following using the example of extracting 
the system entity. First, a user prompt explains the task of defining the system based on input 
requirements (Explain task). The assistant’s output is simulated by a manually written answer, 
indicated with the avatar bubble in Figure 3b (Repeat task). The LLM is effectively adopted to 
the task by providing a one-shot example. This comprises example requirements in the context 
part of the prompt and the corresponding task of extracting the system in the instruction part. 
The prompt also requests a standardized answer format (Example task). Again, the output of 
the assistant is simulated by manually answering in the role of the assistant (Answer example). 
The simulated answer follows the requested output format which can be referred to the concept 
of constrained vocabulary [25]. With that, the one-shot part of the prompt chain ends. The 
prompt containing the unseen input requirements follows the same pattern as before to help 
the LLM with calculating a suitable output. However, it is explicitly indicated that the preceding 
example requirements are not subject to the new input requirements (Actual task). The prompt 
history is then utilized to calculate an output by the LLM indicated with the yellow bubble in 
Figure 3b (Generate answer). Analogue to this prompting sequence, the LLM is instructed to 
identify the relevant actors to the use case described by the input requirements. The 
explanatory user prompts are extended by a list of released actors which the LLM is instructed 
to follow. It is another example of constraining the vocabulary in the prompt. In addition to 
potential identified actors which correspond to the released actors, it is possible that additional 
actors are described by the requirements specification. The prompts consider that by asking 
the LLM whether it is necessary to add potential additional actors and, if so, to generate an 
output explaining the reason therefor. Lastly, a chain of prompts is created to define a suitable 
use case name. The use case name consists of a verb object pair as in the first approach 
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(see Section 4.1). The instruction of the task prompts emphasizes that the chosen verb object 
pair must summarize the input requirements with respect to the intended user behaviour. A 
subsequent rule-based linking of the identified use case diagram elements yields the use case 
diagram. 

5. Results and discussion 

As part of a consistency analysis, the results of the two proposed pipelines are compared 
with manual modelling of the underlying requirements by experienced developers. The three 
example use cases originate from different features to demonstrate the versatility of the 
pipelines. 

Figure 4 shows exemplary the results of a correctly modelled use case with both pipelines. 
Manual modelling yields the “driver” as associated actor. Pipeline 1 suggests the “user” entity 
as actor, which is the generalized actor for the “driver”. Considering that, the associated actor 
is viable. Pipeline 2 adds both aforementioned actors to the diagram. Here, a possible 
enhancement is explicitly taking the hierarchy amongst the actors into account. For both 
pipelines, the use case name accurately reflects the functionality described by the 
requirements. This can also be observed by comparing it with the manually created use case 
name. The definition of the system entity provides sound results. 

 
Figure 4: Results for a use case of the feature “passenger comfort” 

To evaluate the results of a use case from the feature “human-machine interaction”, the 
results presented in Figure 5 are examined. The pipeline based on NER identifies a multitude 
of different actors from the set of input requirements. These are mapped to different released 
actors. However, a meaningful generalization of the results to fewer actors associated to the 
use case is missing. By comparing with the manual modelling, it becomes apparent that only 
the most general actor “user” should be part of the use case diagram. This shows that the 
hierarchy between actors is an important part and must be added to both pipelines. The 
prompts in pipeline 2 yield to the correct actor. Here, the LLM is capable of calculating a 
generalized output based on the one-shot example given as input. The first pipeline shows 
limitations regarding the use case name. The lexical consolidation approach is not capable of 
finding a representative verb for the input requirements. This is mainly due to limitations of the 
consolidation algorithm. The word sense disambiguation can result in erroneous synsets and 
thus unrepresentative hypernyms. This can eventually lead to a poorly generalized verb in the 
use case name. The object of the use case name however is a suitable result. The second 
pipeline finds a similar object but also covers the personalization subject. The LLM shows 
better performance by defining the verb, too. As in the previous result, both pipelines are 
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capable of defining the system entity correctly. Pipeline 1 suggests a synonym of the manual 
modelled system entity but still allocates the use case in the correct system. 

 
Figure 5: Results for a use case of the feature “human machine interaction” 

Lastly, Figure 6 illustrates the results for a use case concerning service appointments for 
maintenance. The manual modelling associates two released actors to this use case, namely 
“user” and “workshop”. The trained NER model identifies the candidate actors “customer” and 
“dealer” from the input requirements but the consolidation approach is not capable of mapping 
the candidates to the released actors. This can be explained by too little cosine similarity 
between the embeddings. For this reason, the use case diagram does not display any actors. 
In contrast to this, the LLM pipeline with its corresponding one-shot prompts is capable of 
mapping the actors mentioned in the requirements to released counterparts. By reviewing the 
results for the use case name, it becomes apparent that both pipelines capture the basic 
functionality. However, both are lacking a hint to the service setting. Lastly, the identification 
of the related system results in correct solutions in both cases. 

 
Figure 6: Results for a use case of the feature “maintenance” 

It is worth mentioning, that multiple executions of both pipelines yield diverging results. The 
differences arise more often for the second pipeline but with little impact on the final results as 
mainly formulations differ. The first pipeline results in fewer variations over multiple executions 
which can be explained by the lack of generative LLMs involved. 

Overall, it can be seen that both pipelines are generally capable of generating use case 
diagrams from multiple interrelated and inhomogeneous natural language requirements. 
However, the pipeline based on one-shot prompting leads to more meaningful results. In 
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addition to this consistency analysis, the research question is assessed concerning the amount 
of required training data for both pipelines. Special focus is put on the retrieval of the annotated 
data. 

For the initial training step of the AL framework for pipeline 1, an initial amount of 100 
annotated requirements is utilized. On average five iterations are necessary to achieve an 
overall F-score measure of 0.85. This is consequently equal to 161 requirements for manual 
annotation. Training results show best performance for the system entity with an average F-
score of 0.95. The F-score on average for the actor, verb and object entity is 0.87, 0.87 and 
0.72, respectively. Comparing to VINEETHA AND SAMUEL [12], this is a significant reduction of 
required training data. The authors report 20,761 tokens whereas the here presented approach 
requires one fifth thereof with approximately 4,000 tokens for training. 

The application of the one-shot prompting pipeline further reduces the amount of training 
data. There is no need for manually annotating any requirements with entity labels compared 
to pipeline 1 as an existing use case diagram and its corresponding requirements can be used 
as one-shot example with little effort. The input requirements can be appended to the prompt 
template without modification. To derive the simulated answers, it is sufficient to extract the 
model elements for actor, use case name and system from the example use case diagram. 

Nevertheless, limitations remain. The replicability of the results for related research is 
limited due to the industrial dataset. In general, neither of the proposed pipelines considers a 
hierarchical relationship between the actors which can cause issues with the generalization, 
as shown in the results for the first pipeline in Figure 5. Further, multiple executions can lead 
to different results. In most cases, the derivation of a suitable use case name and the 
identification of the actors is viable, though. The lexical consolidation approach for the first 
pipeline lacks a robust generation of the use case name. In terms of the second pipeline, the 
LLM not always adheres to the requested output format which can cause challenges in post-
processing.  

Summing up, the proposed research question can be answered as follows: Both the 
application of NER in conjunction with AL and advanced prompt engineering strategies are 
suitable to reduce the dependency on training data for the generation of use case diagrams 
considering industrial requirement sets. Due to the slightly better results of prompt engineering 
in combination with the least dependency on annotated training data, this approach seems to 
be most promising. 

6. Conclusion and outlook 

This publication contributes to the reduction of required labelled training data for the 
automatic generation of use case diagrams based on natural language requirements. Both the 
AL and NER-based pipeline and the one-shot prompt engineering pipeline offer a promising 
solution therefor. Both pipelines reduce the manual preparation to a minimum, with the prompt 
engineering strategy not even requiring annotating effort at all as simple one-shot examples 
are sufficient. The applicability is demonstrated by an industrial example.  

Further research is necessary to derive complete use case diagrams which comprise more 
than one use case. This incorporates the relationships between different use cases as well. 
The one-shot prompting strategy is a promising approach for this. However, it needs to be 
critically checked how the consistency of the results can be enhanced to minimize deviations 
in the results. Besides that, the set of requirements forming a use case must be checked for 
thoroughly describing the functionality regarding pre- and postcondition, main scenario, and 
alternative scenarios. 
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