

30. DfX-Symposium 2019

Feature line detection of noisy triangulated CSG-
based objects using deep learning

Mart in Denk1 , Kr ist in Paetzold ² , Klemens Rother 1

1 Institute for Material and Building Research;
Munich University of Applied Sciences (MUAS), Germany

2 Institute of Technical Product Development (ITPE),
University of the German Federal Armed Forces Munich, Germany

Abstract

Feature lines such as sharp edges are the main characteristic lines of a

surface. These lines are suitable as a basis for surface reconstruction and re-
verse engineering [1]. A supervised deep learning approach based on graph

convolutional networks on estimating local feature lines will be introduced in

the following. We test this deep learning architecture on two provided data sets
of which one covers sharp feature lines and the other arbitrary feature lines

based on unnoisy meshed constructive solid geometry (CSG). Furthermore, we
use a data balancing strategy by classifying different feature line types. We

then compare the selected architecture with classical machine learning models.

Finally, we show the detection of these lines on noisy and deformed meshes.

Keywords: Feature line, geometric deep learning, reverse engineering

 240

1 Introduction

Various applications such as animation design, topology optimization or 3D
laser scanning use discrete triangulated meshes to represent the surface of a

3D geometry. On the other hand, engineering applications used for optimiza-
tion or design modification require a parametric representation of the geometry

[2] [3], such as a constructive solid geometry (CSG). Computer aided design
(CAD) tools provide a CSG format, by combining or subtracting multiple simple

objects such as spheres, cylinders, or cubes. Still as state of the art, engineers

have to convert these triangular meshes manually into parametric CSG models,
which is extremely time consuming and thus inefficient. Moreover, manual re-

construction itself can lead to inaccurate approximation of the surfaces by hu-
man preparation and interpretation, especially for noisy and deformed triangu-

lar meshes. As a solution, the robust detection of important lines called feature

line will allow an automatic reconstruction of such discrete surfaces [4]. Then
a proper reconstruction of the mesh allows the CAD geometry to be updated

by using the surface of a deformed finite element mesh, that has been analyzed
[5] [6] [7]. Furthermore, the parametric model or the feature lines of the

meshed model itself support a subsequent for shape optimization or structural

analysis. In addition, it offers modern geometric modeling techniques based for

the engineering purpose, such as sculpting in animation design.

2 State of the Art

A proper reverse engineering deals with a parametrically meaningful sur-
face reconstruction to enable further modifications. The following figure roughly

illustrates the reverse engineering process derived from the methods in [6] [2]
[7] [5] [3] for mesh data and point clouds. By mesh segmentation and line

detection method, reasonable surface segments [8] [2] and line segments [2]

[9] [10] can be found. With these geometric features, shape parametrization
can interpret surface types like primitive surfaces [2] [3] [11] or B-Splines sur-

faces [7] [6]. These parametric surfaces leads to a boundary-represented or
CSG based model. Our focus in this thesis is on the detection of feature lines

such as sharp edges for meshed geometry on CSG models.

Figure 1: Reverse engineering and our contribution of line detection

 241

Several detection methods summarized in [4] identify feature lines using
local surface curvature and normal estimation. For discrete surfaces, there is

only an approximation of the local curvature and vertex normal vectors. There-
fore, there are several different approaches calculating the local curvature, such

as averaging through the neighbourhood of the face or interpolating a local
polynomial patches [4]. In particular [11] uses a mesh curvature histogram to

determine sharp and smooth edges. We investigate a deep learning approach,

since the learning process receives a detection rule directly from the data set
and not by approximating the local geometrical properties. Changing the scope,

data set, or feature line type is manageable by changing or adding training
data. There is no need to redesign the algorithm. In several recent publications,

machine learning was used for feature line detection [2] [9] [10] [1], which

can divide the 3D objects into meaningful surface patches. Since feature lines
can be determined locally [4], a local detection by selecting a local patch similar

to [10] [9] [1] is basis for our approach. In particular, [10] uses a feature line
detection of sharp edges based on point clouds using a deep learning model

trained on meshed data. The authors use a k-nearest neighbour graph to locally
determine a sharp edge. In [2] multiple energy terms that capture face and

edges information are combined. In particular, for edges, they detect feature

lines by using a Support Vector Machine to find edges and the alignment of
these edges. The most similar approach to our work is the local feature line

detection in [9] and the sharpness field extraction in [1]. To determine feature
lines, the authors of [9] presents a detection by a Support Vector Machine. As

input for the learning algorithm, [9] selects the local curvature, the dihedral

angle, the global curvature and a shape diameter on the neighbourhood of an
edge. Unlike [9], we use a deep learning approach that processes on angular

sizes around the edges without interpreting a form factor or a global curve.
Furthermore [9] applies their feature line detection on a data set consisting

organic and mechanical meshes. We focus the detection on mechanical CSG
data. [1] uses a deep learning architecture containing CNN (Convolutional neu-

ronal networks) layers to determine sharp features on point clouds. As the

neighbourhood [1] uses a planar radial grid unfolded at the surface. They select
the angle and normal values along the radial grid lines for the input vector. For

our process, we use a scale, rotation and translation invariant value similar to
[1] inform of scalar products. But unlike [1] we restrict to use a fixed neigh-

bourhood of an edge. So that we can estimate small local features inde-

pendently of a selected radius or number of points.

Due to the rapid development in deep learning, models of [10] [1] [8] can

perform a classification task for different kind of 3D geometries [12] [13]. Es-
pecially the use of networks CNN allows a high degree of parallelisation. CNN

layers typically are used for Euclidean data structure such as 2D pixels or 3D

 242

voxels [12]. While deep learning methods on Euclidean data such as voxels or
pixels are widely established, the current research areas summarized in [13] or

[12] aims to use CNN for non-Euclidean data such as graphs, polygonised sur-
faces and point clouds. Our selected convolutional layers are most similar to

[14]. [14] used a graph based approach for processing non-Euclidian data. In
[14] the adjacency matrix for normalizing the learnable weight values for each

specific graph is selected. We use only one learnable weight parameter and

bias weight for each kernel of the graph convolutional layer. Our input size and

structure remains the same, so that we do not have to normalize the weights.

To summarize our main contribution, in chapter 3 we train a deep learning
model for local feature line detection on triangulated surfaces of primitive mod-

els such as cylinder, cube or sphere. We first provide a line and surface cate-

gorization for a CSG data set balancing the training data as described in chapter
3.1. In chapter 3.2, we feed an input vector with the usage of the local gradient

and angle information into a model containing convolutional graph based sim-
plified layers of [14]. In chapter 4, we validate the approach by dividing the

data set into train and validation. In addition, we use a CSG object visualizing

the influence on deformation and noise.

3 Method

For the classification task, a supervised CSG data set consisting of various

triangulated primitives and labelled edges of the triangles is generated. A mesh-
generating algorithm creates discrete surfaces with different resolutions of

these CSG objects and stores correspondences between the edges of the tri-
angle and the contours of the CSG object. In addition, we balance the data that

the amount of data is similar for each selected line type and surface.

Figure 2: Activity diagram of labelling, training and prediction.

 243

The activity diagram of figure 2 covers the different steps (Action) and data
transformations (Data objects) to select and train a deep learning model using

two objects from the CSG data set as examples. At the end, the diagram shows
the feature line detection on unmarked clean and noisy mesh data applying the

deep learning model.

3.1 Generation and balancing of trainings data

For the data set, we categorize the edges of the triangle mesh by using

their parametric definition of the underneath surface of feature line. As cate-
gorization criteria we use the primitive surface type 𝑆 and line type 𝑙 with

𝑆 = {′𝐶𝑜𝑛𝑒′,′ 𝐶𝑦𝑙𝑖𝑛𝑑𝑒𝑟′,′ 𝑃𝑙𝑎𝑖𝑛′,′ 𝑇𝑜𝑟𝑢𝑠′, ′𝑆𝑝ℎ𝑒𝑟𝑒′}; 𝐿 = {′𝐶𝑖𝑟𝑐𝑙𝑒′, ′𝐿𝑖𝑛𝑒′}.

We balance the data set by using a categorization of the supervised surface

type and feature line type of the triangulated mesh, so that different edge type

occur in the same amount for training. The following figure shows several prim-

itive objects and the results of surface and edge classification.

Figure 3: Classification of primitives

A valid feature line has two different neighbour surfaces or the same sur-

face on both sides. We classify each feature line through the neighbour surface
and line type like in figure 2 (′𝑃𝑙𝑎𝑖𝑛′,′ 𝐶𝑜𝑛𝑒′, ′𝐶𝑖𝑟𝑐𝑙𝑒′), so that we get the nu-

merical categories for feature lines

𝑙 = {𝑥 | 𝑥 ≤ |𝐿| (
|𝑆|
2

) ; 𝑥 ∈ ℕ+}. (1)

Additionally we classify the non-feature lines according to their correspond-
ing surface type such as (′𝐶𝑦𝑙𝑖𝑛𝑑𝑒𝑟′). So that we add an additional numerical

class for each surface type with

𝑠 = {𝑥 ||𝐿| (
|𝑆|
2

) < 𝑥 ≤ |𝐿| (
|𝑆|
2

) + |𝑆| ; 𝑥 ∈ ℕ+}. (2)

 244

We add some additional objects into the training set of figure 2 as shown
in the following figure. We first use a data set consisting of sharp edges of the

primitives in figure 3 I) and in figure 4 II) for training. Then we extend the data
set with III) consisting of smoothed rounded and bevelled edges. The object in

IV) serves as a test object.

Figure 4: II) Data for training and validation III) extended data with detailed

edges IV) test model

The amount of different edge types of the selected objects differs. There-
fore, we use these categories (1) and (2) for balancing the data set, so that

same amount of each surface and line type is covered for training. This balanc-

ing strategy can be seen in the following figure.

Figure 5: Balancing of the data and binary feature classification

We separate the data into surface and line categories. Some categories are

not presented in the selected objects. These categories are ignored. Then we

balance the data. Additionally to the balanced data, we use an original, de-
formed and two noisy triangulated surfaces for visual testing the feature line

detection. The following figure represents the selected test models a) and dif-
ferent mesh resolutions b). Our data consists of several different mesh resolu-

tions, but we limit the minimum resolution so that the primitive shape will be

preserved. Therefore, the low resolution model in b) is invalid for our dataset.

Figure 6: 2D view of the model of IV) a) Original, deformed and noisy meshes

for the visual test b) Shape preserving and not preserving resolution

 245

3.2 Deep learning architecture and feature vector

For the classification on the geometric mesh data, an input vector based on

scalar products is used for our learning model, which is scale, rotational and
translational invariant. Additionally only local information are used, so that the

size of the input vector is the same for each edge classification. For training,

angles of the triangles and their adjoining surroundings are used as input. The
selected scalar products and neighbourhood for the input vector are shown in

the following figure.

Figure 7: Structure of the input data for training.

For the normal vector 𝒏𝑣 of the vertices 𝑣, we use a uniformly weighted

approach of [15] over the mean value of the surrounding face normal 𝒏𝑖 with

𝒏𝑣 =
1

𝑛
∑ 𝒏𝑖

𝑛

𝑖

.
 (3)

We calculate the normalized scalar product 𝑠𝑖𝑘𝑗 between the vertices 𝒗𝑖, 𝒗𝑗

and 𝒗𝑘 the edges with

𝑠𝑖𝑘𝑗 =
1

 ‖𝒗𝑖 − 𝒗𝑘‖2 ‖𝒗𝑗 − 𝒗𝑘‖
2

〈𝒗𝑖 − 𝒗𝑘, 𝒗𝑗 − 𝒗𝑘〉 (4)

The scalar product of the edges 𝑠𝑣,𝑖𝑗 and the scalar product between faces

𝑠𝑚𝑛 with the point 𝑖 and 𝑗 and the faces 𝑚 and 𝑛 will be calculated with

𝑠𝑣,𝑖𝑗 =
1

 ‖𝒏𝑖‖2 ‖𝒏𝑗‖
2

〈𝒏𝑖 , 𝒏𝑗〉; 𝑠𝑚𝑛 =
1

 ‖𝒇𝑚‖2 ‖𝒇𝑛‖2

〈𝒇𝑚 , 𝒇𝑛〉. (5)

 246

According to the non-Euclidian data structure, we use a neighbourhood with
a fixed size, which is available for each edge in the same manner. In the fol-

lowing figure, the composition of input vector is visualized.

Figure 8: Face correspondence, scalar products and input vector

We build a matrix consisting of the different scalar products. Values with
similar meaning are marked with the same color. For classification, we use the

input vector at each edge separately. We therefore calculate the input matrix
for each edge and feed it into the neuronal network, which contains convolution

layers and fully interconnected layers. At the end, we get the probability for the

feature and non-feature line by a Softmax function. To increase generality for
noisy networks, we use Gaussian noise with a standard deviation of 0.1 for the

input layer during training and multiple dropouts.

Figure 9: Architecture “FL-Net” for the feature line classification.

The use of convolution layers can detect patterns and interactions between

the input matrices. Due to the non-Euclidian data we only use a kernel size of
1𝑥1 for the convolutional layer with 𝑘𝑖 separated kernels for each layer. There-

fore, a correlation between the neighbour entries of the input matrix is not

covered. In addition, the value of the input matrix itself has dissimilarities. The

angles in a triangle have a different meaning than the normal values of the
face. Due to the 1𝑥1 kernel size the entire location of the values is independent.

 247

Therefore, we use the simple propagation rule

𝒉(𝑙+1) = 𝜎(𝑤1𝒉𝑙 + 𝑤0) (6)

with 𝒉(𝑙+1) the output of the current layer 𝑙 an activation function 𝜎 and the

weight values 𝑤1 and 𝑤0 for each kernel 𝑘. As our activation function, we use

a rectifier linear unit (ReLU) 𝜎 = 𝑚𝑎𝑥(𝑥, 0). After several convolutional layers

with ReLU we flatten the feature maps and provide the flattened array into a

fully connected layers. For binary classification, we use a Softmax function.

4 Results and Discussion

By balancing the data sets, we reduce the amount of training data. The
following table shows the reduction of total edges by balancing. The data set

of I), II) is smaller than the data set of I), II), III). By a new line type with a

low occurrence in III) the balancing reduces the amount of data in I), II), III),

so that the balanced data set is smaller than in the balanced data set in I), II).

Table 1: Data balancing

Data set type Data I, II Balance I, II Data I, II, III Balance I, II, III

Line data

Surface data

82472

5389390

25056

2743135

192744

7978422

21120

2863875

Balanced

Surface/Line data

25056/25056 21120/21120

The balancing strategies reduce the training data so that a huge amount is

necessary. We use the balanced data and divide it into validation and training
data. For the train and validation data, we split the surface and line data into

80% training and 20% validation. We now select several machine learning a)

Linear SVM (penalty =1), b) Decision Tree (depth=5) and c) Multi Layer Per-
ceptron (Layers = 100, 𝜎 = 𝑅𝑒𝐿𝑈) model and compare them with our architec-

ture d) FL-Net. By providing the balanced data of (I, II) all selected methods

obtain an accuracy of 100%. By providing the balanced extended data set with
smooth edges (I, II, III) the method a), b), c) and d) obtains an accuracy of

84,4%, 90,1%, 87,0% and 92,8%. Our architecture performs best compared
to a), b), c) but the accuracy drops to 92,8% compared to the model trained

with sharp edge data set. Therefore, the chosen data structure and learning

model is not able to detect smooth edges of the data set III) per 100%.

 248

We test the selected architecture and training scenario on the test model
IV). Figure 10 shows the result of using sharp edges for training data with an

accuracy of 100%.The results of the model trained on sharp edges show a
meaningful feature line detection for the original, deformed and (small) noisy

mesh. If the noise of the mesh increases, accuracy drops.

Figure 10: Using the data set with sharp feature line

The results of the model trained with additionally smooth edges show a

lower accuracy in figure 11 than in figure 10. There are quite more miss clas-
sifications compared to the results in figure 10 in each test subject. The inclu-

sion of smooth edges thus reduces the ability to detect sharp edges.

Figure 11: Using the data set with arbitrary feature line

To detect other feature lines types (not sharp), we need to expand the

scope of the input feature vector. The neighbourhood based on six faces is not
enough to detect smooth edges accurate enough. In addition, we have to use

noisy data for training to increase the robustness of the model.

5 Conclusion and Outlook

In our research feature line detection using a data driven approach is cov-

ered. First, we create a categorization of the feature lines according to their

surface and line correspondence. Secondly, we use these categories for a
meaningful balancing of the data set. A feature vector based on scalar products

based on the local geometry of the neighbourhood is used. This vector is fed
into a model containing convolutional and fully connected layers to perform a

binary classification into “Feature” and “No Feature”. The proposed method
establishes the detection of sharp edges of deformed meshes with low noise.

However, this method lacks the ability to detect smooth feature lines. This leads

to a further improvement by extending the neighbourhood or by using addi-
tionally curvature values. We can increase robustness by additionally using

noisy mesh data for supervised learning. Therefore, the noise is contained not

only in the learning model, it is also covered by data.

 249

Acknowledgement

This work is part of the project ANGORA which is supported by “Federal
Ministry for Economic Affairs and Energy“ with the funding indicator

ZF4428401BZ7 in the context of the research network IraSME and ZIM. Re-
sponsibility for the content of this publication lies with the authors. The authors

would like to thank all those involved in the project.

Literatur

[1] P. Raina, S. Mudur and T. Popa, “Sharpness fields in point clouds

using deep learning,” Computers & Graphics, vol. 78, pp. 37-53,

2019.

[2] V. Vidal, C. Wolf and F. Dupont, “Mechanical Mesh Segmentation

and Global 3D Shape Extraction,” 2014.

[3] R. Bénière, G. Subsol, G. Gesquière, F. L. Breton and W. Puech,

“A comprehensive process of reverse engineering from 3D meshes to

CAD models,” Computer-Aided Design, vol. 45, pp. 1382-1393, 2013.

[4] W. Quan, W. Meng and X. Zhang, “The Extraction of Feature Lines
on 3D Models: A Survey,” in 2014 International Conference on Virtual
Reality and Visualization, 2014.

[5] A. B. Makhlouf, B. Louhichi, M. A. Mahjoub and G. Subsol,
“Approach for CAD model Reconstruction from a deformed mesh,” in

2017 IEEE/ACS 14th International Conference on Computer Systems
and Applications (AICCSA), 2017.

[6] B. Louhichi, G. N. Abenhaim and A. S. Tahan, “CAD/CAE
integration: updating the CAD model after a FEM analysis,” The
International Journal of Advanced Manufacturing Technology, vol. 76,

pp. 391-400, 01 1 2015.

[7] A. Ben Makhlouf, B. Louhichi, M. Mahjoub and D. Deneux,

“Reconstruction of a CAD model from the deformed mesh using B-

 250

spline surfaces,” International Journal of Computer Integrated
Manufacturing, pp. 1-13, 4 2019.

[8] Y. Feng, Y. Feng, H. You, X. Zhao and Y. Gao, “MeshNet: Mesh

Neural Network for 3D Shape Representation,” AAAI 2019, 2018.

[9] H. Benhabiles, G. Lavoué, J.-P. Vandeborre and M. Daoudi,

“Learning Boundary Edges for 3D-Mesh Segmentation,” Comput.
Graph. Forum, vol. 30, pp. 2170-2182, 2011.

[10] L. Yu, X. Li, C.-W. Fu, D. Cohen-Or and P.-A. Heng, “EC-Net: an

Edge-aware Point set Consolidation Network,” CoRR, vol.

abs/1807.06010, 2018.

[11] S. Gauthier, W. Puech, R. Bénière and G. Subsol, “Analysis of
digitized 3D mesh curvature histograms for reverse engineering,”

Computers in Industry, Vols. 92--93, pp. 67-83, 11 2017.

[12] M. M. Bronstein, J. Bruna, Y. LeCun, A. Szlam and P.
Vandergheynst, “Geometric deep learning: going beyond Euclidean

data,” CoRR, vol. abs/1611.08097, 2016.

[13] E. Ahmed, A. Saint, A. E. R. Shabayek, K. Cherenkova, R. Das, G.

Gusev, D. Aouada and B. E. Ottersten, “Deep Learning Advances on

Different 3D Data Representations: A Survey,” CoRR, vol.

abs/1808.01462, 2018.

[14] T. N. Kipf and M. Welling, “Semi-Supervised Classification with

Graph Convolutional Networks,” CoRR, vol. abs/1609.02907, 2016.

[15] S. Jin, R. R. Lewis and D. West, “A comparison of algorithms for
vertex normal computation,” The Visual Computer, vol. 21, pp. 71-

82, 01 2 2005.

