
 31. DfX-Symposium 2020

© 2020 the authors | https://doi.org/10.35199/dfx2020.18

Linking a game-engine with CAD-software to create a flexible
platform for researching extended reality interfaces for the
industrial design process

Jakob Har lan 1*, Benjamin Schleich 1 , Sandro Wartzack 1

1 Engineering Design, Friedrich-Alexander-Universität Erlangen-Nürnberg

* Corresponding author:
Jakob Harlan
Lehrstuhl für Konstruktionstechnik KTmfk
Martensstraße 9
91058 Erlangen
Telefon: +49 (0)9131/85-23659
Mail: harlan@mfk.fau.de

Abstract

Driven by the need to develop highly complex products in short
development cycles, many companies are aiming at fully
digitized design workflows and continuous data and information
flow. XR-interfaces can extend current CAD-functionality to allow
the usage of CAD-data in more stages of the product design
process. In this paper, a platform linking a game-engine and
CAD-software to efficiently explore XR-CAD Interfaces is
presented. An architecture meeting the requirements of research
environments is designed and implemented using the unreal
engine and Siemens NX. The proposed system allows to
efficiently explore interfaces for design sketch creation using
different hardware setups.

Keywords

Virtual Reality, Extended Reality, Computer-Aided-Design, Natural-
User-Interface

170

1. Motivation

Driven by the need to develop highly complex products in short development cycles, many

companies are aiming at fully digitized design workflows and continuous data and information

flow. This is because such digital design workflows offer advantages, such as the minimized

need for data transformation and increased data traceability. However, current authoring tools

and computer-aided design (CAD) software are not practical for all stages of the product

development process. Particularly in the early phases, where different designs are explored

and the detailed shapes are still in discussion, the precise and concrete nature of CAD software

hinders progress. For this reason, product designers rely on more rapid and flexible tools like

hand drawings. However, extended reality (XR) interfaces, which are all interfaces using

virtual, mixed, or augmented reality, can extend the functionalities of CAD software.

Advantages of XR-CAD interfaces can range from easier access for inexperienced users,

faster interactions, improved size perception to simply a more compelling experience [1–3].

While the idea of combining XR and CAD is not new [1], to this day CAD-software makes

little use of XR’s capabilities. Tough most of the commercial products have a virtual reality (VR)

visualization mode, none use the added in- and output possibilities of modern XR hardware to

their full potential. Especially the creation and manipulation of geometric data is not supported

well.

However, the development of new XR-CAD interfaces is a complex task. Researchers have

to understand the needs of product developers and have enough knowledge of human-

computer-interaction and XR computer graphics to implement and evaluate their approaches.

To overcome these challenges, modern game engines are the perfect starting point to develop

a platform for exploring XR-CAD interfaces as they encapsulate many useful features. They

provide state-of-the-art rendering technology, support a large range of in- and output devices,

and interactive editors. Widespread engines additionally have great amounts of resources for

learning and problem solving available. Motivated by this, this paper presents a flexible

platform, combining a CAD-software with a game engine, for researching XR-CAD interfaces

and its usage in a current research application (see Figure 1).

Figure 1: Overview of the platform connecting a CAD System with a Game Engine

171

2. Related Work and Research Problem

This section provides an overview of related scientific work and is split into three parts. In

subsection, 2.1 works towards the integration of VR and CAD are presented. Special attention

is given to the used technical implementation. The following subsection 2.2 describes in which

ways other research fields have used game engines to their advantage. The last but one

subsection 2.3 summarizes some recent publications using combinations of CAD software and

game engines for different tasks in product design, while the last subsection highlights the

research problem and target.

2.1. CAD in XR

One of the first publications bringing VR and CAD together is from 1999 when Julien Berta

presented Dassault System’s approach for integrating VR and CAD in [1]. He compares both

technologies to reveal their differences. While both use 3D geometry data, they employ

different formats for their specific use cases. Additionally, CAD engines were not capable of

real-time interactions, which is essential for VR. Also, he identifies the difference between the

used in- and output. CAD relied on a classic mouse, keyboard and monitor interface, VR

offered stereoscopic displays with gloves and motion trackers for user input. He shows how

these differences were overcome by integrating VR technologies into the core of the Catia

CAD software.

Patrick Bourdot and his team have contributed immensely to the CAD in VR research. In

2010 they presented the VRAD (Virtual Reality Aided Design) prototype [3]. It was based on

the OpenCASCADE geometric kernel and was later adapted to use CATIA [4]. The system

utilized the device management and visualization system EVI3d, which was developed in the

same research facility earlier. They were able to use a naming technique to connect the B-Rep

data to the parameterized CAD features. Based on this they developed interactions directly

changing the underlining geometric parameters.

In recent years driven by the rise of affordable consumer VR hardware, a lot more research

on how VR can be used in product development has been conducted. For example, Fechter

et al. worked on natural-user-interfaces for interacting with CAD data. They used consumer-

grade visual body-, hand- and finger-tracking as input-devices to research intuitive interfaces

for different product development tasks. They created a custom framework combining Leap

Motion SDK, Oculus SDK, Nvidia PhysiX, Open Scene Graph, and Ansys SpaceClaim to

prototype and evaluate their developed interactions [5]. First assembly modeling was

implemented [2] and recently design sketch creation was explored [6].

All these presented developments used custom implementations for the VR interaction

frameworks. By using the specific APIs, this approach will give the researchers the most

freedom. However, changing the hardware setup or the used CAD-system will require

substantial implementation effort. Additionally, new contributors will need a long familiarization

period.

2.2. Game engine usage in research

Using game engines for research is not a novel idea. In 2002, the Communications of the

ACM published a special issue motivating the usage of game engines for scientific research

[7]. While the practical tips on choosing and licensing an engine are outdated, the principle still

holds. A game engine can provide state-of-the-art 3D rendering and interaction features with

little effort. An early example is the research of Shiratuddin and Thabet, who used a precursor

of the unreal engine for virtual office building walkthroughs [8].

As game engines developed and became more flexible, more researchers used their

potential. For instance, in 2007 Carpin et al. presented a robot simulator based on the unreal

172

engine 2.0 [9], and in 2009 Indraprastha and Shinozaki investigated using unity3D in urban

design studies [10].

Today, two engines dominate the market for both game and general-purpose applications:

Unity3D [11] and Unreal Engine 4.0 [12]. Lv et al. shared their experience with rebuilding a

specialized tool for molecular visualization with Unity3D [13]. They remarked the good

performance, ease of development, the large number of target platforms, and community-

driven support.

2.3. CAD and Game Engines

In contrast to other scientific fields, research in product development has just recently

started to use the benefits of game engines.

This year, Pereira and Ellman presented a framework to transform a CAD model into a

physics-based prototype simulated in Unity3D [14]. By using the software from AGX Dynamics

to both define the physics in SpaceClaim and simulate the model in Unity3D, they were able

to transform a harvester CAD Model in just two workdays into a simulated model with VR

interactions.

Ekströmer et al. used the Unreal Engine’s extensive real-time lighting features to support

automotive designers to develop car lamps [15]. Exterior and interior light designs were

developed and evaluated with and without the usage of VR. By utilizing an expert evaluation

they concluded that game engines can help with design ideation in the early stages of the

design process.

Feeman et al. developed a VR-CAD modeling application by connecting Autodesk Inventor

and the now discontinued Autodesk Stringray game-engine via text-based network

communication [16]. They studied how the modeling process of simple objects and the

resulting models diverge between a classic CAD environment and the developed VR-CAD

modeling application.

2.4. Research problem and target

The efficient exploration of novel XR-CAD interfaces requires a platform that is capable of

performing CAD operations as well as supports quick, accessible development for the whole

range of XR devices. However, there is no tool meeting these requirements singlehandedly.

As mentioned in section 2.1, using a custom framework connecting the devices' and

program's APIs will provide maximum flexibility at the cost of implementation effort and code

complexity. That complexity will lead to long familiarization periods for new students and

researchers. Motivated by these shortcomings and the growing interest in coupling game

engines with CAD software as highlighted in section 2.3, this work tries to answer the question:

How should a research platform supporting a wide range of XR hardware and CAD tasks be

designed? In this context, the aim is not the development of a production-ready application,

but to provide a platform enabling quick iterations for researching novel XR interactions, which

is also usable for students and researchers.

3. Used methods and approaches

Combining CAD-software with a game engine brings together all features necessary for a

XR-CAD Platform. The CAD-tool provides geometric data management as well as all

necessary operations to modify the data. It also enables loading and saving widespread CAD

data formats. The game engine comes with everything needed for XR Interface development.

This being extensive rendering capabilities, a wide spectrum of supported input and output

devices, an editor for interactive development, and many resources for user support. While

designing the software architecture the aim was to keep the system’s core as independent

173

from the environment as possible. This eases changing the setup without major revisions.

Therefore, both the communications to the CAD-software and the input handling are handled

by separate modules. Without the loss of generality, for this work, an unreal engine [12]

application that accesses the CAD functionality of Siemens NX [17] via the NXOpen c++ API

[18] was created. While these choices are the best fitting for us, an adaptation of the developed

architecture to other game engines and CAD-systems should be possible.

4. Software Architecture

Figure 2: Software architecture with the three main modules: CAD Connection, Model, and Controller.

The platform is a game engine project and implemented using mostly c++. The unreal

engine provides a visual scripting system called Blueprints which is also used. As mentioned

in section 3, the project is split into three major modules: CAD connection, Model, and

Controller. The responsibilities and functions of each will be summarized in the following

subsections. While the CAD connection is written only in c++, the model and controller classes

have Blueprint representations. This allows users to use large parts of the platform without

knowledge of the complex programming language c++.

4.1. Model

The central module of the platform, model, is responsible for the geometric data and located

in the center of Figure 2. The two main classes, Part and Body, are the engine-site

representation of the CAD geometry. Both are derived from build-in engine classes and inherit

many useful features.

The Part class describes the whole geometric model and uses the engines actor class as

its parent. As an actor, the Part can be placed in the engine’s scene with a transformation

allowing it to be translated, rotated, and scaled. A Part can contain any number of instances

of the Body Class. The Body class is derived from an actor component class. By being a scene

component, it can be attached to an actor in the engine’s scene and has a relative transform

to that actor. The specific class it is derived from is called “ProceduralMeshComponent” which

allows loading and reloading triangle mesh data at runtime, which is necessary to update the

174

CAD geometry data. This composition of bodies and parts allows the engine to automatically

render the geometry data as well as provide collision and picking capabilities for the models.

This setup would be possible in other game engines as well. For example, in Unity 3D [11],

the part would be a GameObject and the body a MeshComponent.

Besides representing the geometry, the model module also provides the operations to

modify that data. In the current state of the platform methods of constructive solid geometry

are implemented. These include the addition of primitive bodies such as blocks, spheres, and

cylinders, removal of a body, moving a body, copying a body, and combining bodies through

boolean operations. Also, some operations not performing directly on the geometry like undo,

loading, and storing part files are available. Most operations concern the underlying cad data

and those are issued to the CAD Connection module which is described in the next section.

4.2. CAD Connection

Shown on the left of Figure 2 is the CAD Connection module. This module is responsible

for all communications to the CAD software. This allows for all API specific code to be in one

place and would ease changing the used CAD program. The module starts and holds the CAD

program session without opening a window. By being modeled as a singleton, this guarantees

that always exactly one CAD session is active and can be used.

When the model module issues operations to the CAD Connection, it internally translates

the operations and parameters appropriately for the CAD API. Afterward, new or changed

bodies are reloaded. To load a body's geometry into the engine, first, the CAD software’s

tessellation is used to create a triangle mesh from the parametric geometry. Next, the data is

marshaled into the engine format and then a new body can be created or an existing one’s

geometry updated. For the operations to be performed on the correct bodies a unique identifier

provided by the CAD software is used to connect the CAD-side and engine-side

representations.

Additionally, the CAD Connection is responsible for the data persistence, meaning it issues

loading and saving of the CAD files.

4.3. Controller

The last module is the controller, shown on the right of Figure 2. It collects all inputs and

decides which operations are executed. Currently used inputs are the positional tracking data

from head-mounted-displays, finger-respectively hand-tracking data, and keyboard strokes.

Introducing further inputs such as handheld controllers would be easy, as the engine provides

everything necessary.

Driven by the input data, the controller uses the in-engine collision mechanics to detect

which object is interacted with. Currently, the collisions of the user's fingertips with the bodies

and a menu are detected.

Using a state machine, the user input and the collision data is interpreted into actions. The

state machine ensures that only intended operations are possible in every given moment. For

example, while a body is grabbed and moved it should not be possible to simultaneously issue

a deletion command. Operations acting on the CAD geometry are forwarded to the model

module.

The controller and specifically the interaction state machine is the main region where new

interactions are developed, given that the necessary CAD-operations are implemented. An

exemplary state machine used for the creation of design sketches from primitive bodies can

be found in Figure 4.

175

4.4. Call sequence

The sequence diagram in Figure 3 summarizes the call sequence and information flow in

the developed platform. It shows the processes necessary when a Boolean operation is

executed. Parts of this example are specific to the application presented in section 0. First, on

the far right, the user’s hand movement is picked up by an optical sensor. The Controller uses

the input data to detect a tapping gesture and uses the engine's capabilities to detect which

bodies the fingertip is colliding with. When the second body is tapped, the Controller issues a

Boolean operation command on the Part object including the information which bodies and

which Boolean operator were selected. The Part is now responsible to forward the operation

to the CAD Connection. The CAD Connection, in turn, uses the bodies’ identifiers to create the

API calls. The CAD software executes the operation, updates its internal model, and

tessellations of all changed and newly created bodies are acquired. These B-rep models are

marshaled from the cad’s to the engine’s data format and are then used to create new bodies.

If the operation was successful the new bodies are registered in the engine scene and the old

ones deleted. This whole process is done within one frame and in the next frame, the user

sees the new models rendered by the engine.

Figure 3: Exemplary sequence diagram showing the call sequence of a Boolean operation.

176

5. Application and Benefits in Research

The developed platform is currently used to research hand-tracking based natural-user-

interfaces for design sketch creation in VR. The research's first goal is to find natural

interactions best suitable for the task and later we aim to evaluate the developed interface

against traditional design sketch methods like hand drawings.

The developed interface uses hand and finger gestures to create and modify primitive

geometric building blocks. Cuboids, cylinders, and spheres with custom dimensions can be

created with a simple gesture. The bodies can be grabbed for transformation and boolean

operations allow further edits on the bodies, similar to constructive solid geometry.

Screenshots of this application showing the possible operations are shown in the visualization

of the state machine in Figure 4.

Figure 4: State machine in our research application: Natural interface for design sketch creation. The Smartpin

interaction is used for precise movement [19].

177

The platform presented in this paper eases the development of these interactions

significantly. It allows us to use different workstations with varying hardware. Currently,

workstations equipped with the Oculus Rift, the HTC Vive Pro, and normal desktop monitors,

all using a Leap Motion Sensor are in use. The vast amount of online resources helping with

unreal engine development and the visual programming langue blueprints made it possible for

students without computer-science background to contribute. The engine-based development

should also help us to test the design sketch creation and develop new interactions on other

display options, for example, an AR-Headset like the HoloLens 2 or a power-wall setup.

6. Discussion

In this paper, we have presented a flexible and extensible platform for developing XR-CAD

interfaces by connecting a game engine to cad software. The application in our current

research shows its suitability for developing interfaces for design sketch creation. We are

convinced that extensions to the platform, following the proposed design principles, would

allow it to be used for further research into applications of XR in other product-development

tasks.

Possible extensions could include more inputs, outputs, sounds, physics, environments,

and CAD features.

Danksagung

The authors thank the German Research Foundation for funding this research under grant

number WA 2913/34-1.

Literaturverzeichnis

[1] BERTA, J.: Integrating VR and CAD. In: IEEE Computer Graphics and Applications Bd. 19 (1999), Nr. 5,
S. 14–19

[2] FECHTER, M. ; WARTZACK, S.: Natural Finger Interaction for CAD Assembly Modeling. In: ASME (Hrsg.):
ASME 2017 International Design Engineering Technical Conferences and Computers and Information in
Engineering Conference, Volume 1: 37th Computers and Information in Engineering Conference, 2017
— ISBN 978-0-7918-5811-0, S. V001T02A041

[3] BOURDOT, P. ; CONVARD, T. ; PICON, F. ; AMMI, M. ; TOURAINE, D. ; VÉZIEN, J.-M.: VR–CAD integration:
Multimodal immersive interaction and advanced haptic paradigms for implicit edition of CAD models. In:
Computer-Aided Design Bd. 42 (2010), Nr. 5, S. 445–461

[4] MARTIN, P. ; MASFRAND, S. ; OKUYA, Y. ; BOURDOT, P.: A VR-CAD Data Model for Immersive Design. In: DE

PAOLIS, L. T. ; BOURDOT, P. ; MONGELLI, A. (Hrsg.): Augmented Reality, Virtual Reality, and Computer
Graphics. Bd. 10324. Cham : Springer International Publishing, 2017 — ISBN 978-3-319-60921-8,
S. 222–241

[5] FECHTER, M. ; WARTZACK, S.: Konzept für ein VR-System zur intuitiven Modellierung durch natürliche
Interaktion. In: STELZER, R. (Hrsg.): Beiträge zur virtuellen Produktentwicklung und Konstruktionstechnik :
TUDpress, 2016 — ISBN 978-3-95908-062-0, S. 561–570

[6] FECHTER, M. ; SCHLEICH, B. ; WARTZACK, S.: CAD-Gestaltmodellierung in VR für die frühe Entwurfsphase.
In: Konstruktion Bd. 72 (2020), S. 69–74

[7] LEWIS, M. ; JACOBSON, J.: Introduction. In: Communications of the ACM Bd. 45 (2002), Nr. 1
[8] SHIRATUDDIN, M. F. ; THABET, W.: Virtual Office Walkthrough Using a 3D Game Engine. In: International

Journal of Design Computing Bd. 4 (2002), S. 4
[9] CARPIN, S. ; LEWIS, M. ; WANG, J. ; BALAKIRSKY, S. ; SCRAPPER, C.: USARSim: a robot simulator for research

and education. In: Proceedings 2007 IEEE International Conference on Robotics and Automation, 2007,
S. 1400–1405

[10] INDRAPRASTHA, A. ; SHINOZAKI, M.: The Investigation on Using Unity3D Game Engine in Urban Design
Study. In: Journal of ICT Research and Applications Bd. 3 (2009), Nr. 1, S. 1-18–18

[11] UNITY: Unity Real-Time Development Platform | 3D, 2D VR & AR Visualizations. URL https://unity.com/. -
abgerufen am 2020-06-18

[12] Unreal Engine | The most powerful real-time 3D creation platform. URL https://www.unrealengine.com/en-
US/. - abgerufen am 2020-06-18. — Unreal Engine

[13] LV, Z. ; TEK, A. ; DA SILVA, F. ; EMPEREUR-MOT, C. ; CHAVENT, M. ; BAADEN, M.: Game On, Science - How
Video Game Technology May Help Biologists Tackle Visualization Challenges. In: PLoS ONE Bd. 8 (2013),
Nr. 3

178

[14] PEREIRA, J. G. ; ELLMAN, A.: FROM CAD TO PHYSICS-BASED DIGITAL TWIN: FRAMEWORK FOR
REAL-TIME SIMULATION OF VIRTUAL PROTOTYPES. In: Proceedings of the Design Society: DESIGN
Conference Bd. 1 (2020), S. 335–344

[15] EKSTRÖMER, P. ; WEVER, R. ; ANDERSSON, P. ; JÖNSSON, J.: Shedding Light on Game Engines and Virtual
Reality for Design Ideation. In: Proceedings of the Design Society: International Conference on
Engineering Design Bd. 1 (2019), Nr. 1, S. 2003–2010

[16] FEEMAN, S. M. ; WRIGHT, L. B. ; SALMON, J. L.: Exploration and evaluation of CAD modeling in virtual reality.
In: Computer-Aided Design and Applications Bd. 15 (2018), Nr. 6, S. 892–904

[17] NX. URL https://www.plm.automation.siemens.com/global/en/products/nx/. - abgerufen am 2020-06-18.

— Siemens Digital Industries Software
[18] NX Open C++ Reference Guide: Main Page. URL

https://docs.plm.automation.siemens.com/data_services/resources/nx/10/nx_api/en_US/custom/open_c
++_ref/index.html. - abgerufen am 2020-06-18

[19] CAPUTO, F. M. ; EMPORIO, M. ; GIACHETTI, A.: The Smart Pin: A Novel Object Manipulation Technique for
Immersive Virtual Environments. In: Proceedings of the 23rd ACM Symposium on Virtual Reality Software
and Technology, VRST ’17. New York, NY, USA : ACM, 2017 — ISBN 978-1-4503-5548-3, S. 89:1–89:2

