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Abstract: Trends like digitalization, servitization and the ongoing globalization 

drive an ever more growing product complexity. To handle this challenge and to 

succeed on fast-paced markets, companies need to constantly model, organize, and 

improve their system architectures. This paper combines different approaches from 

the literature with specific needs of the industry partner. An overview of definitions 

and processes found in literature is the basis for deriving a generic framework that 

enables companies to implement a system architecture design process that builds the 

basis for further actions like risk management or the introduction of platform 

strategies. The main part of the framework is a guideline on how to ensure a 

comprehensive system architecture regardless of the amount of resources spent on 

the process. The framework is applied to different use cases of the industry partner 

at varying levels of complexity. 
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1 Introduction 

The necessity to deal with complexity increases with the rise of individualized products at 

mass scale, as pointed out by Fuchs and Golenhofen (2019). The choice of a system 

architecture is a strategic decision as pointed out by Ulrich (1995) and Maurer (2007), who 

consider it a key to addressing the aforementioned challenges. In this context, Crawley et 

al. (2016) underline that complexity is in itself neither good nor bad. Increasing efficiency 

of a product in response to ever-increasing demands comes with increased complexity. 

System architectures as the conceptual structure of a product or system can grow in 

iterations and become increasingly integral instead of modular (Fuchs and Golenhofen, 

2019). Maurer (2007) states, that even though products may implicitly have an architecture, 

it is common for the architecture not to be documented or explicitly known. This however 

is the basis for profiting from the potential architectures have for managing complexity 

(Weilkiens et al., 2015). Wise et al. (2015) show an example of possible consequences of 

non-explicitly documented architectures. They are tasked with re-architecting a legacy 

avionics system. Half of their process covers understanding the system’s undocumented 
architecture. 
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This paper presents a framework for system architecture design processes that offer means 

to validate a resulting system architecture. It is aimed at making it easier for companies to 

design and validate their system architectures. 

2 State of the Art and Research 

In the literature, there is no unified understanding of what an architecture in product 

development is. The INCOSE handbook describes the architecture as “the basic concept or 
properties of a system in its environment, realized through its elements, relationships and 

principles of design and development” (Walden et al., 2017). Marti (2007) argues, that the 

system architecture “consists of the structure of functionality, the structure of physical 

components, and the mapping from functionality to physical components”. This definition 
of system architecture is also found with Luzeaux and Wippler (2017) and Crawley et al. 

(2016). The latter definition has the advantage of being about what objects make up the 

system architecture, leaving out principles, which are hard to grasp. Following this 

definition, it is possible to determine, whether a system architecture is complete. A 

complete system architecture is made up of a functional architecture, being the structure of 

function, the physical architecture, being the structure of the physical elements also called 

“form”, and a mapping from function to form. As Crawley et al. (2016) point out; the 

transition from function to form is the transition from solution neutral to solution specific 

implementation. A solution and technology neutral functional architecture can be stable 

over product generations. The physical architecture can apply evolving technologies to 

carry out a certain function. This underlines the importance of the functional architecture: 

it brings stability without inhibiting innovation  (Fuchs and Golenhofen, 2019). 

According to Crawley et al. (2016), the physical architecture “includes the entities of form 
and the formal relationships among the entities.” The functional architecture is defined by 

Weilkiens et al. (2015) as an “architecture based on functional elements, functional 
interfaces and architecture decision”. This matches the definition of the physical 
architecture, except for architecture decisions. At this point a definition of function needs 

to be chosen, as a literature review by Erden et al. (2008) identifies as many as 17 possible 

definitions. This contribution will define a function according to Lindemann (2009) as “a 
purpose-oriented, solution-neutral relation between input and output, stated in form of an 

operation”. This means that “raising a temperature” is a function, while “raising a 
temperature in four seconds by 10 °C” is not. Architecture decisions account for such non-

functional requirements that are relevant for a functional architecture. 

To design architectures, the processes found in the literature focus on conveying an 

understanding of the architecture. The function-concept-form (FCF) paradigm as proposed 

by Crawley et al. (2016) is at the heart of the processes considered here, as it describes the 

basic approach behind the system architecture definition followed by this paper. An 

approach coming from design is function-behavior-structure (FBS) by Gero (1990). The 

FBS framework starts with the function from which an expected behavior is deducted. A 

structure is then designed to execute the expected behavior. Comparing the behavior of the 

structure to the expected behavior forms the basis for future iterations, resulting in the 

design. The expected behavior is planned, while the behavior of the structure is observed. 
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Luzeaux and Wippler (2017) propose the G3CF2B as seen in Figure 1, which combines 

the FCF paradigm with the FBS. G3CF2B stand for goal, capabilities, contexts, concept, 

form, expected behavior and emergent behavior, where the numbers reference how often 

the initial letter appears. It adds the behavioral aspects of FBS to the FCF. Increasing the 

applicability, it also models the goal, the context, and how they in turn influence the 

architecture. 

 

Figure 16: G3CF2B according to Luzeaux and Wippler (2017) 

3 Research Methods and Approaches 

The project was carried out according to the design research methodology proposed by 

Blessing and Chakrabarti (2009) as a type five project, going through the phases of research 

clarification, descriptive study I, prescriptive study and descriptive study II. The project 

focused on an assessment of the current situation at the industry partner, comparing it to 

the state of art and research. The research question was “How can a systematic approach 

for system architecture design be integrated into the product development process of an 

international climate solution company?” Matching an overview of the literature to the 
experiences of the industry partner resulted in the presented blueprint framework. Instead 

of identifying possible gaps of the process at the industry partner as a starting point, it was 

decided to focus on building a new blueprint, as no approach was found in literature to 

create processes for companies with different levels of resources that can ensure the 

resulting system architecture to be complete. 

Working with the industry partner provided the opportunity to implement parts of the 

blueprint as a case study, rather than working purely literature-based. The Viessmann 

Group is a family owned international climate solution company of more than 12,000 

employees around the world, producing climate solutions for applications ranging from 

domestic to industrial applications. The case study was carried out with a heating system 

for a single apartment, modeling parts of the software implementation, and the combustion 

and heating process. The case study focused exclusively on the step from the expected 

behavior to the functional architecture, as this was an area of interest for the industry 

partner. 
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4 Blueprint 

4.1 Common Understanding of the Blueprint 

In contrast to the generic processes found in literature, the blueprint is not a process 

designed to be implemented directly in the given form. As the name suggests, it is rather a 

template that must be filled out to derive a system architecture design process. It is flexible 

regarding the methods to be used, but offers guidelines on how to match the components. 

This aims at making it easier for companies to integrate the blueprint into existing 

development environments. It also serves to examine whether every aspect of the blueprint 

is covered in one way or another by the existing architectural processes of a company, 

potentially identifying gaps that may lead to problems handling complexity and avoid long 

rework cycles. The created artifacts also serve as documentation of the process. 

4.2 Overview 

An overview of the blueprint is shown in Figure 2. The grey area marks the core of the 

system architecture, consisting of functional architecture, concept and physical 

architecture. In addition, there is the behavioral aspect at the bottom, the initial goal on the 

left and the context of the system at the top. On the right-hand side, there are various 

optional follow-up actions. Large arrows indicate a suggestion for steps of the resulting 

process. Small arrows indicate control mechanisms. 

 

Figure 17: Overview of the blueprint 
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The basis for any application of the blueprint are context and goal. The context contains 

any information that is not part of the system but affects the system. This includes 

information on local laws, the company’s business model regarding the specific 
product/project, or information on environmental conditions in the area of deployment. 

This information will in turn be the basis for the requirements, which are part of the “goal”. 
The goal contains any information about what the product should do or be. Therefore, it 

encompasses the requirements engineering. Stating the goal from a customer’s perspective 
leaves room for the technical development side to not constrain the solution space too early. 

However, this must not omit other requirement sources such as regulations or special 

climate conditions. 

Based on the goal, an expected behavior is formulated at the interface of product 

management, representing the customer and/or the company, and the engineers responsible 

for the technical implementation. Explicitly modeling the expected behavior proved to be 

a key for effective discussion about the system. Both engineering and product management 

are discussing the same dynamic behavior of the system. Note that while architectures are 

strictly static, behavior is strictly dynamic (Lamm and Weilkiens, 2010). As in FBS, the 

emergent behavior is exhibited by the actual form of the system, be it as a simulation, a 

prototype in testing, or a product deployed in the field. Both behaviors must be modeled 

the same way or in compatible ways in order to compare them. Comparing a SysML act to 

an excel sheet of field data will not yield the desired insights. 

Building on the expected behavior, the functional architecture of the system is documented, 

an example of which is shown in the case study. The Functional Architecture for Systems 

method (FAS) by Weilkiens et al. (2015) has been chosen for the case study, but any 

method is applicable. FAS lists all steps of the behavior, translates them to functions and 

groups these functions. Based on the functional groups and the relations between the 

functions, the architecture is built. In an early phase, an architecture is likely to contain 

only desired functions. With increasing experience, awareness of undesired functions will 

increase, which must be included in the model. This is necessary to model change 

propagation. In this way, the functional architecture can support the knowledge 

management of a company. It is common for knowledge to amount over years of working 

experience and to be spread over multiple engineers. That way, the knowledge is 

susceptible to getting lost when an employee leaves the company. 

From the functional architecture, one or several concepts lead to one or several physical 

architectures. Applicable methods are proposed in VDI 2221 (1993). As with the behavior, 

both types of architecture must be modeled the same way in order to be comparable. A 

physical architecture executing the functional architecture can change over product 

generations, while the functional architecture remains stable (Crawley et al., 2016). The 

arrow from the physical architecture to the emergent behavior of the structure contains the 

product development process. This is an issue of both the FBS and the G3CF2B: there is 

no behavior of a structure without a structure, as pointed out by Galle (2009). It is to be 

noted that documenting all requirements itself can take an extensive effort. The same 

applies to documenting the architecture itself. FBS and G3CF2B do not discuss this gap in 

architecture design. An approach to avoid not getting any architectural results for years 

while developing new products could be to focus on the top-level architecture and to 
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increase the level of detail from there. That way, it is possible to deliver working results 

for the architecture before finishing the last part of the documentation. As incorporated by 

Schuh et al. (2007), the suggested framework also entails follow-up actions, seen on the 

right-hand side of Figure 2. Follow-up actions use the entire system architecture for 

purposes that are not necessarily part of the product development yielding emergent 

behavior. These actions can include variant management, change management, risk 

management approaches like FMEA, or any action, that makes use of the system 

architecture besides product development itself. The list can be extended as necessary for 

a given application. 

4.3 Control Mechanisms – Validating the Architectures 

The thin arrows in Figure 2 mark the three control mechanisms of the blueprint. They are 

an essential feature and enable companies to validate existing or new system architectures 

at various points in the process. As has been stated previously, being able to compare the 

expected behavior to the behavior of the structure may take years of development and is 

not advisable as the only means of validating the architecture. Both control mechanism I 

and control mechanism II can be applied before that. Control mechanism I is a direct 

comparison of the functional and the physical architecture. Therefore, they must be 

modeled the same way. Expected differences in the matrices arise from the more stable 

functional architecture having a higher level of abstraction. Components might be related 

through physical structures that have no functional relation. Differences can be found by 

direct comparison of the two matrices, either through visual inspection or through a 

program, and rated by engineers. In case of critical differences, the concept must be 

adapted. This cycle can happen before any technical development has started. 

Control mechanism II is comparing the physical architecture(s) to the context. This 

mechanism is useful to avoid concepts that are unsuitable for the business plan. An example 

from the climate solutions industry would be a heating system burning oil, aimed at a 

market in which such heating systems will not be allowed for sale within five years of start 

of production. In this case, the context can be documented as a fact sheet covering the 

market, which includes the deadline for a certain type of heating system. If the project 

yields a positive net outcome before that, it may be worth pursuing the architecture. 

Otherwise, it is better to abandon the architecture before more effort is spent on it. Other 

applications are the test for environmental conditions or the suitability for markets, 

considering that norms may differ strongly between markets. 

Control mechanism III is feasible as soon as an emergent behavior has been observed and 

modeled in a way that can be compared to the expected behavior. This can take a 

considerable amount of time, hence the importance of control mechanisms I and II. In 

analogy to control mechanism I, control mechanism III directly compares the two sets of 

behaviors. Such differences might be e.g. unanticipated vibrations, causing inacceptable 

noise. Effects originating from physical links can be hard to anticipate without prototypes 

and will therefore need to be added to the functional architecture as knowledge increases 

with experience. Differences are evaluated based on their criticality for the product’s 
functionality. A new iteration of architecture development is started according the origin 

of any critical difference. It is therefore advisable to generate real behavior early in the 

development process. 
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4.4 Handling Obstacles during the Implementation 

Development does not stop for an existing architecture to be documented and optimized. 

Experience also shows that resources for this effort can be limited, due to economic 

constraints. The blueprint explicitly does not require certain tools to be used, only that in 

accordance with the control mechanisms certain tools and methods must match. An 

example is the use of the same method of modeling for both the functional and the physical 

architecture. The first step in any application of the blueprint is the 

modeling/documentation of the context and the goal. Without either one, one is unable to 

verify an architecture, as there is no explicit right or wrong. For products based on primary 

values (Crawley et al., 2016), which are the values the product exists for, the 

documentation can be accounted for by knowledge among experienced engineers. With 

increasing relevance of secondary values, this becomes infeasible. Tools must be chosen 

for each step of the blueprint, which can in the most lightweight example be “talk about it 

and draw a model on paper”. Most companies may already have tools in place for various 

steps that need to be considered when deciding on other tools. Figure 2 offers examples 

deemed suitable by the authors but cannot provide an exhaustive list of tools and methods. 

5 Case Study 

The case study focuses on the step from the expected behavior to the functional 

architecture. The limitation of scope is due to the process currently being implemented at 

the industry partner. A number of case studies have been carried out covering three 

software functions, two physical processes, and the combination of a software function and 

a physical process shown here. The FAS method has been chosen for implementation. 

While Weilkiens et al. (2015) suggest SysML, MDMs were chosen for the case study to 

handle the large amount of information. Both methods are possible; the blueprint does not 

restrict itself to one or the other. Figure 3 shows the behavior in a flow oriented functional 

model (Lindemann, 2016). The model shows both the user interaction on the left and the 

combustion process on the right side, covering each intermediary condition. For modelling 

programs, this decreases the overview. The conditions assist in understanding physical 

processes. The modelling approach allows the processes to be modelled together, allowing 

a faster understanding of process interfaces. Note that all aspects are functional, without 

explicit modelling of physical elements or interfaces. 

 

Figure 18: Flow Oriented Functional Modeling of the Combustion and the User Interface 
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Figure 4 shows the functional architecture derived from the behavioral model in Figure 3, 

where each cell that contains an “X” is a link between two functions of Figure 3. The matrix 

allows for compact overview and an integration into database entries, which is important 

as that data set grows in size. 

 

Figure 19: Functional architecture 

The two processes, user interaction and combustion, are marked with red boxes. The red 

circle in Figure 4 marks the single interface in the middle of Figure 3. It shows how this 
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available only in text form without enumeration. This way it is not possible to clearly 

separate requirements and assign them to functions. The gray area marks functions that are 

beyond the product scope. With the whole product contained in the scope, these would be 

for example functions of the user in interacting with the product. 

The case study focused the internal functionality of the heating system regarding the user 

interaction and the combustion process. The case study contained five functions, two of 

which are marked in Figure 4. All functions were completed and deployed at the time of 

the case study. Data was collected through internal documentation and interviews with 

developers and managers at the industry partner. 
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6 Conclusion  

6.1 Discussion and Limitations 

The blueprint presented in this paper offers a flexible approach, adaptable to various levels 

of available resources. Parts of the blueprint were implemented at the industry partner, 

verifying the applicability of the implemented aspects. However, it was not possible to 

determine the applicability of the three control mechanisms presented in the blueprint. A 

complete implementation of the blueprint was not possible due to time constraints. The 

results of this research form the basis for the definition of the architecture process at the 

industry partner, which is currently happening. The results are also used in the structuring 

of the PLM system of the industrial partner. The industrial partner highlights benefits 

regarding the control mechanisms of the blueprint and the ability to trace requirements 

impacting architectural aspects by using the green area shown in Figure 4. 

The blueprint itself has limitations regarding the speed of implementation at a company. 

After determining potential gaps in the existing process and deciding on appropriate 

methods, it can take years for a company to document the existing architecture, while new 

products with the old architecture are still being developed. An approach can be to strictly 

focus on first documenting and modeling the top-level architecture before expanding the 

level of detail. That way, new products can benefit from early results. At the same time, it 

leaves the work of detailing to product development, which itself can result in rework 

cycles and increased development time. However, early results from the architectural 

process already proved to be a valuable support for discussing interfaces among other 

things. 

6.2 Outlook 

To verify the applicability of the entire blueprint and the control mechanisms, an 

implementation on a product scale is necessary. For this, software tools must be identified 

that fulfill the modelling needs and which are suitable for a product development 

environment. Questions about the distribution of responsibility across roles such as system 

architect and product manager remain to be answered in future projects. Implementations 

with different amounts of resources in terms of capacity and money would give insight into 

the scalability of the framework. Using the DSMs and e.g. triangulation for decreasing the 

required modeling time and optimizing architectures is another field of interest. 

Beyond that, further investigating desirable methods for modeling, especially in terms of 

behavior and architecture is a field of interest. This may take into account novel approaches 

such as the Elephant Specification Language by Wilschut (2018). The ability for these 

models to serve the knowledge management of a company through generations of products 

and architectures is yet to be determined. 
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