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Abstract 

Feature lines such as sharp edges are the main characteristic lines of a 

surface. These lines are suitable as a basis for surface reconstruction and re-
verse engineering [1]. A supervised deep learning approach based on graph 

convolutional networks on estimating local feature lines will be introduced in 

the following. We test this deep learning architecture on two provided data sets 
of which one covers sharp feature lines and the other arbitrary feature lines 

based on unnoisy meshed constructive solid geometry (CSG). Furthermore, we 
use a data balancing strategy by classifying different feature line types. We 

then compare the selected architecture with classical machine learning models. 

Finally, we show the detection of these lines on noisy and deformed meshes. 
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1 Introduction 

Various applications such as animation design, topology optimization or 3D 
laser scanning use discrete triangulated meshes to represent the surface of a 

3D geometry. On the other hand, engineering applications used for optimiza-
tion or design modification require a parametric representation of the geometry 

[2] [3], such as a constructive solid geometry (CSG). Computer aided design 
(CAD) tools provide a CSG format, by combining or subtracting multiple simple 

objects such as spheres, cylinders, or cubes. Still as state of the art, engineers 

have to convert these triangular meshes manually into parametric CSG models, 
which is extremely time consuming and thus inefficient. Moreover, manual re-

construction itself can lead to inaccurate approximation of the surfaces by hu-
man preparation and interpretation, especially for noisy and deformed triangu-

lar meshes. As a solution, the robust detection of important lines called feature 

line will allow an automatic reconstruction of such discrete surfaces [4]. Then 
a proper reconstruction of the mesh allows the CAD geometry to be updated 

by using the surface of a deformed finite element mesh, that has been analyzed 
[5] [6] [7]. Furthermore, the parametric model or the feature lines of the 

meshed model itself support a subsequent for shape optimization or structural 

analysis. In addition, it offers modern geometric modeling techniques based for 

the engineering purpose, such as sculpting in animation design.  

2 State of the Art 

A proper reverse engineering deals with a parametrically meaningful sur-
face reconstruction to enable further modifications. The following figure roughly 

illustrates the reverse engineering process derived from the methods in [6] [2] 
[7] [5] [3] for mesh data and point clouds. By mesh segmentation and line 

detection method, reasonable surface segments [8] [2] and line segments [2] 

[9] [10] can be found. With these geometric features, shape parametrization 
can interpret surface types like primitive surfaces [2] [3] [11] or B-Splines sur-

faces [7] [6]. These parametric surfaces leads to a boundary-represented or 
CSG based model. Our focus in this thesis is on the detection of feature lines 

such as sharp edges for meshed geometry on CSG models. 

Figure 1: Reverse engineering and our contribution of line detection 
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Several detection methods summarized in [4] identify feature lines using 
local surface curvature and normal estimation. For discrete surfaces, there is 

only an approximation of the local curvature and vertex normal vectors. There-
fore, there are several different approaches calculating the local curvature, such 

as averaging through the neighbourhood of the face or interpolating a local 
polynomial patches [4]. In particular [11] uses a mesh curvature histogram to 

determine sharp and smooth edges. We investigate a deep learning approach, 

since the learning process receives a detection rule directly from the data set 
and not by approximating the local geometrical properties. Changing the scope, 

data set, or feature line type is manageable by changing or adding training 
data. There is no need to redesign the algorithm. In several recent publications, 

machine learning was used for feature line detection [2] [9] [10] [1], which 

can divide the 3D objects into meaningful surface patches. Since feature lines 
can be determined locally [4], a local detection by selecting a local patch similar 

to [10] [9] [1] is basis for our approach. In particular, [10] uses a feature line 
detection of sharp edges based on point clouds using a deep learning model 

trained on meshed data. The authors use a k-nearest neighbour graph to locally 
determine a sharp edge. In [2] multiple energy terms that capture face and 

edges information are combined. In particular, for edges, they detect feature 

lines by using a Support Vector Machine to find edges and the alignment of 
these edges. The most similar approach to our work is the local feature line 

detection in [9] and the sharpness field extraction in [1]. To determine feature 
lines, the authors of [9] presents a detection by a Support Vector Machine. As 

input for the learning algorithm, [9] selects the local curvature, the dihedral 

angle, the global curvature and a shape diameter on the neighbourhood of an 
edge. Unlike [9], we use a deep learning approach that processes on angular 

sizes around the edges without interpreting a form factor or a global curve. 
Furthermore [9] applies their feature line detection on a data set consisting 

organic and mechanical meshes. We focus the detection on mechanical CSG 
data. [1] uses a deep learning architecture containing CNN (Convolutional neu-

ronal networks) layers to determine sharp features on point clouds. As the 

neighbourhood [1] uses a planar radial grid unfolded at the surface. They select 
the angle and normal values along the radial grid lines for the input vector. For 

our process, we use a scale, rotation and translation invariant value similar to 
[1] inform of scalar products. But unlike [1] we restrict to use a fixed neigh-

bourhood of an edge. So that we can estimate small local features inde-

pendently of a selected radius or number of points.  

Due to the rapid development in deep learning, models of [10] [1] [8] can 

perform a classification task for different kind of 3D geometries [12] [13]. Es-
pecially the use of networks CNN allows a high degree of parallelisation. CNN 

layers typically are used for Euclidean data structure such as 2D pixels or 3D 
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voxels [12]. While deep learning methods on Euclidean data such as voxels or 
pixels are widely established, the current research areas summarized in [13] or 

[12] aims to use CNN for non-Euclidean data such as graphs, polygonised sur-
faces and point clouds. Our selected convolutional layers are most similar to 

[14]. [14] used a graph based approach for processing non-Euclidian data. In 
[14] the adjacency matrix for normalizing the learnable weight values for each 

specific graph is selected. We use only one learnable weight parameter and 

bias weight for each kernel of the graph convolutional layer. Our input size and 

structure remains the same, so that we do not have to normalize the weights.  

To summarize our main contribution, in chapter 3 we train a deep learning 
model for local feature line detection on triangulated surfaces of primitive mod-

els such as cylinder, cube or sphere. We first provide a line and surface cate-

gorization for a CSG data set balancing the training data as described in chapter 
3.1. In chapter 3.2, we feed an input vector with the usage of the local gradient 

and angle information into a model containing convolutional graph based sim-
plified layers of [14]. In chapter 4, we validate the approach by dividing the 

data set into train and validation. In addition, we use a CSG object visualizing 

the influence on deformation and noise. 

3 Method 

For the classification task, a supervised CSG data set consisting of various 

triangulated primitives and labelled edges of the triangles is generated. A mesh-
generating algorithm creates discrete surfaces with different resolutions of 

these CSG objects and stores correspondences between the edges of the tri-
angle and the contours of the CSG object. In addition, we balance the data that 

the amount of data is similar for each selected line type and surface. 

  

Figure 2: Activity diagram of labelling, training and prediction. 
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The activity diagram of figure 2 covers the different steps (Action) and data 
transformations (Data objects) to select and train a deep learning model using 

two objects from the CSG data set as examples. At the end, the diagram shows 
the feature line detection on unmarked clean and noisy mesh data applying the 

deep learning model.  

3.1 Generation and balancing of trainings data 

For the data set, we categorize the edges of the triangle mesh by using 

their parametric definition of the underneath surface of feature line. As cate-
gorization criteria we use the primitive surface type 𝑆 and line type 𝑙 with 

𝑆 = {′𝐶𝑜𝑛𝑒′,′ 𝐶𝑦𝑙𝑖𝑛𝑑𝑒𝑟′,′ 𝑃𝑙𝑎𝑖𝑛′,′ 𝑇𝑜𝑟𝑢𝑠′, ′𝑆𝑝ℎ𝑒𝑟𝑒′};      𝐿 = {′𝐶𝑖𝑟𝑐𝑙𝑒′, ′𝐿𝑖𝑛𝑒′}. 

We balance the data set by using a categorization of the supervised surface 

type and feature line type of the triangulated mesh, so that different edge type 

occur in the same amount for training. The following figure shows several prim-

itive objects and the results of surface and edge classification.  

Figure 3: Classification of primitives 

A valid feature line has two different neighbour surfaces or the same sur-

face on both sides. We classify each feature line through the neighbour surface 
and line type like in figure 2 (′𝑃𝑙𝑎𝑖𝑛′,′ 𝐶𝑜𝑛𝑒′, ′𝐶𝑖𝑟𝑐𝑙𝑒′), so that we get the nu-

merical categories for feature lines 

𝑙 = {𝑥 |  𝑥 ≤ |𝐿| (
|𝑆|
2

) ;   𝑥 ∈  ℕ+}.    (1) 

Additionally we classify the non-feature lines according to their correspond-
ing surface type such as (′𝐶𝑦𝑙𝑖𝑛𝑑𝑒𝑟′). So that we add an additional numerical 

class for each surface type with 

𝑠 = {𝑥 ||𝐿| (
|𝑆|
2

) < 𝑥 ≤ |𝐿| (
|𝑆|
2

) + |𝑆| ;   𝑥 ∈  ℕ+}.    (2) 
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We add some additional objects into the training set of figure 2 as shown 
in the following figure. We first use a data set consisting of sharp edges of the 

primitives in figure 3 I) and in figure 4 II) for training. Then we extend the data 
set with III) consisting of smoothed rounded and bevelled edges. The object in 

IV) serves as a test object. 

Figure 4: II) Data for training and validation III) extended data with detailed 

edges IV) test model 

The amount of different edge types of the selected objects differs. There-
fore, we use these categories (1) and (2) for balancing the data set, so that  

same amount of each surface and line type is covered for training. This balanc-

ing strategy can be seen in the following figure.  

Figure 5: Balancing of the data and binary feature classification 

We separate the data into surface and line categories. Some categories are 

not presented in the selected objects. These categories are ignored. Then we 

balance the data. Additionally to the balanced data, we use an original, de-
formed and two noisy triangulated surfaces for visual testing the feature line 

detection. The following figure represents the selected test models a) and dif-
ferent mesh resolutions b). Our data consists of several different mesh resolu-

tions, but we limit the minimum resolution so that the primitive shape will be 

preserved. Therefore, the low resolution model in b) is invalid for our dataset. 

Figure 6: 2D view of the model of IV) a) Original, deformed and noisy meshes 

for the visual test b) Shape preserving and not preserving resolution 



 

  245 

 

3.2 Deep learning architecture and feature vector 

For the classification on the geometric mesh data, an input vector based on 

scalar products is used for our learning model, which is scale, rotational and 
translational invariant. Additionally only local information are used, so that the 

size of the input vector is the same for each edge classification. For training, 

angles of the triangles and their adjoining surroundings are used as input. The 
selected scalar products and neighbourhood for the input vector are shown in 

the following figure.   

Figure 7: Structure of the input data for training. 

For the normal vector 𝒏𝑣  of the vertices 𝑣, we use a uniformly weighted 

approach of [15] over the mean value of the surrounding face normal 𝒏𝑖 with  

𝒏𝑣 =
1

𝑛
∑ 𝒏𝑖

𝑛

𝑖

. 
   (3) 

We calculate the normalized scalar product 𝑠𝑖𝑘𝑗  between the vertices 𝒗𝑖, 𝒗𝑗 

and 𝒗𝑘 the edges with 

𝑠𝑖𝑘𝑗 =
1

 ‖𝒗𝑖 − 𝒗𝑘‖2  ‖𝒗𝑗 − 𝒗𝑘‖
2

〈𝒗𝑖 − 𝒗𝑘, 𝒗𝑗 − 𝒗𝑘〉    (4) 

The scalar product of the edges 𝑠𝑣,𝑖𝑗 and the scalar product between faces 

𝑠𝑚𝑛 with the point 𝑖 and 𝑗 and the faces 𝑚 and 𝑛 will be calculated with 

𝑠𝑣,𝑖𝑗 =
1

 ‖𝒏𝑖‖2  ‖𝒏𝑗‖
2

〈𝒏𝑖  , 𝒏𝑗〉;    𝑠𝑚𝑛 =
1

 ‖𝒇𝑚‖2  ‖𝒇𝑛‖2

〈𝒇𝑚 , 𝒇𝑛〉.    (5) 
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According to the non-Euclidian data structure, we use a neighbourhood with 
a fixed size, which is available for each edge in the same manner. In the fol-

lowing figure, the composition of input vector is visualized. 

Figure 8: Face correspondence, scalar products and input vector  

We build a matrix consisting of the different scalar products. Values with  
similar meaning are marked with the same color. For classification, we use the 

input vector at each edge separately. We therefore calculate the input matrix 
for each edge and feed it into the neuronal network, which contains convolution 

layers and fully interconnected layers. At the end, we get the probability for the 

feature and non-feature line by a Softmax function. To increase generality for 
noisy networks, we use Gaussian noise with a standard deviation of 0.1 for the 

input layer during training and multiple dropouts. 

Figure 9: Architecture “FL-Net” for the feature line classification.   

The use of convolution layers can detect patterns and interactions between 

the input matrices. Due to the non-Euclidian data we only use a kernel size of 
1𝑥1 for the convolutional layer with 𝑘𝑖 separated kernels for each layer. There-

fore, a correlation between the neighbour entries of the input matrix is not 

covered. In addition, the value of the input matrix itself has dissimilarities. The 

angles in a triangle have a different meaning than the normal values of the 
face. Due to the 1𝑥1 kernel size the entire location of the values is independent.  
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Therefore, we use the simple propagation rule 

𝒉(𝑙+1) = 𝜎(𝑤1𝒉𝑙 + 𝑤0)    (6) 

with 𝒉(𝑙+1) the output of the current layer 𝑙 an activation function 𝜎 and the 

weight values 𝑤1 and 𝑤0 for each kernel 𝑘. As our activation function, we use 

a rectifier linear unit (ReLU) 𝜎 = 𝑚𝑎𝑥(𝑥, 0). After several convolutional layers 

with ReLU we flatten the feature maps and provide the flattened array into a 

fully connected layers. For binary classification, we use a Softmax function. 

4 Results and Discussion 

By balancing the data sets, we reduce the amount of training data. The 
following table shows the reduction of total edges by balancing. The data set 

of I), II) is smaller than the data set of I), II), III). By a new line type with a 

low occurrence in III) the balancing reduces the amount of data in I), II), III), 

so that the balanced data set is smaller than in the balanced data set in I), II). 

Table 1: Data balancing  

Data set type Data I, II Balance I, II Data I, II, III Balance I, II, III 

Line data         

Surface data 

82472 

5389390 

25056 

2743135 

192744 

7978422 

21120   

2863875 

Balanced 

Surface/Line data 

25056/25056 21120/21120 

The balancing strategies reduce the training data so that a huge amount is 

necessary. We use the balanced data and divide it into validation and training 
data. For the train and validation data, we split the surface and line data into 

80% training and 20% validation. We now select several machine learning a) 

Linear SVM (penalty =1), b) Decision Tree (depth=5) and c) Multi Layer Per-
ceptron (Layers = 100, 𝜎 = 𝑅𝑒𝐿𝑈) model and compare them with our architec-

ture d) FL-Net. By providing the balanced data of (I, II) all selected methods 

obtain an accuracy of 100%. By providing the balanced extended data set with 
smooth edges (I, II, III) the method a), b), c) and d) obtains an accuracy of 

84,4%, 90,1%, 87,0% and 92,8%. Our architecture performs best compared 
to a), b), c) but the accuracy drops to 92,8% compared to the model trained 

with sharp edge data set. Therefore, the chosen data structure and learning 

model is not able to detect smooth edges of the data set III) per 100%.  
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We test the selected architecture and training scenario on the test model 
IV). Figure 10 shows the result of using sharp edges for training data with an 

accuracy of 100%.The results of the model trained on sharp edges show a 
meaningful feature line detection for the original, deformed and (small) noisy 

mesh. If the noise of the mesh increases, accuracy drops.  

Figure 10: Using the data set with sharp feature line 

The results of the model trained with additionally smooth edges show a 

lower accuracy in figure 11 than in figure 10. There are quite more miss clas-
sifications compared to the results in figure 10 in each test subject. The inclu-

sion of smooth edges thus reduces the ability to detect sharp edges. 

Figure 11: Using the data set with arbitrary feature line 

To detect other feature lines types (not sharp), we need to expand the 

scope of the input feature vector. The neighbourhood based on six faces is not 
enough to detect smooth edges accurate enough. In addition, we have to use 

noisy data for training to increase the robustness of the model. 

5 Conclusion and Outlook 

In our research feature line detection using a data driven approach is cov-

ered. First, we create a categorization of the feature lines according to their 

surface and line correspondence. Secondly, we use these categories for a 
meaningful balancing of the data set. A feature vector based on scalar products 

based on the local geometry of the neighbourhood is used. This vector is fed 
into a model containing convolutional and fully connected layers to perform a 

binary classification into “Feature” and “No Feature”. The proposed method 
establishes the detection of sharp edges of deformed meshes with low noise. 

However, this method lacks the ability to detect smooth feature lines. This leads 

to a further improvement by extending the neighbourhood or by using addi-
tionally curvature values. We can increase robustness by additionally using 

noisy mesh data for supervised learning. Therefore, the noise is contained not 

only in the learning model, it is also covered by data. 
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