

30. DfX-Symposium 2019

A digitized approach to reduce assembly con-
flicts during aircraft cabin conversions

Fabian Laukotka 1 , Jan Oltmann1 , Dieter Krause 1

1 Institute of Product Development and Mechanical Engineering Design (PKT),
Hamburg University of Technology (TUHH), Germany

Abstract

Aircrafts are fitted with a new cabin every five to seven years. Because each
individual aircraft is slightly modified during its life span, detailed information

to be used during the design of the cabin are rarely available. Therefore, many
conflicts between the cabin and the aircraft's body arise during the actual con-

version. While modern technologies, like 3D-scanners, are becoming more
common, their comfortable use within the CAD-Workflow is often not possible

or require extensive processing and additional work. This paper presents an

approach, integrated into the CAD-workflow, to directly use pointclouds pro-
vided by 3D-scans of aircrafts to identify possible conflicts with the cabin al-

ready during its design-phase by performing a clash-analysis between the

points and the CAD-solids.

Keywords: Aircraft Cabin Conversion, 3D-Scans, Clash Analysis, CAD vs point-
cloud

 252

1 Motivation

In modern aviation, about every five to seven years an aircraft is refitted
with a new cabin interior. Prior to the actual refitting, the new cabin will be

designed but the planning data for the design often lacks digital 3D models and
is limited to 2D drawings. In many cases the design is only based on general

available data about the type of aircraft and detailed information about the
specific aircraft are missing. As a result, the information used for the design

will not necessarily match those of each of the single aircrafts. Thus, during the

actual conversion on-site, much time is spent on adapting the designed cabin
to the actual structure of the aircraft’s body. To shorten the time spent on

ground, a new way of determining these conflicts even before the aircraft ar-

rives at the facility is needed.

2 Research Problem und Research Aim

To gather detailed information about the structure of an aircraft a multitude

of measurements with state-of-the-art 3D scanning devices is possible. 3D-
Scanners can generate an accurate digital model, in the form of a dataset of

thousands of single points. As already has been shown [1], scanning aircraft

cabins result in detailed information that are usable for 3D-CAD-operations.

A test of different CAD-Software has shown, that functions for clash-analy-

sis are already included in many of them. An assembly consisting of the de-
signed aircraft-cabin and the dataset from the 3D-Scanner could show conflicts

that otherwise would just be shown during the actual refitting. Nevertheless,
currently these analyses are not able to process pointclouds but rely on fully

defined CAD-solids. The pointclouds would have to be enhanced to solids,
which is generally possible, but especially in case of aircraft-scans requires

manual interaction and a lot of computing power and is for this application not

feasible (Figure 1). Using additional knowledge about the structure during this
process, the enhanced CAD-data will represent a more detailed model of the

aircraft. However, depending on the algorithms used for these operations,

other details may be lost for example due to interpolations.

 253

Figure 1: Sate-of-the-art and provided workflow of performing a virtual clash

analysis (VCA) using pointclouds and solids

The virtual clash-analysis can also be done between the cabin’s 3D-CAD-

solid and a pointcloud or surface-model of the aircraft’s body. In current re-
searches, approaches to analyse a set of pointclouds can be found. Albeit, the

combination of 3D-solid and pointcloud seems to be fairly new. This is espe-

cially true, regarding the convenient usage within CAD-environments. Never-
theless, using pointclouds instead of surface models or solids may lead to a

possible less detailed representation of the aircraft, depending on the density
of the pointcloud produced by the 3D-scanner. For further analyses a recon-

struction of selected local areas of the pointcloud may also be possible.

This paper presents a new approach to perform a clash-analysis between

CAD-solids and pointcloud-datasets within a CAD-environment, that can be

generated by a 3D-Scanner without the need of extensive preparations of these
datasets. Another approach using the surface model of the aircraft to perform

the clash analysis is currently in the works, yet, the presented approach focuses
on the usage of pointcloud-datasets. The state-of-the-art workflow as well as

the two described adaptions are visualised in Figure 1.

The clash-analysis itself will be complemented with tools to directly use the
detected interferences to adapt the CAD-construction, thus, preventing the

subsequent occurrence of these interferences. The objective is to provide an
integrated tool that can assist not only to identify these interferences but also

 254

allow for the adaption of affected components based on the analysis-results

directly from within the user interface (UI) of the CAD environment.

3 Methodical Approach

Considering the basic task of performing a clash-analysis between a point-
cloud and CAD-solid, the processing results in the repeated geometric task to

determine whether a single 3D-point is within a closed polyhedron or not. This
process needs to be repeated for every point and every solid. The mathematical

approach used for this task as well as the approach to implement it into CAD-

environments are described in the following chapters.

3.1 Mathematical Approach

In two-dimensional geometrics, the task to determine whether a point lies

within a closed area is also known as the point-in-polygon-analysis and occurs
in many computing situations. Therefore, different approaches to solve the task

were already established [2].

3.1.1 Point in Polygon Tests using the Ray-Casting-Method

The ray-casting-method is a well-established procedure to perform a 2D
point-in-polygon-test. The premise to use this method is that the polygon’s

boundary is a closed Jordan Curve as defined in the Jordan Curve Theorem
[3][4]. Based on this premise, a semi-infinite ray starting at the test-point is

casted in an arbitrary direction. Whenever this ray hits the boundary of the
polygon a counter 𝑖 is incremented. This counter 𝑖 can attain the following

values:

𝑖 {

0
2𝑛 | 𝑛 ∈ 𝑁
2𝑛 + 1 | 𝑛 ∈ 𝑁

∞

Following the value of 𝑖 can be used to determine whether the test-point

lies within the polygon or not: In case the ray never intersects the polygon, the

test-point is positioned outside of the polygon. The same applies whenever
there is an even number of intersections, because the ray enters and leaves

the polygon a number of times. On the contrary, whenever there is an odd

number of intersections, the test-point lies inside of the polygon. In case the
test-point lies directly on the polygon’s boundary, an infinite number of inter-

sections can be found [3]. In Figure 2 a 2D-polygon is shown next to a 3D-

 255

polyhedron. Additionally, several test-points are added to both objects. Starting
from these test-points the ray-casting-method is visualised using arrows indi-

cating the ray-direction as well as crosses indicating the intersection with the

object’s boundary.

Figure 2: Visualisation of the ray-casting-method in 2D and 3D

As a 3D-object has no simple equivalent to a Jordan Curve that is applicable

to this theorem, this previously described method cannot be applied to 3D-

polyhedra in general. At the present moment, no equivalent methods to be
used in 3D are known. However, the basic steps of this method can be adapted.

Similar to a Jordan Curve that defines an object with a closed boundary in 2D,
a 3D-CAD-solid can be described as an homogenic object that has a fully de-

fined, closed boundary allowing for a differentiation between inside and out-

side [5]. Using this approach, the 2D point-in-polygon-analysis using the Ray-

Casting-method can be adapted to a 3D point-in-polyhedron-analysis.

A 3D-polyhedron consists of faces, edges and vertices. Again, the ray is
casted from the 3D-testpoint in an arbitrary direction. In case the test-point lies

within the polyhedron, the casted ray needs to cross at least one of the previ-
ously named boundary-types once. Whether the ray intersects a specific face

of the polyhedron can be determined by testing if the test-point can be pro-

jected onto the face along the ray. If the projection P’ of the test-point P along
the ray R, 𝑃′ ∈ 𝑅, lies on the face F, 𝑃′ ∈ 𝐹, an intersection was found. In the

rare case that the ray does not intersect a face but rather an edge or vertex of

the polyhedron, additional tests are required. These tests are needed to deter-
mine if the ray enters or leaves the polyhedron via this edge or vertex, and

thus, the counter needs to be incremented, or if the ray only scrapes the edge
or vertex without entering or leaving the body. This can easily be done by

performing additional ray-casting tests with temporary test-points directly be-

fore and after the determined projected point P’ along the ray. If the results of

 256

these two test-points differ, the polyhedron’s boundary is crossed and the coun-

ter needs to be incremented.

3.1.2 Optimisation using an Octree-Structure

As standard pointclouds usually do not store the points in a known struc-
tured way but rather simply store the coordinates for each point, this procedure

theoretically needs to be done for each single point of the pointcloud. Even if
one point is known to not be interfering, there is no way of eliminating other

points without testing them each individually.

To speed up this process the algorithm was enhanced by structuring oper-
ations, that allow the premature exclusion of complete areas of the pointcloud.

This is realised by clustering the points of the pointcloud into neighbourhoods.
By splitting this sub-area into smaller and smaller boxes, a tree structure is

created. Because each split creates a new level of eight sub-areas, this com-

monly used technique is called Octree-Structure and can be found in several
others geometrical tasks. Each of the sub-areas of the structure can be repre-

sented by its bounding box, which can be used to perform pre-tests against the
test-objects bounding box. To test whether two boxes are intersecting can eas-

ily be done and is already included into SolidWorks. By performing these bound-

ing box tests, complete subareas of the workspace can be eliminated from the
actual ray-casting algorithm as described above. Although this produces more

calculations beforehand, these calculations are faster than the actual ray-cast-
ing tests and depending on the specific layout of the workspace, test-object

and pointcloud this additional time can lead to extensive time-saving because
of the premature exclusion of test-points. Certainly, depending on the size of

the pointcloud, the creation of the Octree-Structure might also require addi-

tional time.

3.2 CAD Approach

As already indicated in [1], the algorithms were implemented in form of an

Add-In for the established CAD-Software SolidWorks. A custom UI allows for
the easy interaction with the Add-In from within SolidWorks. Because of the

integration into SolidWorks its functions can be used to perform basic CAD-

Operations. Additional operations are added using the API provided by Solid-
Works. As part of the ray-casting algorithm directly interacts with the CAD-data

in SolidWorks, these operations cannot be done without using the API. How-
ever, other operations, like the Octree-Structuration can be done within the

Add-In and benefit von techniques like performing multiple calculations simul-

taneously (Multi-Threading) which currently is not possible while using the API.

 257

To enable Multi-Threading and reduce the workload of SolidWorks while
maintaining as accurate calculations as possible, the Dual-Pointcloud-Method

was developed, which splits the available pointcloud data into two separate
files with a different level of details. The workflow using this method is visual-

ised in Figure 3. One pointcloud with reduced details will be imported into Solid-
Works and used to align it to the cabin’s CAD-data as well as verify the dataset

visually. The transformations used for this alignment will be stored and applied

to the pointcloud with full details during the actual analysis. This second point-
cloud will be imported directly into the Add-In without using the SolidWorks-

API, thus, bypassing the API’s bottleneck. Additionally, a selection-box can be
placed within the workspace to define the area to be used for the analysis.

Using the UI several settings regarding the analysis, like thresholds, can be set.

Figure 3: Flow-Chart of the Dual-Pointcloud-Analysis

The result of the analysis is a set of interfering points, stored within a 3D-

Sketch in SolidWorks. This sketch is then part of the saved SolidWorks-File and
can be accessed without the need to run the analysis again. Supplementary the

interfering points can be exported as a new pointcloud-file using the same co-

ordinate system as the original pointcloud.

The clash-analysis is accompanied by tools that allow further analysis of

detected interferences like measurement-tools and the possibility to directly
adapt the local geometry of conflicting CAD-solids. These operations use the

points of the generated 3D-Sketch. Because they are in form of SolidWorks
standard elements, they can be used to directly adapt the cabin’s CAD-data, by

performing standard CAD-operations of SolidWorks. Screenshots of the differ-

ent steps using tests-assemblies in SolidWorks are shown in Figure 4.

 258

Figure 4: Essential steps of the presented approach as presented in [1]

4 Results

Whereas interference-detections between two pointclouds can already be
found in publications, e.g. [6], the approach to enable a direct analysis of a

combination of a pointcloud and a solid fully integrated into an existing CAD-
Environment was not encountered during the investigation. Multiple aspects of

the presented approach were tested using synthetic pointcloud-datasets as well

as actual 3D-Scans. The results of the analysis using the described Dual-Point-
cloud-Method as well as the structuration of the Dataset into an Octree-Struc-

ture are described subsequently.

4.1 Detected interferences using the Dual-Pointcloud-Analysis

The approach has been tested using existing 3D-Scans of parts of an air-

craft-body and manually placed interior-solids. The number of points of the

tested pointcloud reached from around 150.000 to over 5.700.000. These tests
have shown that the direct analysis of pointclouds and CAD-solids is possible

and eventuate in a clear identification of conflicts between the solid and the

scanned aircraft-body.

A smaller test was conducted using a single Hatrack and a 3D-Scan of part
of an aircraft-fuselage. The Hatrack was specially positioned to deliberately

create interferences with the fuselage’s structure. As can be seen in Figure 5,

these interferences were identified correctly. The different densities of the used
pointclouds as described in 3.1.2 are clearly noticeable. The blue dots represent

identified interferences stored as a 3D-Sketch in the SolidWorks-Workspace.
The smaller green dots are part of the reduced pointcloud, imported into Solid-

Works to be used for the alignment.

 259

Figure 5: Testing the Clash-Analysis

Another test using two Hatracks positioned at a quarter scan of an aircraft’s
fuselage leads to similar results. Again, the interferences were identified cor-

rectly (Figure 6). The difference in density between the pointcloud used for
alignment and the pointcloud used for the analysis is even more noticeable as

even the structure of a windows of the fuselage can clearly be seen in the

resulting interferences. The upper image shows a coloured 3D-scan of part of
an aircraft. In the lower left image, a reduced version if this pointcloud is im-

ported into SolidWorks and two Hatracks in form of CAD-solids are added to
the assembly. The results of the analysis between the solids and pointcloud is

shown in the lower right image.

Figure 6: Further Tests of the Clash-Analysis

 260

Besides these two tests, a number of repetitions and other structures were
used to verify the Add-Ins functionality. All these tests show, that a clash-anal-

ysis using CAD-solids and pointclouds can be realized using the presented ap-

proach.

4.2 Impact of the dataset-structuration

To determine the possible effect of the usage of the Octree-Structure, mul-
tiple tests using the same CAD-data with and without structuring the points

were conducted. For each of these tests the time needed to import the points

and perform the analysis were measured. In case the structuration is enabled,
the import will require additional time as it is done during this task. The tests

were conducted with several pointclouds one of these being an actual 3D-scan
of a section of an aircraft. The number of points reaches from 10.000 up to

5.700.000. For the tests with up to 250.000 points a standard notebook utilizing

an Intel Core-i5 Processor was used, while the test of the aircraft-scan with
5.700.000 points was done on an CAD-Workstation. As can be seen in Table 1,

the usage of the Octree-Structure reduces the time needed to perform the
analysis significantly while requiring only minimal additional time during the

import. This can be ascribed to the possibility to perform Multi-Threading while

staying within the Add-In during the import but relying on the API-Limitations

during parts of the analysis.

Table 1: Analysis-Time with and without Octree-Structuring

Number

of points
unstructured structured

Import Analysis Total Import Analysis Total

10.000 < 1 𝑠 28 𝑠 < 29 𝑠 1 𝑠 28 𝑠 29 𝑠

40.000 2 𝑠 252 𝑠 254 𝑠 3 𝑠 200 𝑠 203 𝑠

250.000 140 𝑠 4313 𝑠 4453 𝑠 158 𝑠 2880 𝑠 3038 𝑠

5.700.000 60.480 𝑠 (16ℎ 48 min) 2700 𝑠 (45 𝑚𝑖𝑛)

Summarising, it can be seen, that the use of the Octree-Structure extends

the import-process slightly but gains a big time-benefit during the analysis.

Another big influence is the actual layout of the assembly.

 261

5 Discussion and Outlook

Using the described approach implemented into a SolidWorks Add-In it was
possible to show, that the direct Clash-Analysis between a scanned pointcloud

and CAD-solids results in a clear identification of interferences. Thereby, the
surface-reconstruction of the aircraft’s CAD-data is not necessary anymore,

saving time and computational resources. The identified interferences then can
easily be used to modify the cabin’s CAD-data directly from within the same

working environment. Nevertheless, there still is room for improvements of the

algorithm and overall handling of the big dataset, especially regarding the pos-
sible size of complete cabin-scans. The interaction of the Add-In with Solid-

Works can also be improved, as the exchange of big datasets with SolidWorks
takes a lot of time because the main SolidWorks-API does not benefit from the

use of multithreading. However, the inclusion into an already existing CAD-

Software provides a benefit for the user as the analysis can be included into

already existing workflows and no additional software is needed.

Without further optimisation, the analysis might take several hours, hence
it is not feasible to perform many of these analyses during a standard workday.

A way to evade this is to automatically perform the clash-analysis during after-

hours or using dedicated hardware while manually realising the resulting adap-
tions during the workday. Nevertheless, an improvement in the overall perfor-

mance is preferable, especially as the required time increases with the scope

of the complexity of the assembly.

As many of the operations are performed multiple times, slight improve-
ments in their required time can lead to big improvements of the overall pro-

cessing time. During the tests, the limitations of the used interaction with the

SolidWorks-API emerges as the main bottleneck of the approach. By optimizing
this elementary part of the algorithm, a big speed up can be expected. To

improve parts of the analysis by improving the API-capabilities, contact to Solid-
Works is already established. Currently the complete processing is done using

the CPU of the computers. As some calculation-heavy programs are already

using the graphics card for some of their calculations, an investigation into the
possibility to use a graphics card for parts of the algorithm might also lead to

an overall improvement, especially regarding the new graphic cards support
specialised operations for ray-tracing-algorithms. As other programs, can al-

ready handle big datasets of pointclouds, the best would be to combine the
performance of these with the presented approach to create a professional

grade environment to view and analysis pointclouds as well as use the resulting

information to perform CAD-design operations.

 262

Despite the need for further improvements, the presented approach has
shown, that in the given situation of combining pointclouds from 3D-scanned

aircrafts with CAD-solid from the cabin design, assembly conflict that otherwise
would just be identified during the actual cabin conversion can be identified

early on.

Literature

[1] Deneke C., Oltmann J., Schüppstuhl T., Krause D.: AST: Technology In-

novations For A Faster Aircraft Cabin Conversion, Hamburg - Germany,

2019

[2] Shimrat, M., "Algorithm 112: Position of point relative to polygon" Com-

munications of the ACM, Volume 5 Issue 8, 1962

[3] Eric Haines, "Point in Polygon Strategies" in Graphics Gems IV (1994)

[4] Akenine-Möller, T., Haines, E., & Hoffman, N.: "Real-Time Rendering -

Third Edition". Boca Raton: CRC Press - Taylor & Francis Group, 2008.

[5] Hoffmann, C. M.: "Geometric and Solid Modeling", West Lafayette: Pur-

due University College of Science, 1992

[6] Eberly, D. H., & Schneider, P. J.: "Geometric Tools for Computer

Graphics", San Francisco: Morgan Kaufmann Publishers, 2003

[7] Figueiredo, M., Oliveira, J., & Araújo, B.: An efficient collision detection

algorithm for point cloud models, Faro - Portugal, 2010

