
 

 

INTERNATIONAL DESIGN CONFERENCE - DESIGN 2018 
https://doi.org/10.21278/idc.2018.0219 

EXTENDED DESIGN ASSETS ENABLING 
AUTOMATED TOOL DEVELOPMENT AS A PART 
OF A PRODUCT PLATFORM APPROACH 

T. M. D. Heikkinen, J. Johansson and F. P. W. Elgh 

Abstract 
Product platform development is a well-established approach for reusing product knowledge in the form 
of geometry and its configuration rules and constraints. Explicitly defining all platform components is 
not always possible however. This is why a product platform approach where the processes of realising 
platform components also are supported is needed, instead of exclusively relying on their results. The 
work presented here works toward this, with a focus on automated tool development enabled by 
extending design assets from different tools. 
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1. Introduction 
To meet the ever-increasing demand for more efficient and effective realization of products, a common 
approach is to reuse previous product and/or process knowledge (Heisig et al., 2010), both inside and in 
collaboration between the disciplines involved. Product platform development is a well-established 
approach for reusing product knowledge in the form of geometry and its configuration rules and 
constraints, commonly referred to as modules. It usually includes two main phases where first a platform 
is defined, which subsequently is used to realise product variants fulfilling the requirements within a 
specific market segment (Zha and Sriram, 2006). In cases where a product platform can be defined as a 
set of modules with predefined components and configuration rules, the realisation of a new product 
variant becomes a configuration task. Return of investing in platform development is achieved through 
standardisation of manufacturing processes and tools in such cases. Explicitly defining all module 
components entirely which meet the requirements for a specific market and time-frame might not always 
be possible, or even desired, however. One reason for this is if customer requirements are uncertain and 
the realisation of all components required to meet the potential customer requirements are not feasible. 
Developing some module components might require extensive product and production development and 
testing for each unique customer requirement. Enabling mass customisation by explicitly defining all 
possible module components then becomes implausible. This is why another, extended, product 
platform approach is necessary in these contexts where the processes of realising module components 
are supported, instead of exclusively relying on complete solutions. In this way, product variants can be 
implicitly defined as the results from specific processes, but only generated and evaluated when 
demanded. This entails new challenges however, such as assuring the process itself works within the 
bounds of product realization and can be used to meet the requirements within the targeted market 
segment. 
In this paper, an effort is made in this direction by looking at production development aspects at a Swedish 
manufacturing company. The company operates in a context where future product requirements are 
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uncertain and highly coupled to the necessity to continuously adapt their products to market changes. 
These adaptions are done by the introduction of new module components. These module components are 
examples of how processes can be developed and standardized to implicitly define module components. 
The case company has for years put efforts to specify those underlying processes in close collaboration 
with the authors of this paper. Previous work has focused on automating product development activities, 
such as searching previous solutions (Johansson, 2012) and analysing safety factors (Johansson et al., 
2015). Making sure the necessary production equipment can be efficiently developed had not yet been 
approached however, which of course is just as important. Therefore, the research work presented in this 
paper addresses the automation of tooling development as a way of implicitly defining tool-inserts to 
efficiently generate them on demand for a specific module component. 
The paper is structured as follows: related work, automation context within the case company, approach 
employed, results, discussions and finally conclusions drawn. 

2. Related work 
A product platform has been defined in many ways, a shared element of them is however that they are 
a set of common objects used to efficiently realise and launch products (Meyer and Lehnerd, 1997). In 
other words, they are collections of objects which can be reused among products. When these reusable 
objects can be defined as pre-defined components, the task of realising a product which fulfils a 
customer's needs becomes one of pure configuration. Propagating constraints to achieve high levels of 
consistency when the number of variants grow, or constraints are applied between several domains, 
quickly makes this task highly complex or even computationally impossible within a reasonable time-
frame. One way of dealing with this is to apply a procedure for the configuration task, where some 
domains are left implicitly defined until some related domains have been reduced. 
Recent approaches in applying a product platform approach have included reusability of design aspects 
as well (André et al., 2017). In a way, these design assets can be seen as implicit definitions of some 
aspects of the product. However, since human creativity can be involved there are aspects of randomness 
and the process results can vary even though the input, design assets and tools are kept the same. 
Developing just one explicit platform component with them can be difficult to know in hind sight. This 
is because they might be high-level process descriptions with simple guidelines and heuristic rules. 
The knowledge involved when developing products (or components) can be categorised as product and 
process knowledge (Zha and Sriram, 2006). Product knowledge refers to the outcome from design 
activities and process knowledge to the activities themselves. In this paper we focus on the limitations 
of current product platforms to contain knowledge with respect to implicit component definitions, this 
could be seen as explicit process knowledge. To support re-usability of process knowledge, in order to 
efficiently and effectively realise platform components, the rationale behind them could be documented 
and guidelines to repeat them could be made as human and/or computer readable. To be able to find and 
effectively reuse these added support assets they could be attached to or otherwise linked to the features 
they relate to. The centralisation of CAD-models as an initial digitalised representation of the product 
geometry (Lundin, 2015) has made it a potential communication hub for many activities in multiple 
disciplines. Attaching or linking information through extensions to the CAD-models can be achieved in 
many ways; additional attributes, names, parameters, annotations, bundled features, programmed 
features, and additional geometry. These methods differ with respect to additional aids required, how 
comprehensive they are individually, and to which degree they can express actions to alter, add, or notify 
to different events (Heikkinen et al., 2018). 
Model Based Enterprise (MBE) is a concept which has broadened the Model Based Definition (MBD) 
methodology (Miller et al., 2017a, 2017b). Instead of only using model based information as a way of 
replacing 2D drawings with 3D CAD-models, MBE has been described as a general way of supporting 
information consumption among any activity within an organisation. Many of the examples found 
revolve around annotating 3D-CAD models as a means of making the geometry more comprehensive 
and in this way make them more reusable (Trainer et al., 2016), stored inside or outside the actual CAD-
model (Camba et al., 2014). 
Annotations do not support modelling of process knowledge however, only the results from them as 
well as descriptions for how and why they came to be. The reasons why more elaborate extension 
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methods (as far as we have seen) are not used could be due to the restrictions in the interoperability 
between software, which is enabled through standardisation of the information (such as STEP AP204). 
Core Product Model2 (CPM2), as briefly described in (Fenves et al., 2008), is an interesting concept 
focusing on these shortcomings. CPM2 is a product model with the purpose to serve as a common data 
model supporting product lifecycle management and includes the outcome of design as well as the 
activities describing how the product information came to be as well as to some extent why it is 
conformed as it is. 
Including design aspects within a product platform makes them similar to design repositories which can 
be defined as "intelligent knowledge-based design artifact modeling system used to facilitate the 
representation, capture, sharing, and reuse of corporate design knowledge" (Szykman et al., 2000). It 
has been noted that significant efforts are still required between design repositories and design 
automation modelling in CAD systems (Lyu et al., 2017) which this paper addresses in connection with 
tooling development. 

3. Automation context within the case company 
The company within which the automation took place is a global manufacturing company focusing on 
safe, easy-to-use and aesthetic products supporting an active lifestyle. Their products include transport 
equipment on cars, such as roof-racks, bike carriers and cargo carriers, and much more. Roof-racks are 
a central product on which both bike and cargo carriers are attached. They are comprised of two distinct 
parts; load bar and fixation system. Load bars are offered in four different variants and fixation systems 
vary with roof type (such as whether the roof has fixation points, flush railings, normal or wide railings, 
etc.). If the roof type is one without railings, a third component is necessary, an adaption kit, which 
varies with respect to roof-profiles, a unique geometric feature for each car-model. 
The company's targeted market is 95% of all car-models for many years. Applying a conventional 
product platform approach would be possible if it was not for the incredible number of possible 
variations to the adaption kits. Since the kits are dependent on roof-profiles which vary for each new 
car-model released to the market, a well-established process has instead been defined to be prepared to 
develop and produce them as they are released and before customers need them (see Figure 1).  

 
Figure 1. Overview of kit-development process 
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In previous research projects at the company, focus has been on increasing the efficiency when searching 
for previous roof-profiles (Johansson, 2012) (to increase reuse of previous kit variants) and when 
performing crash simulations (Johansson et al., 2015) (for safety assurance). Efficiently realising 
production aspects is also an important part of the process which will be the focus of the current research. 
Adaption kits are comprised of two components, a footpad and bracket. At the moment, only the bracket 
is produced internally, and footpads are purchased, so the focus in the study presented here has been 
further narrowed to the bracket. It is a sheet-metal component which is formed in a press, which requires 
unique tool-inserts (pads and punches) and accompanying documentation for each adaption kit (see 
Figure 2). Since the process is performed several tenths of times a year, depending on the number of car 
releases, and the scope of requirements are quite well known in hind sight, automation fits this process 
well. 

 
Figure 2. Product model constituents from product and production development 

4. Automation approach 
Initial steps towards automation of the tool development process included documentation analysis and 
qualitative interviews with domain experts. The focus for the automated process was put to range from 
receiving a tool order to developing the tool-inserts (punch and pad) as well initial documentation. This 
focus was put since these process steps are all performed within a digital environment and are confined 
by a single group in the organisation. Figure 3 shows an overview of the entire process, starting with 
getting an order through email followed by modelling and documentation efforts in CAD- and 
spreadsheet-software. Testing is then performed which can result in further refinements to the models. 
After identifying a general scope of the automation project, it was divided into six main phases: (1) 
Collect detailed information about the different tasks by recording and discussing the development of 
an actual order. (2) Formalise the process, including design assets and tools utilised using the recordings 
and notes taken. (3) Review automation capabilities and formalise a list of identified challenges. (4) 
Analyse the challenges identified and formalise a strategy to deal with them. (5) Codify, analyse and 
optimise. (6) Evaluate by recording the same activity again, supported with the developed automation 
system.  
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Figure 3. Tool-development activity overview, including tools utilised in each task 

5.  Results 
Presentation of the tool development is structured according to the automation approach described 
above, steps (1) and (2) are integrated into Section 5.1 however. 

5.1. Observe and formalize manual process (steps 1 and 2) 
The manual process was recorded into a video and simultaneously discussed which took approximately 
35min. This recording and the notes taken were then used as a basis for the formalisation of the activities, 
depicted in Figure 4 and 5. Within the process there were six design assets used each time; three 
managed by CAD-software, two by spreadsheet-software and the final one by the operation system. 
Their individual purpose and managing tools can be seen in Table 1 below. In short, there were four 
templates instantiated each time an order was received. They included a general tool model, a tool-insert 
drawing, a testing documentation spreadsheet and a testing folder structure. In addition, a tool-model 
was used to get the required sheet-metal bandwidth and a documentation file was used summarising all 
tool-inserts developed. 
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Figure 4. Model punch and pad (C.2) activity 

 
Figure 5. Initial documentation activity 

C.2.2

Instantiate Tool‐
template

C.2.3

Replace default 
bracket with new

C.2.4

Adjust bracket and 
punch length

C.2.5

Create surface to 
cut with

C.2.6

Adjust extrusion 
sketch and 
extrude

C.2.7

Cut with surface

C.2.8

Check if pad 
collided with 

punch

C.2.9

Adjust collision 
sketch and cut if 

collided

C.2.10

Create surface to 
extrude punch too

C.2.11

Extrude sketch to 
punch

C.2.12

Insert fil lets

Start
End

C.2.1

Simplify input 
bracket

CAD‐
software

Start

C.3.2

Insert Tool‐
manufacturing 
specifications

C.3.6

Initiate Tool‐
testing 

documentation

C.3.5

Insert and adjust 
Drawing instance

End

C.3.1

Calculate original 
sheet metal length

CAD‐addinSpreadsheet‐
software

CAD‐
software

Operating 
system

C.3.3

Instantiate 
Drawing‐template

C.3.4

Instantiate Tool 
testing template

762 DESIGN PROCESSES



 

Table 1.  Design assets and their specific purpose, tool-manager and extensions 
required for automation 

5.2. Review automation capabilities and bring forth any challenges (step 3) 
The tools utilised during the manual process (as illustrated in Figure 3 and 5) were three software (Email, 
CAD, and spreadsheet), one add-in to the CAD-software, and the operation system. All but the CAD-
software add-in had extensive API's which enable automation processes that are persistent over time 
(e.g. software updates). That add-in was a third-party CAD-module specifically for sheet-metal forming 
purposes and would require the simulation of how a user interacts with the graphical user interface (e.g. 
sending short-commands or worse, simulating the mouse) to automate which is not a persistent way of 
automating software.  
After reviewing the manual process and the automation capabilities a number of challenges could be 
identified, they were: (1) How should we deal with the "non"-automatable (at least persistently) tool? (2) 
How should we deal with the fluctuating modelling techniques applied to the received geometric model? 
(3) How should we deal with the uncertainties with spring-back effects? These are further described below. 

5.3. Formalise a strategy to deal with challenges (step 4) 
A strategy to deal with the above identified challenges was made by first analysing the underlying 
reasons for it followed by iteratively discussing and testing different approaches. Below is the analysis 
of the underlying reasons behind the challenges and the final strategy decided. 

5.3.1. Challenge (1) How should we deal with the non-automatable (at least persistently) tool? 

The tool which was difficulty to automatically manipulate effectively was the CAD-software add-in. This 
was used to measure the original (unbent) sheet length. To work around this a simple linear model, i.e. ݑ ൌ
݂ሺݑ௕ሻ ൌ ݇ ∙  to the unbent (u) with a coefficient (௕ݑ) ௕, was constructed relating the bended sheet lengthݑ
(k) which was estimated by running the add-in for several brackets. Initial tests (of about 10 brackets) 
showed a standard deviation of about 0,3mm with a maximum of 0,63mm, which was within the acceptable 
range. Later tests did however show larger deviation up to 2mm, which could be cause of concern.  

5.3.2. Challenge (2) How should we deal with the fluctuating modelling techniques applied to the 
received geometric model? 

Some of the process specifics was difficult to know in hind sight, such as how to simplify and otherwise 
alter the bracket geometry for tool-insert modelling. The bracket that is received is a depiction of the 

No. Design Asset Purpose  
(in this process) 

Manager Extensions 

1 Tool-template 
CAD-model 

Used to model the tool-insert 
geometry. 

CAD-
software 

Named parameters and 
additional sketches 

2 Machine 
bandwidth 

Used to read necessary machine 
bandwidth. 

CAD-
software 

- 
(Integrated into tool 

manufacturing specification 
spreadsheet file as 

constraints) 

3 Drawing-
template 

Used to generate 2D-geometric 
depictions for EDM setup.  

CAD-
software 

Key-words 

4 Tool 
manufacturing 
specification 

Documents manufacturing specifics 
for each tool-insert. 

Spreadsheet-
software 

Constraints and Lookup 
function 

5 Tool testing 
template 

A document available for each tool-
insert where testing results and 

decisions are summarised. 

Spreadsheet-
software 

Key-words and cell-
references 

6 Folder structure 
template 

Folder structure for testing specifics, 
including tool testing template file. 

Operation 
System 

- 

DESIGN PROCESSES 763



 

final form of the component which is not what the tool-inserts being developed are considering. There 
are a number of fillets and cuts which are sometimes removed since these are realised later in the 
production process. In addition, geometric dimensions associated with spring-back effects need to be 
changed as well. One reason for the difficulties in formalising how to simplify the bracket each time 
was the difference in modelling approaches when developing the bracket. There are at least four 
engineers modelling the brackets. To deal with this it was decided that some manual work would be 
required to simplify the model but also informing product development about the implications in 
efficiency of tooling development. 

5.3.3. How should we deal with the uncertainties with spring-back effects? 

Another rule which was difficult to specify in hind sight was what the spring-back effects would be, 
something which was evaluated each time by taking the experience gained from testing previous 
solutions in consideration. It was decided that this would be left as a manual step. 

5.4. Codify, analyse and optimise (step 5) 
Since the process required some manual setup work using CAD-software it was decided that this would 
also become the main manager for the process. A CAD-macro was developed which was managed by a 
CAD add-in. The codification took about 4days to formalise 70% of the process, but approximately 
another 15days for another 15%. This was mainly because of the difficulties in formalising some of the 
geometry selection steps further down the process. The final 15% is made up of the setup process which 
was discussed above and also the positioning of two arrows in the drawing. They were not possible to 
position in an efficient way with the CAD-API and therefore left out. The positioning of the arrows took 
about 5seconds. Two examples can be seen below, Figure 6 shows a longer bracket and Figure 7 one 
where the pad and punch collided and an extension of the punch was necessary as well as the removal 
of a section of it. 

 
Figure 6. Resulting tool-inserts (middle) and initial documentation (right) for a  

long bracket (left) 

During the codification a number of extension were used, mainly for providing visible handles to the 
CAD-macro so that it could find and manipulate the correct parts. Table 1 shows a summary of all design 
assets and their individual extensions. A name convention was introduced and applied to parameters. 
The name convention allowed for adding key-words (marked by special characters within the name 
strings) so that sketch-parameters and drawing notes could be found and changed automatically. The 
name convention and key-words made the connection to the macro more visible and maybe ensured it 
is not altered or removed without consulting the effect on the macro as well. One design asset, namely 
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the machine bandwidth, could be added as a table of constraints to the manufacturing specification 
instead. Also, by using a spreadsheet internal look-up function it could give the bandwidth required 
directly when the unbent sheet-metal length was inserted. The final extension was cell-references where 
copies of the same information could be found, such as the bracket article number found on several of 
the spreadsheet sheets. 

 
Figure 7. Resulting tool-inserts (middle) and initial documentation (right) for a short 

and high bracket (left) 

5.5. Evaluate (step 6) 
To evaluate the automated process, one of the domain experts was set out to receive two randomly 
selected tool orders, and the goal was to achieve the same (or improved) outcome as for the initially 
recorded manual process. The modelling of the first order was recorded and the second was not. It took 
approximately 5minutes to setup the model in both orders and an additional 12min for the first one and 
a little less for the second one. This is about half of the initial time. It was noted that the process had 
become a little less flexible however, names of components and the flexibility in changing modelling 
parameters had been affected. 

6. Discussions 
Automating tool-insert development to implicitly define tool-inserts for future platform/module 
components was shown to be practically possible to some extent and required the extension of design 
assets in the form of CAD-models and spreadsheet templates. How and why they were extended is 
discussed further in Section 6.1. Recording the task was possible since it only took about 30min, this 
made it easier to understand the detailed steps involved and most likely removed many questions due to 
memory loss. There are still some aspects which could not be formalised and the outcome from the 
process was not as flexible as wanted however. These aspects are also further discussed below, followed 
by future opportunities if the process was to be fully automated. 

6.1. Extending design assets 
To clarify what is put into the words "design asset" in this paper, they are used to describe a pre-defined 
digital artefact which is of value when executing a design process, separate from the entity performing 
the task (e.g. software or human). During the formalisation of the manual process of designing tool-
inserts described in Section 5.1, a number of such objects could be identified, and they can be seen in 
Table 1. Identifying and utilising these design assets is thought to have made the automation project 
easier. To utilise the design assets within the automation application they were extended in different 
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ways however, this can also be seen in Table 1. As an example, a naming convention was established 
and applied to geometric parameters so that the script (CAD-macro) could find and alter it without 
mistaking it with another "randomly" generated parameter.  
In previous research (Heikkinen et al., 2018) seven extension techniques for CAD-models were 
identified, they were: names, additional attributes, parameters, annotations, bundled features, 
programmed features, and additional geometry. Some of these are also applicable to other models, 
spreadsheets can be extended with notes (similar to annotations) and user-defined functions (similar to 
programmed features). In the automation of tool-inserts presented here the tool-template CAD-model 
(design asset no. 1) was extended using names and additional geometry (sketches). This was mainly 
done because these are information sources commonly manipulated at the company already. Any of the 
alternative techniques could have been used however which might have made it more secure and easier 
maintained. As was discussed in (Heikkinen et al., 2018) names cannot be used to model executable 
information which could make it dynamic with respect to changes made to it or other dependent aspects. 
Names are visible in for instance the CAD-feature tree but in contrast to annotations not in the graphical 
user interface and they quickly become incomprehensive when the amount of information needed to be 
stored inside becomes too large. Additional geometric elements can be visible in both the graphical user 
interface and the CAD-feature tree but bundled features or programmed features can be reviewed and 
references to the dependant entities can be customised. The added complexity and managerial aspects 
associated with these methods made them less interesting initially in the work presented here. 
The drawing-template model (design assets no. 3) was extended with key-words, as an example all 
drawing annotations and textboxes where the kit article number was supposed to be inserted was 
replaced with the key-word "@KitNo" to make sure the script could identify all instances within strings 
that needed it. This could have also been done in an alternative way by adding new annotations or 
textboxes with unique names for instance. Using key-words changed the original template as little as 
possible and made it easy to manipulate and identify where the script was being affected however.  
Spreadsheet models (design assets 4 and 5) were extended with constraints (cells with new information), 
look-up functions, key-words, and cell-references. Using look-up functions and cell-references make 
the extensions dynamic to changes with respect to the dependant parts. However, since the references 
are one-way (in the sense that the constraints do not know which cells utilise them) and separated from 
the constraints they can become difficult to manage if changes are frequently required. This was not an 
issue in this context as these constraints are built into the machine from where they originate (sheet-
metal bandwidths) and changes are not very likely. 

6.2. Automation challenges 
Automating the process of tooling-insert development starts when orders are received from email, but 
an initial manual setup is still required within the CAD-software partially due to the differences in 
modelling strategies within product development. Through formalisation of the tool development 
process, some of the relations have now been identified and communicated back to the design engineers 
(such as tangency between faces, specific dimensioning strategies etc.).  
Ensuring that the models developed adhere to the standards required could be done post-development 
by formalising and implementing rules which need to be run successfully before sending an order to 
tool-development. Another approach which has been introduced is to work proactively and generating 
a bracket template which ensures that the geometry can be simplified automatically in the development 
of tool-inserts. Other reasons for the initial manual setup process is the prediction of spring-back, which 
is made by the production engineer taking the most recent experience from testing into consideration. 
Simulations had been reviewed previously, but not with good enough results. As the experience is 
further built maybe a general rule can be identified and applied however. 

6.3. Output flexibility 
Model flexibility is lost to some extent because the process knowledge contained in the automation-
script is not instantiated and attached to the models it deals with. CAD-features (such as Extrusion, 
Revolve, Cut, etc.) are an example of process knowledge which is not only run, but also instantiated 
within the process context and saved with input, making it possible to also alter the input and rerun the 
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activity. Extending CAD-models with process knowledge is possible by using CAD-software 
capabilities such as rule-based systems or programmed-features. Rule-based systems, such as 
Knowledgeware within CATIA or Knowledge Fusion within Siemens NX, could be used for modelling 
process knowledge within their specific domains as well as for connection to spreadsheet-software. 
Macro-features, such as Custom Features within Siemens NX and Macro-features within Solidworks, 
can also be used to automate modelling activities within the CAD-domain and spreadsheet-software, 
but even more so by enabling the addition of COM-registered reference libraries. This means that 
activities performed in many other software can be included. Spreadsheet models could also be extended 
with process knowledge using user-defined functions. Instantiating and attaching the process knowledge 
would enable backtracking or reviewing of examples where the platform process knowledge was used, 
to which effect, and maybe for which reason (if documented correctly). 

6.4. Opportunities 
If the full process, from roof-profile data to the development of components, safety assurance through 
crash-simulations and tool-insert development, could be automated there are a number of interesting 
aspects to explore.  
An exploration could be made of the roof-profile data extremes where maybe safety factors are affected, 
or production limitations are reached. In other words, the full design space could be modelled, and 
decisions could be made to investigate the limiting reasons if necessary and focus could be set at 
optimising manufacturing aspects or further expanding the scope. Thus, the product platform could be 
used very similar as to a conventional product platform. The product variants could be defined by 
describing which modules that should be included although it might not be possible to visualise the full 
component variation within the module containing the automation system. 
Roof-profile trends could be analysed, and proactive actions could be applied to avoid possible issues 
in the future. If the sales-trends start moving toward a limitation of any product realisation requirement 
(safety or producibility in this case) then the initiation of a new product platform development project 
could be deployed to expand the scope for a future product family. 

7. Conclusions 
Being able to elicit the positive results from a product platform approach which includes design aspects 
requires a configuration procedure where some domains are kept implicitly defined through explicit 
process knowledge modelling. The company investigated in this paper manufactures products that need 
to be continuously geometrically adapted to new car-models. Keeping a constant outlook for upcoming 
car releases and proactively formalising and optimising the development process of the affected 
platform modules makes it possible to meet the requirements for the targeted market segment, and still 
keep internal production efficiency in check.  
The presented automation of tooling development is one part of the companies increased development 
efficiency and was shown to be practically possible to a large extent in a persistent manner. The use of 
extended design assets as a foundation for automation projects might also be general and applicable in 
other design automation projects. The automation project of tool development at the company described 
in this paper can serve as a model for future automation projects within automated tooling development. 
To fully automate the process, further investigations are required with respect to the CAD-modelling 
strategies applied in previous steps and effective models for estimating sheet-metal spring-back. 
Ensuring output flexibility by exploring rule-based systems and programmed features is another 
interesting aspect which might also contribute to more transparency and exemplification of the design 
assets themselves.  
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