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Abstract 

Aircrafts are fitted with a new cabin every five to seven years. Because each 
individual aircraft is slightly modified during its life span, detailed information 

to be used during the design of the cabin are rarely available. Therefore, many 
conflicts between the cabin and the aircraft's body arise during the actual con-

version. While modern technologies, like 3D-scanners, are becoming more 
common, their comfortable use within the CAD-Workflow is often not possible 

or require extensive processing and additional work. This paper presents an 

approach, integrated into the CAD-workflow, to directly use pointclouds pro-
vided by 3D-scans of aircrafts to identify possible conflicts with the cabin al-

ready during its design-phase by performing a clash-analysis between the 

points and the CAD-solids. 

Keywords: Aircraft Cabin Conversion, 3D-Scans, Clash Analysis, CAD vs point-
cloud 
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1 Motivation 

In modern aviation, about every five to seven years an aircraft is refitted 
with a new cabin interior. Prior to the actual refitting, the new cabin will be 

designed but the planning data for the design often lacks digital 3D models and 
is limited to 2D drawings. In many cases the design is only based on general 

available data about the type of aircraft and detailed information about the 
specific aircraft are missing. As a result, the information used for the design 

will not necessarily match those of each of the single aircrafts. Thus, during the 

actual conversion on-site, much time is spent on adapting the designed cabin 
to the actual structure of the aircraft’s body. To shorten the time spent on 

ground, a new way of determining these conflicts even before the aircraft ar-

rives at the facility is needed. 

2 Research Problem und Research Aim 

To gather detailed information about the structure of an aircraft a multitude 

of measurements with state-of-the-art 3D scanning devices is possible. 3D-
Scanners can generate an accurate digital model, in the form of a dataset of 

thousands of single points. As already has been shown [1], scanning aircraft 

cabins result in detailed information that are usable for 3D-CAD-operations. 

A test of different CAD-Software has shown, that functions for clash-analy-

sis are already included in many of them. An assembly consisting of the de-
signed aircraft-cabin and the dataset from the 3D-Scanner could show conflicts 

that otherwise would just be shown during the actual refitting. Nevertheless, 
currently these analyses are not able to process pointclouds but rely on fully 

defined CAD-solids. The pointclouds would have to be enhanced to solids, 
which is generally possible, but especially in case of aircraft-scans requires 

manual interaction and a lot of computing power and is for this application not 

feasible (Figure 1). Using additional knowledge about the structure during this 
process, the enhanced CAD-data will represent a more detailed model of the 

aircraft. However, depending on the algorithms used for these operations, 

other details may be lost for example due to interpolations.   
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Figure 1: Sate-of-the-art and provided workflow of performing a virtual clash 

analysis (VCA) using pointclouds and solids 

The virtual clash-analysis can also be done between the cabin’s 3D-CAD-

solid and a pointcloud or surface-model of the aircraft’s body. In current re-
searches, approaches to analyse a set of pointclouds can be found. Albeit, the 

combination of 3D-solid and pointcloud seems to be fairly new. This is espe-

cially true, regarding the convenient usage within CAD-environments. Never-
theless, using pointclouds instead of surface models or solids may lead to a 

possible less detailed representation of the aircraft, depending on the density 
of the pointcloud produced by the 3D-scanner. For further analyses a recon-

struction of selected local areas of the pointcloud may also be possible. 

This paper presents a new approach to perform a clash-analysis between 

CAD-solids and pointcloud-datasets within a CAD-environment, that can be 

generated by a 3D-Scanner without the need of extensive preparations of these 
datasets. Another approach using the surface model of the aircraft to perform 

the clash analysis is currently in the works, yet, the presented approach focuses 
on the usage of pointcloud-datasets. The state-of-the-art workflow as well as 

the two described adaptions are visualised in Figure 1.  

The clash-analysis itself will be complemented with tools to directly use the 
detected interferences to adapt the CAD-construction, thus, preventing the 

subsequent occurrence of these interferences. The objective is to provide an 
integrated tool that can assist not only to identify these interferences but also 
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allow for the adaption of affected components based on the analysis-results 

directly from within the user interface (UI) of the CAD environment. 

3 Methodical Approach 

Considering the basic task of performing a clash-analysis between a point-
cloud and CAD-solid, the processing results in the repeated geometric task to 

determine whether a single 3D-point is within a closed polyhedron or not. This 
process needs to be repeated for every point and every solid. The mathematical 

approach used for this task as well as the approach to implement it into CAD-

environments are described in the following chapters. 

3.1 Mathematical Approach 

In two-dimensional geometrics, the task to determine whether a point lies 

within a closed area is also known as the point-in-polygon-analysis and occurs 
in many computing situations. Therefore, different approaches to solve the task 

were already established [2].  

3.1.1 Point in Polygon Tests using the Ray-Casting-Method 

The ray-casting-method is a well-established procedure to perform a 2D 
point-in-polygon-test. The premise to use this method is that the polygon’s 

boundary is a closed Jordan Curve as defined in the Jordan Curve Theorem 
[3][4]. Based on this premise, a semi-infinite ray starting at the test-point is 

casted in an arbitrary direction. Whenever this ray hits the boundary of the 
polygon a counter 𝑖 is incremented. This counter 𝑖 can attain the following 

values: 

𝑖 {

0
2𝑛         | 𝑛 ∈ 𝑁
2𝑛 + 1 | 𝑛 ∈ 𝑁

∞

 

Following the value of 𝑖 can be used to determine whether the test-point 

lies within the polygon or not: In case the ray never intersects the polygon, the 

test-point is positioned outside of the polygon. The same applies whenever 
there is an even number of intersections, because the ray enters and leaves 

the polygon a number of times. On the contrary, whenever there is an odd 

number of intersections, the test-point lies inside of the polygon. In case the 
test-point lies directly on the polygon’s boundary, an infinite number of inter-

sections can be found [3]. In Figure 2 a 2D-polygon is shown next to a 3D-
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polyhedron. Additionally, several test-points are added to both objects. Starting 
from these test-points the ray-casting-method is visualised using arrows indi-

cating the ray-direction as well as crosses indicating the intersection with the 

object’s boundary. 

 

Figure 2: Visualisation of the ray-casting-method in 2D and 3D 

As a 3D-object has no simple equivalent to a Jordan Curve that is applicable 

to this theorem, this previously described method cannot be applied to 3D-

polyhedra in general. At the present moment, no equivalent methods to be 
used in 3D are known. However, the basic steps of this method can be adapted. 

Similar to a Jordan Curve that defines an object with a closed boundary in 2D, 
a 3D-CAD-solid can be described as an homogenic object that has a fully de-

fined, closed boundary allowing for a differentiation between inside and out-

side [5]. Using this approach, the 2D point-in-polygon-analysis using the Ray-

Casting-method can be adapted to a 3D point-in-polyhedron-analysis. 

A 3D-polyhedron consists of faces, edges and vertices. Again, the ray is 
casted from the 3D-testpoint in an arbitrary direction. In case the test-point lies 

within the polyhedron, the casted ray needs to cross at least one of the previ-
ously named boundary-types once. Whether the ray intersects a specific face 

of the polyhedron can be determined by testing if the test-point can be pro-

jected onto the face along the ray. If the projection P’ of the test-point P along 
the ray R, 𝑃′ ∈ 𝑅, lies on the face F, 𝑃′ ∈ 𝐹, an intersection was found. In the 

rare case that the ray does not intersect a face but rather an edge or vertex of 

the polyhedron, additional tests are required. These tests are needed to deter-
mine if the ray enters or leaves the polyhedron via this edge or vertex, and 

thus, the counter needs to be incremented, or if the ray only scrapes the edge 
or vertex without entering or leaving the body. This can easily be done by 

performing additional ray-casting tests with temporary test-points directly be-

fore and after the determined projected point P’ along the ray. If the results of 
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these two test-points differ, the polyhedron’s boundary is crossed and the coun-

ter needs to be incremented. 

3.1.2 Optimisation using an Octree-Structure 

As standard pointclouds usually do not store the points in a known struc-
tured way but rather simply store the coordinates for each point, this procedure 

theoretically needs to be done for each single point of the pointcloud. Even if 
one point is known to not be interfering, there is no way of eliminating other 

points without testing them each individually.  

To speed up this process the algorithm was enhanced by structuring oper-
ations, that allow the premature exclusion of complete areas of the pointcloud. 

This is realised by clustering the points of the pointcloud into neighbourhoods. 
By splitting this sub-area into smaller and smaller boxes, a tree structure is 

created. Because each split creates a new level of eight sub-areas, this com-

monly used technique is called Octree-Structure and can be found in several 
others geometrical tasks. Each of the sub-areas of the structure can be repre-

sented by its bounding box, which can be used to perform pre-tests against the 
test-objects bounding box. To test whether two boxes are intersecting can eas-

ily be done and is already included into SolidWorks. By performing these bound-

ing box tests, complete subareas of the workspace can be eliminated from the 
actual ray-casting algorithm as described above. Although this produces more 

calculations beforehand, these calculations are faster than the actual ray-cast-
ing tests and depending on the specific layout of the workspace, test-object 

and pointcloud this additional time can lead to extensive time-saving because 
of the premature exclusion of test-points. Certainly, depending on the size of 

the pointcloud, the creation of the Octree-Structure might also require addi-

tional time.  

3.2 CAD Approach 

As already indicated in [1], the algorithms were implemented in form of an 

Add-In for the established CAD-Software SolidWorks. A custom UI allows for 
the easy interaction with the Add-In from within SolidWorks. Because of the 

integration into SolidWorks its functions can be used to perform basic CAD-

Operations. Additional operations are added using the API provided by Solid-
Works. As part of the ray-casting algorithm directly interacts with the CAD-data 

in SolidWorks, these operations cannot be done without using the API. How-
ever, other operations, like the Octree-Structuration can be done within the 

Add-In and benefit von techniques like performing multiple calculations simul-

taneously (Multi-Threading) which currently is not possible while using the API. 
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To enable Multi-Threading and reduce the workload of SolidWorks while 
maintaining as accurate calculations as possible, the Dual-Pointcloud-Method 

was developed, which splits the available pointcloud data into two separate 
files with a different level of details. The workflow using this method is visual-

ised in Figure 3. One pointcloud with reduced details will be imported into Solid-
Works and used to align it to the cabin’s CAD-data as well as verify the dataset 

visually. The transformations used for this alignment will be stored and applied 

to the pointcloud with full details during the actual analysis. This second point-
cloud will be imported directly into the Add-In without using the SolidWorks-

API, thus, bypassing the API’s bottleneck. Additionally, a selection-box can be 
placed within the workspace to define the area to be used for the analysis. 

Using the UI several settings regarding the analysis, like thresholds, can be set.  

 

Figure 3: Flow-Chart of the Dual-Pointcloud-Analysis 

The result of the analysis is a set of interfering points, stored within a 3D-

Sketch in SolidWorks. This sketch is then part of the saved SolidWorks-File and 
can be accessed without the need to run the analysis again. Supplementary the 

interfering points can be exported as a new pointcloud-file using the same co-

ordinate system as the original pointcloud.  

The clash-analysis is accompanied by tools that allow further analysis of 

detected interferences like measurement-tools and the possibility to directly 
adapt the local geometry of conflicting CAD-solids. These operations use the 

points of the generated 3D-Sketch. Because they are in form of SolidWorks 
standard elements, they can be used to directly adapt the cabin’s CAD-data, by 

performing standard CAD-operations of SolidWorks. Screenshots of the differ-

ent steps using tests-assemblies in SolidWorks are shown in Figure 4. 
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Figure 4: Essential steps of the presented approach as presented in [1] 

4 Results 

Whereas interference-detections between two pointclouds can already be 
found in publications, e.g. [6], the approach to enable a direct analysis of a 

combination of a pointcloud and a solid fully integrated into an existing CAD-
Environment was not encountered during the investigation. Multiple aspects of 

the presented approach were tested using synthetic pointcloud-datasets as well 

as actual 3D-Scans. The results of the analysis using the described Dual-Point-
cloud-Method as well as the structuration of the Dataset into an Octree-Struc-

ture are described subsequently. 

4.1 Detected interferences using the Dual-Pointcloud-Analysis 

The approach has been tested using existing 3D-Scans of parts of an air-

craft-body and manually placed interior-solids. The number of points of the 

tested pointcloud reached from around 150.000 to over 5.700.000. These tests 
have shown that the direct analysis of pointclouds and CAD-solids is possible 

and eventuate in a clear identification of conflicts between the solid and the 

scanned aircraft-body. 

A smaller test was conducted using a single Hatrack and a 3D-Scan of part 
of an aircraft-fuselage. The Hatrack was specially positioned to deliberately 

create interferences with the fuselage’s structure. As can be seen in Figure 5, 

these interferences were identified correctly. The different densities of the used 
pointclouds as described in 3.1.2 are clearly noticeable. The blue dots represent 

identified interferences stored as a 3D-Sketch in the SolidWorks-Workspace. 
The smaller green dots are part of the reduced pointcloud, imported into Solid-

Works to be used for the alignment.  
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Figure 5: Testing the Clash-Analysis 

Another test using two Hatracks positioned at a quarter scan of an aircraft’s 
fuselage leads to similar results. Again, the interferences were identified cor-

rectly (Figure 6). The difference in density between the pointcloud used for 
alignment and the pointcloud used for the analysis is even more noticeable as 

even the structure of a windows of the fuselage can clearly be seen in the 

resulting interferences. The upper image shows a coloured 3D-scan of part of 
an aircraft. In the lower left image, a reduced version if this pointcloud is im-

ported into SolidWorks and two Hatracks in form of CAD-solids are added to 
the assembly. The results of the analysis between the solids and pointcloud is 

shown in the lower right image. 

 

 

Figure 6: Further Tests of the Clash-Analysis 
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Besides these two tests, a number of repetitions and other structures were 
used to verify the Add-Ins functionality. All these tests show, that a clash-anal-

ysis using CAD-solids and pointclouds can be realized using the presented ap-

proach. 

4.2 Impact of the dataset-structuration 

To determine the possible effect of the usage of the Octree-Structure, mul-
tiple tests using the same CAD-data with and without structuring the points 

were conducted. For each of these tests the time needed to import the points 

and perform the analysis were measured. In case the structuration is enabled, 
the import will require additional time as it is done during this task. The tests 

were conducted with several pointclouds one of these being an actual 3D-scan 
of a section of an aircraft. The number of points reaches from 10.000 up to 

5.700.000. For the tests with up to 250.000 points a standard notebook utilizing 

an Intel Core-i5 Processor was used, while the test of the aircraft-scan with 
5.700.000 points was done on an CAD-Workstation. As can be seen in Table 1, 

the usage of the Octree-Structure reduces the time needed to perform the 
analysis significantly while requiring only minimal additional time during the 

import. This can be ascribed to the possibility to perform Multi-Threading while 

staying within the Add-In during the import but relying on the API-Limitations 

during parts of the analysis. 

Table 1: Analysis-Time with and without Octree-Structuring 

Number 

of points 
unstructured structured 

Import Analysis Total Import Analysis Total 

10.000 < 1 𝑠 28 𝑠 < 29 𝑠 1 𝑠 28 𝑠 29 𝑠 

40.000 2 𝑠 252 𝑠 254 𝑠 3 𝑠 200 𝑠 203 𝑠 

250.000 140 𝑠 4313 𝑠 4453 𝑠 158 𝑠 2880 𝑠 3038 𝑠 

5.700.000 60.480 𝑠 (16ℎ 48 min) 2700 𝑠 (45 𝑚𝑖𝑛) 

 

Summarising, it can be seen, that the use of the Octree-Structure extends 

the import-process slightly but gains a big time-benefit during the analysis. 

Another big influence is the actual layout of the assembly. 
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5 Discussion and Outlook 

Using the described approach implemented into a SolidWorks Add-In it was 
possible to show, that the direct Clash-Analysis between a scanned pointcloud 

and CAD-solids results in a clear identification of interferences. Thereby, the 
surface-reconstruction of the aircraft’s CAD-data is not necessary anymore, 

saving time and computational resources. The identified interferences then can 
easily be used to modify the cabin’s CAD-data directly from within the same 

working environment. Nevertheless, there still is room for improvements of the 

algorithm and overall handling of the big dataset, especially regarding the pos-
sible size of complete cabin-scans. The interaction of the Add-In with Solid-

Works can also be improved, as the exchange of big datasets with SolidWorks 
takes a lot of time because the main SolidWorks-API does not benefit from the 

use of multithreading. However, the inclusion into an already existing CAD-

Software provides a benefit for the user as the analysis can be included into 

already existing workflows and no additional software is needed. 

Without further optimisation, the analysis might take several hours, hence 
it is not feasible to perform many of these analyses during a standard workday. 

A way to evade this is to automatically perform the clash-analysis during after-

hours or using dedicated hardware while manually realising the resulting adap-
tions during the workday. Nevertheless, an improvement in the overall perfor-

mance is preferable, especially as the required time increases with the scope 

of the complexity of the assembly. 

As many of the operations are performed multiple times, slight improve-
ments in their required time can lead to big improvements of the overall pro-

cessing time. During the tests, the limitations of the used interaction with the 

SolidWorks-API emerges as the main bottleneck of the approach. By optimizing 
this elementary part of the algorithm, a big speed up can be expected. To 

improve parts of the analysis by improving the API-capabilities, contact to Solid-
Works is already established. Currently the complete processing is done using 

the CPU of the computers. As some calculation-heavy programs are already 

using the graphics card for some of their calculations, an investigation into the 
possibility to use a graphics card for parts of the algorithm might also lead to 

an overall improvement, especially regarding the new graphic cards support 
specialised operations for ray-tracing-algorithms. As other programs, can al-

ready handle big datasets of pointclouds, the best would be to combine the 
performance of these with the presented approach to create a professional 

grade environment to view and analysis pointclouds as well as use the resulting 

information to perform CAD-design operations. 
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Despite the need for further improvements, the presented approach has 
shown, that in the given situation of combining pointclouds from 3D-scanned 

aircrafts with CAD-solid from the cabin design, assembly conflict that otherwise 
would just be identified during the actual cabin conversion can be identified 

early on.  
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