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Abstract 
Mass customization and increasing product complexity require new methods to ensure a continuously 
high product quality. In the case of product failures it has to be determined what distinguishes flawed 
products. The data generated by cybertronic products over their lifecycle offers new possibilities to find 
such distinctions. To manage this data for individual product instances the concept of a Digital Twin 
has been proposed. This paper introduces the elements of a Digital Twin for root cause analysis and 
product quality monitoring and suggests a data structure that enables data analytics. 
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1. Introduction 
Manufacturing companies today face an increasing demand for customization, shorter time-to-market 
and intense global competition. They tackle these challenges with a rising number of product derivates, 
diverse global supplier networks and local production as well as local procurement. The customization 
options of a premium automobile allow the staggering number of 1027 possible product variants (Zagel, 
2006). In conjunction with the choices of the manufacturer such as different suppliers or production 
sites, the overall complexity of product development process is constantly increasing. 
In the light of this development, ensuring a trouble-free functionality and high quality becomes a major 
challenge. Because even with advanced methods for simulation and virtual testing not all product 
variants can be validated. Hence despite great effort to identify potential problems early in product 
development, product failure in the field cannot be completely avoided. 
In case of a product failure in the field, quality engineers aim to identify the root cause that lead to the 
failure. Given the complexity described above, the answer to this question is rarely obvious. Hence a 
detailed analysis is conducted to determine what product attributes differentiate products that fail from 
those that do not. These differences are crucial for understanding the technical root cause and 
subsequently improving current products and processes as well as future product generations. However 
given the vast number of product attributes this analysis can be very time consuming and heavily relies 
on the experience of quality engineers. 
The Internet of Things and Services (IoT), cybertronic products (Eigner et al., 2015a) and smart factories 
will make even more product attributes available to the manufacturer. An internet connection enables 
machines, products and components to communicate and collect data along the entire product lifecycle. 
At the same time the storage of massive amounts of data has become logistically and economically 
feasible and algorithmic breakthroughs such as the MapReduce Algorithm (Dean and Ghemawat, 2008) 
have made analyzing this Big Data possible. Collecting, storing and analyzing data, from detailed 
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manufacturing information to individual user profiles, offers the opportunity for in-depth analysis of 
technical issues and a data-driven continuous improvement process. 
But with the large amount of data that is going to be generated, enterprises need IT-architectures that 
ensure the availability of the right data, in the right quality, at the right location (Eigner et al., 2016b). 
In System Lifecycle Management the concept of a Digital Twin has been proposed to manage and store 
the heterogeneous data generated over the entire product lifecycle. However it has to be determined 
what the right data for root cause analysis and product quality monitoring is, by evaluating all available 
product attributes. Additionally the large number of product attributes makes a manual data analysis 
increasingly difficult. Therefore anomalous product attributes have to be determined with the aid of Big 
Data analytics. 
In this paper we propose the Digital Twin as a framework for product quality monitoring and root cause 
analysis. Chapter two gives an overview of different frameworks proposed to manage data over the 
entire product lifecycle and introduces different interpretations of the Digital Twin concept. Chapter 
three provides a detailed collection of the elements required in a Digital Twin for product quality 
monitoring. In chapter four an analysis regarding the problems of data analytics on large amounts of 
data is conducted. Based on that analysis, a hierarchical data structure that enables Big Data analytics is 
proposed. The chapter concludes with pointing out the shortcomings of current data management 
processes and proposes a way to manage data requirements in the future. 

2. State of the art 
Eigner et al. (2015b) summarize that by 2020 investments of 500 billion Euros into cybertronic products 
are to be expected. Since these products will generate massive amounts of data, there is an imminent 
need for cross-enterprise data strategies and IT-architectures to utilize Big Data analytics along the 
Product Lifecycle. Li et al. (2015) conducted a meta-study to analyze the great potential of Big Data 
analytics in Product Lifecycle Management (PLM). They present several examples where Big Data 
analytics could be employed, such as providing accurate and personalized product services as well as 
improving the quality and output of production and design. 
Different frameworks have been proposed to incorporate product feedback data into existing PLM 
architectures. Lee et al. (2013) point out, that merely collecting data is not sufficient, as context and 
meaning is crucial, for the data to be understood by the right personnel. Their research focuses on the 
manufacturing phase and proposes an architecture for prognostics and health management of 
manufacturing machinery. They later refine this idea, proposing a 5C architecture for cybertronic 
products where they identify connection, conversion, cyber, cognition and configure as the core steps 
of an architecture for IoT products. In their architecture, data analytics tasks such as prediction and 
similarity identification are performed at the cyber level. Previous levels ensure data availability and 
quality, while subsequent layers enable manufacturers to turn the data into action (Lee et al., 2015). 
Abramovici and Lindner (2011) propose a framework for constant improvement of future product 
generations. Their framework also consists of different layers including an Operative Information Layer 
where raw information is stored, an aggregation layer where the harmonization of heterogeneous data 
takes place and diagnosis layer to utilize the information. Abramovici et al. (2016) later point out that 
architectural-, component- and usage-information are all necessary for managing cybertronic products. 
They state that the management of such information in a cross-enterprise network poses a major 
challenge. Furthermore they point out that continuous and transparent information flows are a 
prerequisite for efficient collaboration over the entire product lifecycle. 
Similar layered architectures are proposed to utilize PLM data as well as product use information for 
Big Data analytics by Kassner et al. (2015) and Zhang et al. (2017) or to support root cause analysis 
by integrating maintenance information (Madenas, 2014). Dienst et al. (2014) conclude based on the 
work of Abramovici et al. (2011) and Uhr et al. (2012) that current PLM systems are not suitable to 
integrate feedback data due to the large amount of data and the difficulty of adapting existing PLM 
solutions. 
In addition to these general frameworks, the concept of a Digital Twin has gained traction as a promising 
approach to manage product related data across the entire product lifecycle. The Digital Twin is 
commonly defined as a virtual mapping of a physical product. This mapping includes structure and 
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properties defined during product development as well as the current configuration of the product and 
usage information (Muggeo and Pfenning, 2015). While the classical digital model or digital master in 
a PLM system is not related to a specific order, a Digital Twin is always associated to a singular, physical 
product instance (Eigner et al., 2016a). Since historically PLM systems are not capable of displaying 
individual product instances this concept requires a new architecture for PLM data. A unique serial 
number serves as the link between a product instance master data and its lifecycle feedback data (Dienst 
et al., 2014). 
The concept of a Digital Twin was first proposed by Grieves in a 2002 University of Michigan 
presentation as a “conceptual idea for PLM” which introduced the idea that each physical object has a 
digital counterpart and both are synchronized by a data flow between them (Grieves and Vickers, 2017). 
Starting out as a sparse CAD object, current interpretations of the Digital Twin concept often aim to 
design, test and simulate entirely based on virtual versions of a system (Grieves and Vickers, 2017) or 
focus on the aspect of continuous product improvement. 
The Digital Twin as a conceptual model was quickly adopted by the aerospace and astronautics 
industry (Grieves and Vickers, 2017). The prominent reason being that parts are constantly replaced 
during the exceptionally long lifecycle of an aircraft of up to 50 years. The Digital Twin allows to 
break with the traditional differentiation between static and dynamic product information and 
represents a current, as-maintained state of an aircraft (Rios et al., 2015). An application example is 
given by Tuegel et al. (2011) where a Digital Twin containing product information and load data from 
sensors is employed for accurate fatigue prediction of individual aircrafts. Glaessgen and Stargel 
(2012) see future generations of NASA and U.S. Air Force vehicles utilizing the Digital Twin concept 
to integrate diverse information about the physical product into high fidelity simulations. They define 
the Digital Twin as an “integrated multi-physics, multiscale, and probabilistic simulation of a complex 
product [that] uses the best available physical models, sensor updates etc. to mirror the life of its 
corresponding twin”. 
Tao et al. (2018) point out that up-to-date several definitions of Digital Twin have been proposed. 
Their interpretation focuses on the Digital Twin as the basis for simulation studies and assumes a 
permanent real time reflection between digital twin and physical counterpart. The scope of research 
at the Siemens cooperation is focused on using the Digital Twin for simulation applications as well. 
Boschert and Rosen (2016) point out the potential of a Digital Twin to manage the growing complexity 
of cybertronic products and to reduce the time-to-market for new products. Their vision of a Digital 
Twin includes all information that might be useful in later lifecycle phases, though they immediately 
point out that this approach is not feasible due to the immense volume of the diverse and unstructured 
data. Based on their expert knowledge they propose that the elements contained in a Digital Twin 
have to be chosen based on specific questions. Grieves and Vickers (2017) elaborate what data can 
be contained in a Digital Twin. Depending on the use case they state that a complete 3D model of the 
physical instance and its components, a Bill of Materials that lists current and replaced components 
and a Bill of Processes that lists the operations that were performed during manufacturing can be 
included. In addition the results of any measurements and tests on the instance, a service record that 
describes past services and all available sensor data from the product instance should be added to the 
Digital Twin. 

3. Elements of a Digital Twin for product quality monitoring 
Recent interpretations of the Digital Twin concept have moved away from the idea that all available 
data can be included. Instead a selection of data has to be performed depending on the use case. This 
chapter proposes the elements of a Digital Twin for the purpose of quality monitoring and root cause 
analysis in the case of product failure in the field. 
The primary purpose of a Digital Twin in this use case is to consolidate product attributes in one place 
that might distinguish products that fail from those that do not. The necessary product attributes can be 
grouped into product structure, service data, usage phase data, manufacturing data and logistics data. 
According to the Digital Twin concept, a unique set of attributes derived from this data needs to be 
stored for each individual product instance. 
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3.1. Product structure 
The product structure is the core element of the Digital Twin. Information about the individual parts 
of a product are crucial for two reasons. First product failures in the field can often be related to 
certain parts built into a product or are introduced with changes to a part. Second a large portion of 
other information, such as assembly data, depends on the individual product structure of a product 
instance. 
In the automotive domain PLM systems manage a configurable Bill of Materials (BOM) that includes 
all parts for all possible choices of a customer. A tree-like generic product structure is defined as a 
common setup for all vehicles. Attached to the top nodes of this structure, position variants indicate 
which parts are available for a product instance. Figure 1 shows an excerpt of a fictional generic product 
structure, options and items as an example. Based on the options chosen in a specific customer order a 
manufacturing BOM is created that includes all parts for this product instance. The order information is 
archived to allow a retroactive creation of the as-planned BOM. In the automotive domain, for parts 
critical to customer safety, unique serial numbers are archived linked to the unique vehicle identification 
number (VIN). In addition the serial numbers of electronic control units (ECU) built into a product 
instance are also retained to ensure the compatibility of later software updates. These serial numbers are 
often not archived in the PLM systems but in supplemental databases. 

 
Figure 1. Generic product structure with options and items in the automotive 

industry (Eigner, 2017) 

The data-driven analysis of product failures in the field is primarily based on the order information. To 
fully enable the desired data analysis insights, a Digital Twin must include a Bill of Materials (BOM) 
for each product instance. This BOM has to include the part numbers including revision index and if 
available the unique serial numbers of each part built into a product instance. Currently software updates 
are often traced by a change in the revision index of the ECU. To clearly differentiate between hardware 
and software changes the version numbers of software have to be stored independently from the physical 
part. 
Despite the advantages of maintaining a complete as-built BOM in a Digital Twin, tracking every single 
part is logistically difficult and economically not feasible. Hence for each part of the generic product 
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structure it has to be determined if a traceability by unique serial number is necessary. In any case the 
part numbers given in the as-planned BOM should be archived for each product. If the number of the 
part built into a product instance cannot be determined with certainty, a fuzzy approach is recommended: 
All alternative parts are included in the Digital Twin and assigned a probability of occurring in that 
product instance. This approach enables Big Data analytics and is preferable to the alternative of not 
storing the part information at all. 

3.2. Service data 
While the classic representation of the BOM is static, a Digital Twin needs to evolve with the current 
state of a product. To track the physical configuration of a product, all part changes conducted during 
service and repair need to be recorded in the Digital Twin, thus creating an as-maintained BOM. Again 
it is economically not justifiable to track every single part. Hence the same requirements regarding 
traceability as for the as-built BOM apply. In addition to the change of physical parts, software updates 
need to be documented as well. 
For product quality monitoring it is crucial that the Digital Twin representation is not limited to the 
current state of the product. Historic information about previous software versions or parts built into a 
product instance can be essential to determine the root cause of a problem. In fact a repair can provoke 
further problems. Therefore the Digital Twin needs to include detailed information about all actions 
performed during service and repair. During the warranty period this information is available in the 
accounting systems of original equipment manufacturers (OEMs). In conjunction with the dates of a 
repair, an analysis regarding previous repairs is possible. 
Reports on the repair are often accompanied by a problem description given by the customer or the 
service personnel. These texts can be tremendously useful to determine the nature of a problem. But 
unstructured data requires special analytical methods to be used. Regardless text information needs to 
be part of the Digital Twin. 
Despite the importance of service data, adding this information to the Digital Twin brings two major 
challenges. First the general classification of a problem as well as the individual tasks performed during 
a repair are manually registered in the accounting system by the workshop personnel. Hence the data is 
prone to human error. Nevertheless this classification is fundamental to distinguish between unrelated 
problems in order to reduce the complexity of the analysis. Even though some amount of mislabelled 
repairs cannot be prevented, incentives for a correct documentation can improve the situation. 
The second challenge is that not all service is carried out at repair shops authorized by the OEM. In such 
cases no data about the repair is available. Since non-professional repairs can result in subsequent 
problems, the missing data is a significant problem. In addition undocumented repairs often lead to 
implausible sensor data. To counteract this problem, previously undocumented repairs should be 
retroactively added to the Digital Twin when discovered. For cybertronic products the service data can 
be enriched by sensor data. For instance an airbag activation indicates a crash even if no repair of a 
corresponding crash damage was recorded. 

3.3. Usage phase data 
Traditionally the reach of automotive OEMs ended at the point of sale of their product. The data 
infrequently collected during service and repair being the only exception. The ability to collect data 
during the usage phase of a product is one of the radical changes introduced by the Internet of Things. 
Real time data from a product instance enables completely new, service-oriented business models such 
as car sharing and predictive maintenance. As illustrated in the introduction, root cause analysis aims to 
determine the product attributes that distinguish products that fail. Naturally this analysis requires a 
reference group of products without failure to determine the normal distribution of product attributes. 
Prior to cybertronic products, data was only collected during repairs and therefore limited to faulty 
products. Hence for product quality monitoring a vital advantage is the availability of data from products 
without failure. 
For product quality monitoring three kinds of information are valuable: Product condition information 
in the form of fault indicators, usage information and environmental information. Product quality 
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monitoring does not require a real time reflection of the physical product in the Digital Twin. Instead 
regular updates on sensor data and product condition are sufficient. 

3.3.1. Product condition information 

In the automotive domain the fault indicators are called Diagnostic Trouble Codes (DTC). Given certain 
sensor conditions or software states a DTC is saved in one of the vehicles ECUs. The conditions are 
defined during product development. Therefore DTCs are aggregated information based on expected 
issues and the know-how of product developers. Accompanied by a unique timestamp these fault 
indicators make up the core element of the usage phase data contained in a Digital Twin. 
Limiting the product condition information to fault indicators is a concession to the volume of data in a 
Digital Twin. While high-frequency traces of all on-board operations would be useful for diagnosis, the 
resulting amount of data would rapidly exceed all other data in the Digital Twin, rendering it very 
difficult to collect and store this data for each product instance. Nevertheless on-board product 
architectures should be able to relay this data for individual product instances and limited time frames. 
In addition the Digital Twin must be able to evolve by adding new failure indicators. The reflection 
between Digital Twin and product instance means that new failure indicators need to be introduced to 
the physical products via remote software updates if authorized by the customer. 

3.3.2. Usage information 

Usage information describes data related to customer behavior. Since customer behavior has a dramatic 
impact on the wear and tear of a product, this information is essential for product quality monitoring. 
The central elements of usage information in the automotive domain are the mileage and the number of 
months in service. While this information is already useful, a Digital Twin would greatly benefit from 
more detailed data. Accumulated usage information about trip distances, speeds and idle times, would 
be invaluable for determining the influencing factors of a technical problem. In addition the usage 
frequency of individual product functions can be employed to estimate the attrition and promote a data-
driven product development. 
For all usage information the protection of individual customer privacy is of paramount importance. 
Since more than one customer can be associated to a product instance this poses a challenge for data 
analytics. If two product users have diverging privacy settings, the usage information can be incomplete 
and possibly misleading. 

3.3.3. Environmental information 

The third category of usage phase data is environment information. This can include weather conditions 
such as temperature and humidity from on-board sensors or information deducted from third-party 
services based on the GPS-location of a product. Data from this category can be expected to grow in the 
future due to cybertronic products becoming more aware of their surroundings. In the automotive 
domain more advanced driver assist systems and the transition to autonomous driving require explicit 
information about the vehicles environment. Hence information such as road conditions will become 
available. 
Data derived from autonomous driving systems is highly unstructured. As illustrated for the product 
condition information, this unstructured data is not suitable to be added to a Digital Twin for product 
quality monitoring. Hence equivalently to failure indicators, aggregated product attributes have to be 
derived. The consistency of these attributes across different product variants and product generations is 
a core requirement for a Digital Twin architecture. 

3.4. Assembly and logistics data 
All information generated during the manufacturing and distribution lifecycle phases of a product can 
be summarized as assembly and logistics data. This includes general information about a product 
instance such as production date and production site. It also includes detailed information about the 
assembly process because changes in a manufacturing process can introduce errors which in turn can 
cause product failures.  
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A Digital Twin needs to be linked to a Bill of Processes (BOP) which lists all actions performed during 
the assembly of a product instance. Traditionally each process in a BOP includes the parts involved in 
that process. For the representation in a Digital Twin this representation would have to be reversed: 
Each process is assigned to a part. That way changes to the manufacturing process of a certain part can 
be retraced. This reversal is necessary to enable data analytics despite the massive number of 
manufacturing processes. 
Assembly data also includes machine sensor data. This data can be associated to certain parts such as a 
torque logged during bolt fastening or consist of general machine operating parameters such as internal 
temperature during the assembly of a product instance. Furthermore non-standard processes and events 
such as rework during manufacturing have to be archived in the Digital Twin.  
Logistics data includes the means of transportation and storage locations as well as the duration of 
transports and storage for the final product as well as for all parts that make up the product instance. It 
can also incorporate environmental conditions measured during storage and transport. 

4. Digital Twin architecture for product quality management 
In addition to product quality monitoring and root cause analysis the concept of a Digital Twin shows 
a wide range of possible applications. Despite the fact that the potential of data-driven analysis along 
the lifecycle is well known, the implications of this trend have not translated into the product 
development process of many traditional manufacturing companies yet. Until recently the purpose of 
data was to answer specific questions mostly limited to individual product lifecycle phases. Therefore 
current ways to collect, store and manage data were not developed for the purpose of large scale 
analytics. As a result the data often lacks availability, quality and persistency and a structure that enables 
data analytics. 

4.1. Analysis 
In the previous chapter it was described that up-to-date data-driven analysis of product failures in the 
automotive domain is primarily based on order information. The introduction of a Digital Twin allows 
to break with this tradition. This is vital because order information is not sufficient to compare products, 
as options are neither unique nor static. The same option can have different implications on the 
manufacturing BOM based on other information in that order. For instance an option might not appear 
in orders for a country if the option is mandatory in that country. Equivalently when an option becomes 
standard equipment for a product it will disappear from orders of that product. To cater to the demands 
of global customers and to manage various legal requirements, companies often employ packages of 
options that differ from market to market. While this helps to reduce the complexity of managing diverse 
products, it results in ambiguous information that is of limited use for data analytics. 
A Digital Twin for product quality monitoring and root cause analysis must enable the user to identify 
problems introduced by defective parts, part changes, process changes and user behaviour. The core 
element is an as-maintained Bill of Materials including software versions for each product instance. 
Parts that can be changed easily by the customer can be excluded from the Digital Twin. As described 
in the previous chapter the Digital Twin is enriched with data collected during service and repair, with 
sensor data from the usage phase and assembly as well as logistics data. 
The complete Digital Twin contains a vast amount of data. Although a fine data granularity is 
advantageous when searching for product attributes that distinguish product instances that fail from 
those that do not, analyzing extremely detailed data is not without problems. If an analysis is conducted 
based on too many variables, the large number of variables will inevitably lead to spurious correlations. 
In fact it can be shown that these spurious correlations vastly outnumber the meaningful ones when the 
number of variables is large enough (Calude and Longo, 2016). This phenomenon is depicted in Figure 
2 showing a strong correlation between two completely unrelated variables. This effect is amplified by 
the relatively low number of product failures in the field, because it increases the chance for a random 
product attribute to be correlated with the occurrence of a failure by chance alone. 
Alternatively the threshold for a statistically significant correlation between product attributes and 
product failures has to be set very high. With this approach many potentially interesting correlations 
will be missed, as the relationship between product attribute and failure is rarely deterministic. This 
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means product failures are often pandered to by certain product attributes but these product attributes 
are no definite precursor of product failure. 
A large number of variables also complicates the interpretability of the results. If the technical root cause 
of a problem can be traced back to a certain engineering design concept, the product instance will be 
distinguishable by a large number of part numbers, manufacturing data and different measurement 
values without their implicit commonality being directly clear. Equivalently if the occurrence of a failure 
is limited to a geographic region, all local suppliers would appear to be related to the problem without 
their common denominator being evident. 

 
Figure 2. Spurious correlation of random variables (Vigen, 2017) 

4.2. Hierarchical structure 
The core element of a Digital Twin for root cause analysis and product quality monitoring is an 
as-maintained Bill of Materials of each product instance with all part numbers including revision index. 
Parts that can be changed easily by the customer or bulk material can be excluded. These core elements 
need to be recorded when manufacturing and stored as a complete list for each product instance. Data 
collection during assembly is crucial to account for the delay between product data changes and changes 
of manufactured products, while parts in inventory are used up. 
The analysis in the previous subchapter shows that data analytics on the complete list of information 
about a product instance is not going to be successful. Hence a Digital Twin needs aggregation of the 
data. Order information and options are not sufficient as aggregation levels. Hence the Digital Twin 
requires a novel data-structure that enables Big Data analytics by permitting a piecemeal refinement of 
the observed data. 
We propose a data aggregation layer for the Digital Twin that allows to organize the data hierarchically. 
For items in the BOM the elements of the aggregation layer will often be the position variant or options 
in the automotive domain. If the inclusion of parts is not dependent on position variants, they can also 
be aggregated by a top-node of the generic product structure. The elements of the aggregation layer are 
also core elements of the Digital Twin and need to be stored for each product instance. 
Each part in the Digital Twin is assigned to at least one element in the aggregation layer. These 
dependencies allow to refine search parameters based on prior information and enable a stepwise data 
analytics approach. For example if an option has been identified as related to a problem, a focused search 
can compare different revision indices of dependent parts instead of analyzing the entire BOM of all 
failed products. 
Whenever reasonable, the Digital Twin also needs to include unique serial numbers for each part. Based 
on the serial number further information can be accessed for a part such as supplier information, 
manufacturing process data or logistics data. For this part-dependent information the part number serves 
as an aggregating element, because a comparison, for example of environmental conditions during 
transport, is only meaningful for equal or similar parts. 
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General measurement values such as the environment temperature recorded by a product instance should 
be added to the core elements of the Digital Twin. Equivalent to the aggregation done by position 
variants for BOM items, this data can be aggregated into statistical values such as average, minimum 
and maximum temperature. General measurement values can also be dependent on other elements of 
the aggregation layer like a position variant. For example tracking the burn time can be considered useful 
for halogen headlights but might not be necessary for LED headlights, because of their long expected 
service life. Figure 3 shows the possible aggregation and refinement of fictitious data in a Digital Twin 
for product quality monitoring and root cause analysis. 

 
Figure 3. Aggregation and refinement of data in a Digital Twin 

A data analysis will normally start at the uppermost aggregation layer. If a product attribute from this 
aggregation layer shows a correlation with the problem, the analysis can be refined on the subset of 
products with that attribute. In a manual analysis the user should be able to delve into specific product 
attributes at will. 
To enable Big Data analytics the name or identifier of an element should remain constant over product 
generations and for similar products. This requirement is necessary to compare engineering concepts or 
measurement values between different products. Based on the example in Figure 3 the Diagnostic 
Trouble Code (DTC) is only defined for an Electronic Control Unit (ECU) with a particular part-number 
and revision index. If an equivalent DTC were defined for all Park Distance Control ECUs, the DTC 
could be added to a higher aggregation layer thus becoming a core element of the Digital Twin. 

4.3. Requirements management for data 
Data is often collected through various channels and stored in scattered legacy systems. As a result 
information is divided in silos across enterprise divisions and product lifecycle phases. To enable Big 
Data analytics, product information has to be consistent across different products and product 
generations. The generic product structure from PLM systems provides a common framework for 
product structure data. For usage phase data no equivalent framework has been established. As a result 
many traditional manufacturing companies lack a cross-enterprise strategy to manage product feedback 
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data. The collection of usage phase data is often based on requirements during product development and 
neglects the potential of data analytics in later product lifecycle phases. 
Consolidating all data requirements in a Digital Twin architecture can remedy these shortcomings. We 
propose a meta-data model to manage the elements of a Digital Twin. The meta-data model defines 
which information is collected and stored for each product instance as well as additional parameters 
such as units and frequency. Once a product attribute or measurement value is added to the meta-data 
model, it becomes a requirement for all future products. This ensures comparability between products 
and product generations.  
The meta-data model is not static but can be expanded. When new sensor data is recorded in subsequent 
product generations or more detailed data becomes available the model is extended. The decision which 
product attributes and measurement values are added to the Digital Twin has to be made in a cross-
enterprise, cross-discipline effort. These data requirements then have to be validated like other product 
requirements to prevent implausible measurement values and inconsistencies. 
For each product instance the meta-data model is a template that defines the elements of the Digital 
Twin. Utilizing the Digital Twin as a Single Source of Truth minimizes redundant data and potentially 
conflicting information from heterogeneous systems. Since the same meta-data model is valid for all 
products, elements of the Digital Twin can be empty. Therefore each datum in the Digital Twin needs a 
clear distinction between a zero value, a missing value, indicating a transmission or storage issue, or a 
non-applicable element. 
A software solution has to be employed to manage the elements of the meta-data model. The software 
could also be used to manage the shareholders of each element. This ensures that changes of a datum 
can be communicated and coordinated between all shareholders. It also establishes transparency for all 
users of a datum and allows to share the costs associated with collecting and storing the data. To prevent 
redundant data a central element of the software would be the capacity to search the meta-model. This 
way users can determine if a certain piece of information is already available. 

5. Conclusion 
Traditional manufacturing companies collect data through various channels and store it in scattered 
legacy systems. As a result information is divided in silos across enterprise divisions and product 
lifecycle phases. Consolidating these islands of information in a Digital Twin lays the foundation for a 
more efficient product quality monitoring and root cause analysis.  
The elements of the Digital Twin proposed in this research serve as a blueprint for data to be collected 
for each product instance. The proposed hierarchical data structure ensures that the data is suitable for 
Big Data analytics. This is crucial since cybertronic systems and the Internet of Things will make 
significantly more product instance specific data available to the manufacturers. Further the notion of 
spurious correlations between random variables illustrates the challenges of data analytics in large 
datasets and exemplifies the need for a hierarchical structure of the elements in the Digital Twin. 
In consecutive research the authors intent to determine the most promising approaches to select product 
attributes which best distinguish products that fail from those that do not. 
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