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Abstract: 
DSM clustering methods and software tools for organization design utilize data about task interdependencies to optimize 
a solution based on a single grouping criterion: Minimization of coordination costs. At the same time, there may be 
unwanted side-effects of optimizing based on this criterion alone, such as an increased difficulty of functional learning 
(e.g., supervision and knowledge exchange among functional specialists). The challenge is that it has so far been difficult 
to quantify and analyze such additional criteria, which may be qualitative. In this paper, we consider whether the “net 
benefit” method from medicine can be utilized to bring together qualitative and quantitative criteria on the same scale 
and compare both the costs and benefits of alternative organizational structures.  
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1 Introduction 
A key principle in organization design is to group organizational entities, such as roles, into semi-autonomous units (teams 
or departments) based on the task interdependencies between the roles. This design principle often leads to the 
establishment of cross-functional teams and is intended to minimize coordination costs (Thompson, 1967), enhance speed 
and flexibility (Baldwin & Clark, 2000; Sanchez, 1995), and promote unit accountability (Kilmann, 1983).  
At the same time, there are potential downsides to this grouping principle, most notably, a decrease in functionally-related 
learning and knowledge sharing. The reason is that workers with the same functional specialization (e.g., IT; operations; 
finance; etc.) will be spread across the different cross-functional teams. Unfortunately, current DSM clustering methods 
(Yu et al., 2003)—which are also implemented in software tools (e.g, Worren et al., 2018)—only consider task 
interdependencies and do not allow the simultaneous evaluation of multiple criteria (such as task versus knowledge 
interdependencies).  
One of the challenges is that alternative grouping criteria (or more generally, “harms” from grouping by task 
interdependencies) may be difficult to quantify. Nonetheless, they may be identified and assessed, but one will then need 
to convert the assessments to a common scale to allow a systematic analysis of the costs and benefits of a given clustering 
solution. Similar challenges have been addressed in other fields, including medicine, by employing a decision-making 
methodology known as 'net benefit'. This methodology is also applicable in our context, as it can be used to quantify and 
compare two or more decision criteria specifically associated with clustering or grouping. The purpose of this paper is to 
demonstrate how this methodology can be integrated with the DSM when considering alternative organization design 
solutions. 

2 Theory 

2.1 Task versus knowledge interdependencies 
Within the field of organization design, it is widely accepted that there are typically trade-offs between different criteria 
and that alternative solutions are associated with both costs and benefits (e.g., Galbraith, 1974). But scholars have also 
observed that there is a tendency to simplify decision-making by focusing on one dominant criterion (e.g., Simon, 1946). 
One reason may be that some criteria are easier to quantify than others. Thanks to software tools (e.g. Worren et al., 2018) 
it is now straightforward to collect data about task interdependencies by utilizing survey questionnaires that are distributed 
to employees in an organization. But so far, there is no systematic method for assessing and comparing alternative grouping 
criteria.  
Although task interdependency is a well-established criterion for grouping roles (Thompson, 1967), it is not the only 
possible criterion. It can be contrasted with the traditional way of organizing employees, namely, the functional 
organization, which groups functional specialists together in the same units (e.g., sales; marketing; operations; 
development). In principle, such an organization groups employees based on (the assumed) knowledge interdependencies 
(Raveendran et al., 2020) rather than task interdependencies. Although the benefit of grouping roles by task 
interdependency (in terms of reduced coordination costs) is clear, provided that one has collected and analyzed the 
appropriate data, the potential cost or harm from a functional perspective is not quantified or analyzed. Grouping by task 
interdependency often leads to the establishment of cross-functional teams. As pointed out by (Larson et al., 2022, p. 10) 
cross-functional collaboration “imposes a burden on team members to maintain communication exchange between 
functional subgroups.” Moreover, regarding the embeddedness of product architecture knowledge in communication 
patterns, Sosa et al. (2004) highlight the consequences of misalignment between product architecture and organizational 
structure during complex product development. Their research shows how factors such as organizational and system 
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boundaries, the robustness of design interfaces, the presence of indirect interactions, and the degree of system modularity 
can influence the alignment of design interfaces and team collaborations.  

2.2 Net benefit analysis in clinical research 
Net benefit analysis is frequently used in the medical sciences. In medicine, diagnostic tools are typically evaluated by 
their sensitivity and specificity. Sensitivity is a measure of how well a diagnostic test can correctly identify individuals 
who have a particular condition or disease. It tells us the percentage of true positive results the test can detect. Specificity 
is a measure of how well a diagnostic test can correctly identify individuals who do not have a particular condition or 
disease. It tells us the percentage of true negative results the test can provide. However, sensitivity and specificity alone 
do not provide information on the overall clinical impact for the patient (Vickers et al., 2016). According to Kazdin (1999), 
clinical impact or significance refers to "the practical or applied value or importance of the effect of an intervention–that 
is, whether the intervention makes a real (e.g., genuine, palpable, practical, noticeable) difference in everyday life to the 
clients or to others with whom the clients interact".  
For instance, when diagnosing a patient for possible prostate cancer, various tests, models or markers can be used to inform 
decisions on how to proceed. However, while the tests may vary in sensitivity or specificity, they may also vary in terms 
of harm to the patient. If the test is not 100 % specific, a decision to treat a diagnosed cancer patient based purely on 
statistical measures could entail unnecessary harmful interventions for instance for individuals who do not have the 
underlying condition (false positives), or when the quality of life for patients with the condition (true positives) is reduced 
by curative treatment to such an extent that they might be better of not having the treatment. Therefore, to assess the value 
of a test or intervention in clinical practice, decision analysis considers the clinical consequences, such as the benefits of 
early disease detection or the harms of unnecessary testing or curative treatment. As such it takes into account the outcomes 
or results of the decisions made based on the utilization of models or tests. 
In essence, one should quantify the clinical net benefit of utilizing a diagnostic test compared to default strategies of 
treating all or no patients. The net benefit is determined over a range of threshold probabilities, which are defined as the 
lowest probability of disease at which additional intervention would be considered justifiable. The net benefit can be 
calculated according to the following formula (Vickers et al., 2019): 

net benefit = sensitivity × prevalence – (1 – specificity) × (1 – prevalence) × w  (1) 

where sensitivity represents the true positive rate or the ability of the prediction model or diagnostic test to correctly 
identify individuals with the disease, prevalence refers to the proportion of the population that has the disease, specificity 
represents the true negative rate or the ability of the prediction model or diagnostic test to correctly identify individuals 
without the disease, w denotes the odds at the threshold probability, which indicates the estimated benefit or weight 
assigned to the decision of intervening or treating patients at that specific threshold probability.  
Equation (1) can be reformulated as follows (Vickers et al., 2016): 

𝑁𝑁𝑒𝑒𝑜𝑜 𝑏𝑏𝑒𝑒𝑛𝑛𝑒𝑒𝑖𝑖𝑖𝑖𝑜𝑜 =  
𝑇𝑇𝑟𝑟𝑇𝑇𝑒𝑒 𝑝𝑝𝑜𝑜𝑠𝑠𝑖𝑖𝑜𝑜𝑖𝑖𝑝𝑝𝑒𝑒𝑠𝑠

𝑁𝑁
−  

𝐹𝐹𝑎𝑎𝐹𝐹𝑠𝑠𝑒𝑒 𝑝𝑝𝑜𝑜𝑠𝑠𝑖𝑖𝑜𝑜𝑖𝑖𝑝𝑝𝑒𝑒𝑠𝑠
𝑁𝑁

×  
𝑝𝑝𝑠𝑠

1 − 𝑝𝑝𝑠𝑠
 (2) 

Where the ratio of 𝑝𝑝𝑡𝑡
1−𝑝𝑝𝑡𝑡

 is utilized as an exchange rate to indicate the relative benefits and harms of various clinical 
outcomes resulting from a decision. 

2.3 Existing methods using DSM to inform organization design decisions 
In the field of organizational design, several methods address task interdependencies. These include methods based on 
graph theory, network science, mathematical optimization, and simulation techniques, which primarily focus on 
minimizing coordination costs based on analysis of task interdependence (Galbraith, 1974).  
The Design Structure Matrix (DSM) is a tool for visualizing and analyzing dependencies/interactions between components 
in complex systems, projects, and organizations (Eppinger & Browning, 2012). In organizational (also called team-based) 
DSMs, these interactions are usually based on the frequency of communication or the number of deliverables exchanged 
between them. Then, a clustering technique is used to place the various organizational elements into different groups (or 
clusters). Initially, each element is randomly assigned to a group, and then a coordination cost metric is calculated based 
on the location of each element in a specific group. The objective is to keep altering the elements’ group membership until 
the coordination cost is minimized. This is the essence of the DSM clustering problem and algorithm. 
The assumption is that the proper placement of elements into groups will increase communication inside teams, and 
minimize inter-cluster communications, which in turn reduces the chance of communication errors (or cost). 
Clustering algorithms (used to cluster DSMs) can be classified into two main categories: hierarchical and partitional 
(Khoriaty et al., 2018). Hierarchical techniques generate a set of nested clusters, which can be either agglomerative or 
divisive (Jain & Dubes, 1988). Agglomerative methods begin with singleton clusters. There are as many clusters as there 
are nodes or elements in the network and each cluster is made up of one element only. Then, step-by-step, two clusters are 
joined together to form one cluster as the clusters’ sizes begin to grow. The clusters are joined based on a distance, 
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similarity, or proximity measure. Eventually, one cluster containing all the elements remains. Alternatively, divisive 
techniques use the opposite approach. One cluster made up of all the elements is sequentially divided into smaller-sized 
clusters until singleton clusters remain. A drawback of hierarchical methods is that once an element joins a cluster 
(agglomerative) or leaves a cluster (divisive) it cannot be undone. 
The partitional technique divides the elements into clusters or “partitions” where the configuration of elements is optimal 
as per an evaluating/clustering criterion, like coordination cost or Minimum Description Length  (ibid.). All combinations 
of possible clusters may be evaluated, based on the clustering criterion, to select the optimal arrangement; however, this 
is impractical. Normally, elements are moved across clusters only if the value of the criterion shows an improvement (this 
is referred to as hill climbing). Thus, a smaller number of partitions is examined. One drawback is that the optimal solution 
could turn out to be at a local minimum. 
All these techniques provide a unidirectional assessment of the impact of placing an element in a cluster or moving an 
element between different clusters. This means an improvement in the clustering criterion must occur. This constitutes a 
benefit factor for moving elements around the different organizational clusters. However, none of these techniques strike 
a balance between the benefits and costs of moving elements around the different organizational clusters. While these 
methods are effective, they often overlook other critical factors like learning and knowledge interdependencies. The net 
benefit method, on the other hand, goes beyond cost minimization to address inherent potential of regrouping. By capturing 
subjective preferences of involved parties, it provides a more holistic approach that simultaneously considers multiple 
criteria, including learning harm and coordination benefits. This approach is particularly beneficial in complex 
organizational settings where learning and knowledge transfer are just as important as cost efficiency. Thus, in this paper, 
we will introduce a cost-benefit analysis approach to address the organizational DSM clustering problem. 
Few authors in the DSM literature have noted principles and methods for making exceptions to the main clustering 
principle (A. A. Yassine & Khoury, 2021). The concept of a ‘bus’ module is one such example. A bus is an element that 
interacts with most other elements and serves as a system-level integrating component. For example, in an engineering 
project, the integration team (Browning, 2009; Cusumano & Nobeoka, 1998) communicates with almost all other teams. 
Decisions about consolidation are not necessarily based on existing task interdependencies but on the potential value from 
consolidation. For example, even if there are no existing task interdependencies, teams that provide IT support may still 
benefit from being grouped together for increased utilization, standardization, or learning (A. Yassine et al., 2021). 
Another related concept is ‘field separation’, which defines boundaries or constraints that have consequences for how 
elements are grouped in a physical product to avoid interferences between components or external forces (Otto et al., 
2020). Field separation has only been applied to physical products so far, but a similar concept, functional conflict (Worren 
& Pope, 2022), has been proposed for making organization design decisions. Functional conflict exists when the function 
or goal of a role conflicts with that of another role in the same unit. While both field separation and functional conflict 
imply that some elements should be separated from each other, consolidation is mainly driven by the perceived positive 
benefits of grouping.  

2.4 Net benefit analysis applied to re-grouping in organization design 
Applying the net benefit approach to re-grouping in organization design involves quantifying and comparing the benefits 
and harms associated with different design alternatives for an organization, and using an exchange rate to put them on the 
same scale. 
As in clinical research, organization design decision-making involves the assessment of trade-offs, i.e. the trade-off 
between the benefit of doing something (in this case re-grouping, which supposedly reduces coordination cost) and harm 
from re-grouping (resulting from any side effect to doing this re-grouping such as reduced learning potential within subject 
matter experts groups). For example; implementing agile methodologies which advocate the use of cross-functional 
"product" teams could sometimes lead to increased efficiency and autonomy within the team, but at the expense of efficient 
resource utilization or conflicts due to overlapping authority/mandate with other units (Worren & Pope, 2022). Or, when 
establishing a shared service unit to better meet variability in the demand for services can result in unwanted side effects 
of reduced service quality (Elston & MacCarthaigh, 2016). 
In the context of organization design and applying a net benefit approach, "true positive" and "false positive" are not 
typically used in the same way as in medical or statistical contexts. However, we can draw some parallels to these terms: 
a "true positive" could refer to taking some action by implementing a design alternative that is identified as beneficial 
(positive), and indeed results in positive outcomes or benefits when implemented in the organization. In other words, it 
would represent a design alternative that is accurately identified as beneficial through the net benefits analysis and proves 
to be effective in achieving the desired outcomes. A "false positive" could refer to implementing a design alternative that 
is identified as beneficial (positive) based on the net benefits, but does not result in positive outcomes or benefits when 
implemented in the organization. 
Assuming we have a DSM measuring instrument that gives us an estimated benefit of reduction in coordination cost in % 
compared to the current clustering as a baseline. Based on the decision-maker's preferences the harm from clustering might 
be valued differently than the benefits. Therefore, we need to develop an exchange rate between these two different 
measurement units to be able to weigh this trade-off properly.  However, one important challenge of applying a net benefit 



Using net benefit analysis to value costs and benefits of re-grouping in organization design 

DSM 2023 42 

approach to organization design is that we do not know the sensitivity ("rate of false positives") of the screening instrument 
used. This means that we cannot use equation (2) to calculate the net benefit. In the lack of this information, we propose 
two alternative approaches which address this challenge. 

3 Proposed Approach 
In this section, we present an approach to determine an exchange rate between two criteria to put them on the same scale 
to calculate net benefits. As a simplification, we demonstrate an approach involving only a single decision-maker and one 
additional criterion. However, the approach can easily be extended to incorporate multiple decision-makers and multiple 
criteria. Furthermore, while several preference elicitation techniques exist, we focus on demonstrating a binary choice 
similar to conjoint analysis (Rao, 2014). The approach is then demonstrated using an illustrative example.   

3.1 A post-clustering analysis approach using conjoint analysis 
Assuming we have an organization with a current organizational structure represented as A0. A DSM clustering analysis 
tool (M), using a single criterion C1 of reduction in coordination cost, has identified an alternative structure A1 with an 
estimated reduction in coordination cost, dC2 measured in percent reduction compared to A0. Now consider that the 
decision-maker (DM) wants to take into consideration another criterion (C2) when deciding whether or not to implement 
A1. C2 could, for instance, be harms or benefits related to functional learning measured in some understandable scale such 
as a percent reduction in time spent mentoring junior resources within a functional area or task. Assume the DM estimates 
the harm to functional learning (dC2) as a consequence of implementing A0 to be reduced by some percent per year. To 
compare the benefits of reduction in coordination cost with the harm of reduction in learning we need to determine an 
exchange rate to put the two criteria C1 and C2 on a common scale. A key point here is that this exchange rate represents 
the DMs’ preferences regarding the trade-off between the benefits and harms, i.e. 5 % of coordination benefit is not 
necessarily valued equally as 5 % of learning benefit by the DM in the particular situation.  
Determining the exchange rate 
In this context learning time refers to the period it takes for an employee or groups of employees to acquire new skills, 
knowledge, or behaviors necessary for their roles or for the overall performance of the organization. This could include 
learning new software, understanding company protocols, mastering a new production process, or adapting to a change in 
the organizational structure or culture. The learning time can depend on the specialization regime (Raveendran et al., 2022, 
p. 7). In regimes with high specialization, employees excel in a smaller range of tasks. On the other hand, in low
specialization regimes, employees have more evenly distributed skills across all tasks, but at a lower proficiency level,
reflecting the trade-off between specialists and generalists.  For instance, broader roles could require learning a wide range
of skills, potentially increasing learning time. On the other hand, highly specialized, hierarchical organizations may have
narrower roles, potentially reducing the breadth of skills an individual needs to learn, but may increase the learning time
if interdepartmental collaboration and knowledge transfer is needed.
The reduction in learning time, as used in this paper, refers to the decrease in the time it takes for an employee to become 
proficient in a task as a result of changes in the organization design. It hinges on the principle that close interaction and 
collaboration among team members can foster knowledge transfer and, consequently, expedite the learning process. It is 
an important consideration in our net benefit analysis as faster learning times can lead to increased productivity and 
efficiency in the organization, while a reduction in learning time can have similar but detrimental effects. 
To determine the exchange rate one could ask direct questions such as "How many units of harm (i.e. here “reduction in 
learning time”) are you willing to accept for N units of benefits (i.e. here “reduced coordination cost”)? By directly 
asking the DM this question for varying N, one gets pairwise combinations of  dC1 and dC2 and one can easily calculate 
a regression equation like Y = a + bX, where  Y =dC1  and X =dC2. The exchange rate between the two criteria is then b. 
However, answering such direct questions poses several challenges well established in the choice literature (Thurstone, 
1927). Therefore we recommend applying an indirect technique to map DM’s preferences founded in random utility 
theory, i.e. a preference elicitation technique referred to as conjoint analysis (Rao, 2014). In conjoint analysis, 
respondents are typically presented with a set of attributes and asked to choose from the set of attribute levels based on a 
particular criterion, such as preference or importance. In this scenario, a choice option pertains to one of the attribute 
levels for the criteria C1 and C2 that are presented as shown in Table 1. 

Attribute Attribute levels 
Coordination benefit 5%, 10%, 15%, 20% 

Learning harm 5%, 10%, 15%, 20% 

Table 1. Example attributes with levels and units 

This would result in a total of 24 = 16 possible combinations of the two attributes. The DM is asked to pairwise compare 
several such combinations of attributes and levels, as illustrated in Figure 1. 
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Figure 1. Hypothetical choice set for a binary choice of a combination of attributes and levels 

By giving the DM various (realistic) combinations of dC1 and dC2 it is possible to capture the DMs preferences by counting 
the number of times an attribute level is preferred. Based on these counts, one can calculate the part-worth utility for each 
attribute level. 
To calculate the exchange rate using the part-worth utility for a single respondent (here the DM), we can calculate the 
part-worth utilities for each level of each attribute using a statistical method such as Maximum Likelihood Estimation. 
Using the differences in part-worth utilities between the levels, we can then calculate the exchange rate between the two 
attributes for the DM based on their preference for one attribute over the other. The exchange rate provides a measure of 
the trade-off we are looking for between the two criteria in terms of their relative importance to the DM. 

3.1.1 Example – functional learning vs. optimizing for process flow 
We now apply the proposed approach to an illustrative example. In a (medium-sized) organization a CIO has identified a 
coordination problem between existing functionally structured departments. The CIO is considering adopting agile 
methodologies to increase productivity. Currently, the organization has a traditional functional hierarchical structure. The 
CIO has access to a new tool/prediction model that uses DSMs to identify viable clustering alternatives based on collected 
data about task interdependence using a single clustering criterion of reduction in coordination cost. The output of the tool 
indicates a percent reduction in coordination cost of 10 %. The proposed design solution(A1) is illustrated in Figure 2. The 
CIO is however worried about how this will affect learning between the currently co-located functional specialists. 
Therefore we use "learning harm" as the additional criterion C2 in this case. The colors represent different functional 
specializations such as "tester",  "full-stack software developer" or "User experience designer". 

Figure 2 Example of nine roles organized in three departments, represented both as graphs (top) or DSMs (bottom), before (A0) and 
after clustering (A1) based on task interdependencies. For simplicity, there are only reciprocal (two-way) interdependencies in this 

example  

For ease of understanding, we use the attributes and levels presented earlier in Table 1. The DM is asked to answer sets of 
questions in the format shown in Figure 1 resulting in the following count of the number of times each attribute was 
selected as shown in Table 2: 
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Table 2. Conjoint analysis with coordination benefit counts and learning harm counts 

Attribute Level Coordination Benefit Count Learning Harm Count Net Score 
5% 1 3 -2

10% 2 1 1 
15% 4 3 1 
20% 3 3 0 

The net preference scores indicate the relative preference of each attribute level. Positive scores indicate a preference for 
Coordination Benefit, negative scores indicate a preference for Learning Harm, and a score of 0 indicates no preference.  
To calculate the part-worth utilities, we can assign a reference level for each attribute and calculate the differences in the 
net scores between each attribute level and its reference level. Here's an example assuming the reference level for both 
attributes is the 5% level: 

Table 3. Calculated part-worth utilities 

Attribute Level Coordination 
Benefit Net Score 

Learning Harm 
Net Score 

Part-worth 
Utility (CB) 

Part-worth 
Utility (LH) 

5% (Reference) 0 0 0 0 
10% 1 -2 1 -2
15% 1 0 1 0 
20% 0 0 0 0 

To establish the exchange rate, we can compare the differences in part-worth utilities. In this case, we observe the 
following: 

– The difference between the part-worth utility of "Coordination Benefit" (CB) between the 10% level and the
15% level is 0.

– The difference between the part-worth utility of "Coordination Benefit" (CB) between the 10% level and the
20% level is 1.

– The difference between the part-worth utility of "Learning Harm" (LH) between the 10% level and the 15%
level is 2.

Based on these comparisons, we can establish a preliminary exchange rate between "Coordination Benefit" and 
"Learning Harm" for the DM: 1 unit of "Coordination Benefit" (CB) is approximately equivalent to 2 units of "Learning 
Harm" (LH). This exchange rate suggests that the DM is willing to trade off 2 units of "Learning Harm" for 1 unit of 
"Coordination Benefit" based on their indicated preferences. Concretely, a trade-off of 2 units of "Learning Harm" for 1 
unit of "Coordination Benefit" means that the DM is willing to accept a scenario where learning is twice as negatively 
impacted, provided it results in a corresponding increase in coordination benefits. This might translate into real-world 
decisions such as placing employees in roles or projects where they have less familiarity (increased learning harm) in 
favor of improving overall team coordination. 

3.2 Integrate additional criteria into the DSM-clustering analysis 
An alternative approach is to add additional criteria to the DSM mapping and analysis algorithm. Assuming that we already 
have in place a questionnaire to capture task interdependence (It) to calculate the reduction in coordination cost, we simply 
propose to extend the questionnaire with additional questions to capture change in learning time due to knowledge 
interdependence. Whereas the template for questions related to  It is of the format “I receive input from X in relation to 
task Y”, the format of questions to capture knowledge interdependence (Ik) could be, for example, “I receive tips and hints 
from X related to our common area of specialization”. We could then calculate a weighted average of the factors and apply 
this score as a clustering criterion. 
To accomplish this we draw on the rating scale introduced by Pimmler and Eppinger (1994), given its advantages with 
regards to clear linking between the value in the rating scale and corresponding statements, support for positive (benefits) 
as well as negative (costs) interdependence and incorporation of general types of interdependencies. We further adapt the 
rating scale proposed by Helmer et al. (2010). In our case, instead of using the spatial, energy, signal, and material types 
of dependencies, we adopt the following definitions of interdependence: 

– Task interdependence: Two tasks are interdependent if the value generated from performing each is different
when the other task is performed versus when it is not. (cf. Puranam et al., 2012, p. 421)

– Knowledge interdependence: Two agents are knowledge interdependent if the value they could generate from
combining their knowledge differs from the value they could obtain from applying their knowledge separately
(Raveendran et al., 2020, p. 45).
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Both definitions reflect the generative potential of these two forms of interdependence. When deciding on whether or not 
to re-group an element, the trade-off between the benefit from a reduction in coordination cost versus the harm from an 
increase in learning time must be considered. This gives a rating scheme as shown in Figure 3. 

Figure 3. Rating scheme adapted from (Helmer et al., 2010; Pimmler & Eppinger, 1994) using task and knowledge interdependence 

For each cell in the DSM, a 1 x 2 vector is populated with a score from the questionnaires for task and knowledge 
interdependence. Figure 5 shows an example of such questions to capture knowledge interdependence. 
As proposed by Helmer et al. (2010), we apply a simple rule for perspective reduction that any higher-level absolute value 
within one cell will always supersede any quantity of lower-level values, as illustrated in Figure 4. Generally, all marks 
with higher absolute value prevail against other marks of the same algebraic sign as these act supportive. In the presence 
of only one type, no trade-off is required and this value is taken, as shown in the top. However, for situations illustrated at 
the bottom of Figure 4, trade-offs are required. For instance, as shown at the bottom left, the "learning time" is assigned a 
-3 indicating a highly detrimental effect on learning time if re-grouped.

Figure 4. Perspective reduction function 1 (top) and 2 (bottom) 

In addition, for conflicting non-trivial cases with adjacent scores manual adjustment can be done to assess the trade-offs, 
as these will benefit from additional contextual information. For instance, in an "increase productivity scenario" one might 
accept some degree of learning harm (usually). However, in an innovation scenario, where learning harm is detrimental to 
the aim, these trade-offs should generally be avoided. 
Simply averaging the decision maker's (DM's) preferences between learning harm and coordination benefit can 
oversimplify their intricate relationship. The connection may not be linear, and averaging might assume equal importance 
for both factors, potentially misrepresenting the DM's priorities. Learning harm and coordination benefit may operate on 
different scales, and an average might not respect this distinction. Also, the DM may hold different risk preferences for 
each factor, which an average wouldn't capture. A trade-off analysis using perspective reduction offers a more precise 
reflection of the DM's preferences. We also assume 100% allocation to one unit, ignoring hybrid solutions. 
The trade-offs illustrated in Figure 4 reflect the DM's preferences and can guide organizational design decisions. For 
instance, if the DM values "Coordination Benefit" over "Learning Harm", tasks could be allocated in a way that maximizes 
coordination, even at the expense of some learning opportunities. In a concrete organizational context, this could mean 
grouping together team members who work well together, thus improving coordination, even if it means that some team 
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members may have a steeper learning curve for their assigned tasks. Understanding these trade-offs can help strike an 
better balance between learning and coordination, tailored to the specific preferences and circumstances of the 
organization. 

Figure 5. Example of a question to capture knowledge interdependence 

To capture the relative importance of the types of interdependencies within the specific context of the DM, we need to 
establish an exchange rate between the different types of interdependence. Let the weighted average be expressed in 
equation (3) where wt and wk are the weights of task and knowledge interdependence: 

Weighted Average = (wt * It) + (wk * Ik) = � (𝑤𝑤𝑖𝑖 + 𝐼𝐼𝑖𝑖)𝑖𝑖=𝑠𝑠,𝑗𝑗  (3) 

To estimate these weights (i.e. the exchange rate), we can use a similar approach as presented earlier, based on part-worth 
utility before running the clustering algorithm with preceding post-processing adjustments. 

4 Summary and Conclusion 
Team-based Design Structure Matrices (DSMs) are used as a tool for capturing the interdependencies within an 
organization and identifying highly interdependent elements such as roles, which can then be grouped into clusters such 
as teams or departments to reduce coordination costs. However, the value of improved grouping or clustering is subject to 
assumptions made by organizational studies theories and the clustering algorithms used for this task. Therefore, it is 
uncertain how much benefit can be derived from grouping, such as increased productivity. So, there is a need to investigate 
the actual benefit of organization restructuring using DSM clustering approaches. In this paper, we have introduced the 
“net benefit” method from medicine to bring qualitative and quantitative criteria on the same scale and compare both the 
costs and benefits of alternative organizational structures.  

The proposal has several limitations. One significant limitation is our dependence on respondents possessing an adequate 
understanding of design criteria and the existing organization. Furthermore, it requires them to quantify the relative 
importance of coordination costs versus learning, expressed in percentage terms. While difficult, with adequate guidance 
and adequate preparation in advance it might be possible. Further, the pairwise comparison of attribute combinations adds 
complexity to the data gathering process. At the same time it allows for a more nuanced understanding of the trade-offs 
between different criteria. In practice, it requires the decision-maker (DM) to compare different combinations of attributes, 
but it does not necessarily imply that this must be done for all tasks related to the project. Instead, representative tasks or 
typical scenarios can be selected for this purpose, minimizing the data gathering burden while still capturing the essence 
of the decision-making context. The approach of estimating part-worth utilities from binary choice data using has 
limitations related to subjectivity, including limited sample size, lack of heterogeneity, limited generalizability, potential 
biases, and the influence of contextual factors. Finally, the approach can be challenging to validate, however, one way can 
be to test the model by presenting a group of experts with realistic vignettes/scenarios in an experimental setting, 
manipulating attribute levels in a controlled manner. 
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