
THE BEST OF THREE WORLDS - THE CREATION OF

INNODEV A SOFTWARE DEVELOPMENT APPROACH THAT

INTEGRATES DESIGN THINKING, SCRUM AND LEAN

STARTUP

Dobrigkeit, Franziska (1); de Paula, Danielly (2)

1: Hasso-Plattner-Institut, Germany; 2: National University of Ireland Galway, Ireland

Abstract

Agile development has been important to software engineering for decades. However, limitations in

existing agile methods such as Scrum and eXtreme Programming still persist and have given rise to

efforts aiming to integrate agile software development with other iterative and innovative practices such

as Deisgn Thinking or Lean Startup. This paper aims to identify best practices and valuable proposals

from such integration efforts, in order to create a new process model, which aggregates the core elements

and key aspects of the former works. The research is based on a literature review and a cross-case

analysis of two already existing models, MoIT and DT@Scrum. Relevant aspects of both models are

presented and discussed in relation to other relevant research in this area. The analysis shows that an

integration of Scrum practices with Design Thinking and Lean Startup could be favorable. Furthermore,

the combined process model InnoDev is presented.

Keywords: Design Thinking, User centred design, Software development, Multi- / Cross- / Trans-

disciplinary processes, Process modelling

Contact:

Franziska Dobrigkeit

Hasso-Plattner-Institut

Enterprise Platform and Integrations Concepts Group

Germany

franziska.dobrigkeit@hpi.de

21ST INTERNATIONAL CONFERENCE ON ENGINEERING DESIGN, ICED17
21-25 AUGUST 2017, THE UNIVERSITY OF BRITISH COLUMBIA, VANCOUVER, CANADA

Please cite this paper as:

Surnames, Initials: Title of paper. In: Proceedings of the 21st International Conference on Engineering Design (ICED17),

Vol. 8: Human Behaviour in Design, Vancouver, Canada, 21.-25.08.2017.

319

 ICED17

1 INTRODUCTION

How to organize agile development in order to deliver faster, better, and cheaper solutions is an ongoing

discussion in software engineering circles (Dybå and Dingsøyr 2008). Limitations found in agile

methods, such as Scrum, include problem understanding and solution finding (Lindberg et al. 2011),

scaling (Vilkki 2010), and lack of attention towards design by (Dybå and Dingsøyr 2008). These

limitations can lead to severe consequences such as: a company launching the “wrong” products,

resulting in poor market reception, or necessary rework requiring extra engineering hours and

investments (Verganti 1997). In order to improve problem understanding and solution, as well as

attention towards design, researchers suggests the integration of Design Thinking with agile software

development (Lindberg et al. 2011). Design thinking is a set of practices that helps organizations to

solve complex problems by reducing bias, encouraging innovation and inspiring people to become more

creative (Liedtka 2011). Such an integration has been researched in different settings, such as large

business organizations (Häger et al. 2015), startup-like environments (de Paula and Araújo 2016) and

educational settings (Lindberg et al. 2011).

Lean Startup is considered as a complementary approach to Design Thinking and agile software

development that helps to create scalable plans (Grossman-Kahn and Rosensweig 2012; Hildenbrand

and Meyer 2012; de Paula and Araújo 2016). Lean Startup is a “set of practices for helping entrepreneurs

increase their odds of building a successful startup” (Ries 2011, p.37) by improving productivity, time-

to-market, product quality and customer satisfaction (Rodríguez et al. 2012). According to (Grossman-

Kahn and Rosensweig 2012), using the three approaches together makes particular sense because Design

Thinking provides a roadmap to creative and human-centered solutions, agile methods optimize the

process and enable the team to move quickly and Lean Startup provides a framework to validate and

measure the product life cycle. However, a seamless integration of Design Thinking and Lean Startup

into agile development processes of software development companies is still subject to research

(Lindberg et al. 2011; Rodríguez et al. 2012). To increase the likelihood of a successful integration of

Design Thinking, Lean Startup and agile into one process, this study aims to develop a new conceptual

model by singling out the relevant dimensions that may improve the new software development process

from two already existing models: DT@Scrum proposed by Häger et al. (Häger et al. 2015) and MoIT

proposed by de Paula (de Paula and Araújo 2016). DT@Scrum is “an approach that combines Design

Thinking and Scrum in order to create an agile software development process that can deliver the

innovative customer-oriented products and services required by competitive companies” (Häger et al.

2015, p.2). MoIT, on the other hand, is an approach that combines Design Thinking, Scrum, and Lean

Startup in order to teach startups on how to develop innovative products. We first extract detailed

knowledge of the two models’ composition using the principle of Method Engineering (Ter Hofstede

and Verhoef 1997). Second, a cross-case analysis is performed by pattern matching as suggested by Yin

(Yin 2003). The results of the comparison are further analysed to identify relevant aspects that can be

aggregated into a new conceptual model, called InnoDev aimed at enhancing the innovativeness in IT

development.

2 LITERATURE REVIEW

Agile methods (e.g. Kanban, Scrum) have been recommended for software development due to its

benefits in relation to reducing the development time, increasing the flexibility and quality of the product

(Erickson et al. 2005, p.89). In particular, Scrum focuses on project management in situations where it

is difficult to plan ahead; with mechanisms such as feedback loops, self-organizing teams and sprints as

its core elements (Schwaber and Beedle 2001). However, a comprehensive systematic literature review

conducted by (Dybå and Dingsøyr 2008) concluded that a limitation that has repeatedly been mentioned

in the literature related to Scrum is the lack of attention to design. In accordance with this finding,

(Lindberg et al. 2011) discuss problem understanding and solution finding as another limitation of IT

teams in general and especially agile teams. In order to overcome this restriction and encourage more

interdisciplinary collaboration, there have been serious efforts (Lindberg et al. 2011; Hildenbrand and

Meyer 2012) to introduce design methods, especially Design Thinking to IT development. In these

efforts Deign Thinking is commonly used as a means to requirements analysis and elicitation before the

actual agile development. At the core of Design Thinking are four key elements: the iterative process

including various methods and tools supporting each phase, multidisciplinary teams, creative space and

320

ICED17

a designer’s mindset (Wölbling et al. 2012). According to (Beverland and Farrelly 2007), Design

Thinking offers a potent way to develop superior products and facilitate product appropriateness by

enhancing team collaboration and improving idea generation. Similarly, it has been argued that

incorporating Design Thinking into the software development process can result in cost savings due to

reductions in redesign work, as well as shortening the length of the process itself (Lindberg et al. 2011).

By making a comparison between Design Thinking and agile practices, it is possible to identify some

strong parallels such as team collaboration (Schwaber and Beedle 2001), direct iterative learning

(Larman 2004) and the ability to solve wicked problems.

Even though a number of studies on how to integrate Design Thinking with agile practices have been

conducted, some authors suggest that there are limitations in using only those two approaches. The main

limitation mentioned is that neither Design Thinking nor agile practices offer support on how to track

growth and how to scale the product after its launch (Vilkki 2010; Grossman-Kahn and Rosensweig

2012). For instance, in the context of SMEs and startups, scalability represents the most important

architectural aspect and should be addressed as soon as possible (Thorpe et al. 2005). Therefore, a

balance must be found between flexibility and repeatability in their organizations’ knowledge

management and processes in order to plan for scale (Paternoster et al. 2014). In this regard, several

authors propose to use Lean Startup to address those limitations (Grossman-Kahn and Rosensweig 2012;

Hildenbrand and Meyer 2012; de Paula and Araújo 2016). A core component of Lean Startup is the

build-measure-learn life cycle, which provides guidance on how to develop a product that meets its

value proposition, the MVP – Minimum Viable Product without waste (Ries 2011). In addition, the lean

life cycle includes actionable metrics, AARRR - Acquisition, Activation, Retention, Revenue and

Referral, which can be used to assess the product performance according to the users acceptance

(Maurya 2012). For instance, to measure acquisition it is possible to use a specific test environment that

allows for quantitative measuring of user feedback, such as a landing page. Another core element of the

Lean Startup is the concept of pivot. "A pivot is a special kind of change designed to test a new

fundamental hypothesis about the product, business model, and engine of growth” (Ries 2011, p.168).

Table 1. Design Thinking-agile models for software development

Model Specialty Focus Target group

(Grossman-Kahn and

Rosensweig 2012)

Lean Startup was integrated

and tested in a laboratory.

identify the solution

+ deliver a prototype.

Startups.

(Hildenbrand and

Meyer 2012)

The use of lean thinking

concepts throughout the

development process.

identify + implement

the solution.

Inexperienced

teams.

(Häger et al. 2015) Scrum is used to structure

Design Thinking activities.

identify + implement

the solution.

Large software

organizations.

(de Paula and Araújo

2016)

Lean Startup was integrated

and tested with undergraduate

students.

identify, implement

+ scale the solution.

Startups.

The characterization of new theories on how to integrate Design Thinking into the agile process has

been progressing in the literature. Table 1 summarizes some of the existing models. (Grossman-Kahn

and Rosensweig 2012) propose a design-led, multidisciplinary model to build innovation capacity

through the integration of diverse innovation methodologies such as Design Thinking, Lean Startup and

agile practices. By validating the model with a team from the Nordstrom Innovation Lab, the authors

suggest that software development teams should be guided by a clearly defined set of end goals and

mindsets, rather than a rigid adherence to specific tools or processes. Similarly, (Hildenbrand and Meyer

2012) introduced the concept of lean thinking and developed a model using Design Thinking and agile

methods to optimize the training experience for software professionals and their coaches. The authors

suggest that lean thinking is closely intertwined in many ways with Design Thinking and they

complement each other very well. (Häger et al. 2015) present DT@Scrum, a process model for large

organizations that seamlessly integrates Design Thinking and Scrum. Unlike the other models, the

authors use agile concepts, such as sprints and backlogs, to plan and structure the Design Thinking

activities. (de Paula and Araújo 2016) developed a model using agile, lean start up and Design Thinking

by combining the models of (Grossman-Kahn and Rosensweig 2012) and (Hildenbrand and Meyer

321

 ICED17

2012). It is based on previous research (de Paula and Araújo 2016) and aims to identify, implement and

scale solutions in a startup environment.

Even though there are many models, a generally accepted model has not yet emerged. In order to come

to an agreement on the core concepts for software development, it is required to balance the existing

contributions by making a comparison between the most recent models in order to identify and analyse

relevant aspects from each model.

3 RESEARCH METHOD

This study entails a qualitative comparative cross-case analysis (Miles and Huberman 1994) of two

software development models, DT@Scrum proposed by (Häger et al. 2015) and MoIT proposed by (de

Paula and Araújo 2016) in order explore how Design Thinking, Lean Startup and Scrum can be

successfully integrated into the software development process. Qualitative comparative analysis can be

used to accumulate, organize, and interpret the studies, with the aim of achieving a level of

understanding that transcends the results of the individual studies (Ragin 1987). For this study, the

qualitative comparative cross-case analysis was adapted from (Yin 2003) and consists of three main

activities: to develop a detailed analysis of the selected models, compare concepts and relations that

emerged from the analysis and develop a new model based on the comparison analysis.

3.1 Research questions

In this article, the following central research question guided the next steps: How can Design Thinking,

Lean Startup and agile practices be successfully integrated into one software development process? The

following specific research question was used to guide the comparison analysis and synthesis of results:

What are the relevant aspects of a software development process used by a startup environment that

could be used by large organizations and vice versa?

3.2 Case selection

In order to answer the specific research question, we aim to compare to models designed for an

organizational environment and a start-up environment. The case selection combined criterion sampling

and convenience sampling (Patton, 1990). The two models were included in this study because of their

different targets. While DT@Scrum aims to combine Design Thinking and Scrum to be used by software

teams in large organizations, MoIT aims to support startups to develop innovative products using Design

Thinking, agile practices and Lean Startup. This variation increases the likelihood to generate theoretical

insights from a cross-case analysis (Yin 2003). Additionally, both cases were easily accessible due to

existing personal connections, and there were no confidentiality issues to collect the data and publish

the results. The table below summarizes the characteristics of the selected models.

Table 2. The characteristics of the selected models

DT@Scrum MoIT

Target group Large companies Startups

Product Innovative Software Innovative Software

Characteristics Combines Design Thinking and

Scrum.

Combines Design Thinking, agile practices

and Lean Startup.

3.3 Data Collection

Two main data sources were used for MoIT: a published paper (de Paula and Araújo 2016) that details

the technical aspects of the model, and observational first-hand experiences of one of the authors who

had participated in the creation and evaluation of the model. For DT@Scrum, there were also two main

data sources: a published paper (Häger et al. 2015) reporting the technical aspects of the model and its

evaluation, and also the details from one of the authors who had participated in the development of the

model.

3.4 Data Analysis

For this study, qualitative cross-case analysis (Miles and Huberman 1994; Yin 2003) was conducted by

comparing and synthesizing the two models. Following an approach by (Müller and Thoring 2012)

322

ICED17

Method Engineering (ME) was chosen to extract detailed knowledge of the two models’ composition

and allow for comparison. ME is concerned with the detailed description, design, adaption, and

evaluation of methods, using engineering principles (Ter Hofstede and Verhoef 1997). By providing a

detailed analysis of a method, it is possible to allow other researchers to reproduce the method and test

its utility claims. Similar to (Thoring and Müller 2011), we use a subset of Business Process Modelling

Notation (BPMN), as shown in Figure 1, to describe the constructs associated with each model. While

BPMN is not usually used to model iterative processes, (Thoring and Müller 2011) have shown that it

can be useful to model the phases, basic tasks, outcomes and decisions relevant to a process model, in

their case Design Thinking, thereby allowing for a detailed comparison of these elements, as was done

in (Müller and Thoring 2012).

Figure 1. Used symbols of BPMN.

Second, the cross-case analysis was performed by pattern matching as suggested by (Yin 2003). The

results of the comparison were further analysed to identify relations between the models. The main

similarities and differences were synthesized and illustrated in Table 3. Subsequently, a new conceptual

model - InnoDev - was developed that aggregates relevant aspects of each model. InnoDev, aims to

improve the software development process.

4 COMPARATIVE ANALYSIS

To reverse-engineer the two models, we used the BPMN to describe the constructs associated with each

model. The methods and tools and the aspired outcome of each step are presented. For simplicity, the

iterative and interconnected nature of the Design Thinking activities as well as the Scrum sprints have

been omitted.

4.1 MoIT

Figure 2. BPMN description of MoIT.

The MoIT process, as depicted in Figure 2, starts with the standard phases of the Design Thinking

process as described by (Wölbling et al. 2012). As the model addresses inexperienced startups, it

prescribes methods to use and outcomes to achieve for each of the steps. For example, the model

prescribes creating a Persona and a How-Might-We- Question as part of the step Point of View in order

to simplify the process for novice Design Thinking teams. During the Design Thinking phase, various

forms of prototypes are developed. For team-internal discussion low-fidelity prototypes, like paper UIs

are suitable while testing with users require more medium-fidelity prototypes, which can be tested in

the relevant context. For example, mobile games should be tested on a phone by using wireframes or

mock-ups. Following the Design Thinking phase, the team moves on to Build the product following

Scrum practices and lean concepts. During this phase, it is important to already implement ways of

collecting data according to AARRR, a metric-based evaluation technique that is commonly used in

Lean Startup. The goal is to find some validation of a ‘product-market fit’ and to answer the question if

the developed product is something that people want (Maurya 2012). During the build phase, the MoIT

model also introduces the concept of “micro problems” that should be addressed using Design Thinking.

A micro problem could take place during product implementation, and is derived from the main

problem. Micro problems faced by the team during the Scrum sprints, should be solved by using the

323

 ICED17

“vanishing point” to go back to the Design Thinking phase. By the end of the Build phase, the team will

have launched the MVP. In the following measure phase the user's acceptance can be monitored and

evaluated according to the defined AARRR metrics. During the Learn phase the team will use these

measurements to decide whether to continue to develop the product or pivot to a new idea. If the team

decides to pivot, they discard the current product and start over. If the team decides to continue, they

should analyse the user's' feedback and identify problems and solve them, or add new features

accordingly.

4.2 DT@Scrum

Figure 3. A detailed description of DT@Scrum.

DT@Scrum, as depicted in Figure 3, proposes three phases that gradually move from Design Thinking

to software development: the Design Thinking Mode, the Initial Development Mode and the Fully

Integrated Mode. The Design Thinking Mode is used to explore the problem and solution spaces and

delivers a product vision that solves at least one identified problem. It follows the standard phases of the

Design Thinking process as described by (Wölbling et al. 2012) in an iterative manner. Following this

phase, the Initial Development Mode allows the team to refine the concept, by implementing and testing

UI concepts, technology stacks and first features thus ensuring the viability, desirability and feasibility

of the concept. The final phase, the Fully Integrated Mode, is used to gradually develop the software

system according to the concept. During this phase, the model introduces DT-Breakouts, a concept

which allows the team to go back into a Design Thinking working mode in order to define or refine

features or solve blockers that they came across during development. According to the progress

throughout the three-phase process, the artefacts and especially the prototypes used during the phases

move from being of low fidelity (e.g. paper UI or vision poster) in the first phase to a medium fidelity

(e.g. clickable wireframes or first proof of concept implementations) in the second phase to high-fidelity

prototypes (e.g. actual software on final technology stack) in the final phase. In large organizations,

management approval can be required at certain points of a project. In this way, the transitions between

the three phases form a natural gateway that can be connected to an approval meeting, allowing

management to discuss the project with the team.

Additionally, Scrum is proposed as the overall process framework underlying all three phases.

Accordingly, DT@Scrum proposes Design Planning as an adaption of Scrum to Design Thinking

activities in order to let design teams get a feeling for the duration and value of Design Thinking

activities, and to enable them to better structure their creative work. Accordingly, it proposes to structure

the Design Thinking phase in several one or two-week sprints, including backlog creation, sprint

planning, and evaluations in retrospective meetings.

DT@Scrum proposes measures to ensure continuity in the team. First, the Design Thinking team should

be composed of members from all relevant departments, e.g. sales, development, design. Second, the

transition between modes allows to make changes with regards to the team and either scale the team or

switch team members. Third, DT@Scrum proposes to keep at least one member of the original design

team in the role of the Product Owner, to ensure knowledge is passed on correctly.

4.3 Cross-Case Analysis

This subsection presents a detailed comparison of MoIT and DT@Scrum based on the aforementioned

data sources (papers and thesis) and the detailed description from the previous subsection. Table 3

provides an overview and comparison of relevant aspects of both innovation strategies. We compare the

goals, methods, specific process steps and the respective target groups.

324

ICED17

4.3.1 Similarities

Both models have the same goal, to develop innovative software products. However, the target group is

different. While MoIT is mainly focusing on inexperienced teams in startups, DT@Scrum is seeking to

improve the software development process for large organizations. Both models are using Design

Thinking and Scrum as approaches to structuring the development process. However, each model has a

unique feature not represented in the other model, which enhances the respective model with specific

tools and methods. Both models make use of Design Thinking throughout the development process and

propose to use Design Thinking in case of blockers in the development process. Using Design Thinking

during the implementation phase is also defended by (Hildenbrand and Meyer 2012) who claim that a

team should make use of Design Thinking methods and techniques during the Scrum sprints when they

approach new and unclear user stories. Although the names are different (Vanishing Point in MoIT and

Design Thinking Break out in DT@Scrum), both models believe that Design Thinking application is

ad-hoc. Therefore, a close observation of the development process is needed to quickly react to blockers

with the adequate Design Thinking tool. DT@Scrum proposes a role responsible for this task, the

Process Master, trained in Scrum and Design Thinking and acting as a Design Thinking coach and

Scrum Master, thus facilitating the complete process (Häger et al. 2015).

Table 3. Comparison of important aspects of both models

What MoIT DT@Scrum

Goal Innovative software products Innovative software products

Approach Design Thinking, Scrum and

Lean Startup

Design Thinking and Scrum

Metrics Strong focus Not a focus

Pivot Strong focus Not a focus

Design Planning Not a focus Strong focus.

Gateways Not a focus Can be implemented between phases

Business Model Implemented before prototyping Optional before development

DT Methods Prescribed Teams Choice

DT in implementation Yes (“Vanishing point”) Yes (“Design Thinking break-out”)

Target group Inexperienced IT startup teams IT teams in large organizations

4.3.2 Differences

Some of the smaller differences between the two models are due to their different target groups.

Concerning the implementation of Design Thinking, MoIT prescribes the method and tools to be used

during the process, while DT@Scrum mentions various methods and tools but does not prescribe which

ones have to be implemented. Furthermore, DT@Scrum proposes to use the transitions between the

different process phases as possible points for management approval, which can be necessary in large

enterprises. The more significant differences between the two innovation strategies, derive from the

stronger project management focus in DT@Scrum and the integration of Lean Startup into the

development process in MoIT. MoIT suggests the use of metric-based evaluation techniques from the

Lean Startup literature, to measure user’s acceptance or activity. The literature warns against using

“vanity metrics” and recommends the use of actionable metrics such as AARRR that can be linked to

the specific business (Ries 2011; Maurya 2012). For generating those metrics and then test the

hypothesis, an experiment has to be designed (e.g. evaluating the customer acquisition costs by minimal

landing pages at a small scale). In addition, the development of the business model is a crucial aspect

recommended by MoIT since startups are still at their early stages in the business environment. The

model makes use of the Lean Canvas proposed by (Maurya 2012) and based on the work of (Ries 2011)

that helps to systematically align stakeholders, value propositions, required resources, cost and revenue

structure, channels, etc. for a startup business model.

According to (Häger et al. 2015) communication between implementation and Design Thinking teams

should start early during the projects in order to allow for a realistic assessment of the feasibility of ideas

and understanding of the ideas during development. Therefore, they propose to compose the Design

Thinking team of members from all relevant areas in the company and keep on at least one of the original

Design Team members as the Product Owner during development. Furthermore, DT@Scrum

recommends Scrum as the overall framework for both development and Design Thinking activities.

325

 ICED17

Design Planning adopts methods already known from Scrum to Design Thinking, thus DT@Scrum

presents a unique perspective on how to plan Design Thinking activities without compromising the

creative process. MoIT does not consider Design Planning, instead it recommends only little structure

during the creative process to ensure a good learning experience for the inexperienced teams. However,

Design Planning as proposed by DT@Scrum would only provide little structure that is controlled by the

design team itself.

4.4 Conclusion of Analysis

We believe, there is potential to improve the software development process by converging the two

strategies. The models share an initial Design Thinking phase that is followed by agile sprints to build

the software and thus follow a similar general setup allowing for an integration of the approaches. While

the minor differences between the models result from the different target groups, the two major

differences, the use of sprints and planning during the Design Thinking phase in DT@Scrum and the

addition of Lean Start-Up principles in MoIT reflect aspects which are not considered in the respective

other model. Both aspects make sense in a software development process no matter whether the target

group are start-ups or large organizations. Therefore, we propose a new model aggregating these

features.

5 INNODEV

InnoDev, as illustrated in Figure 4, is a three-phase software development process combining elements

from Design Thinking, Scrum and Lean Start-Up. Similar to DT@Scrum and MoIT, the initial Design

Thinking phase follows the Design Thinking process as described by (Wölbling et al. 2012) to explore

the problem and solution spaces and define a product vision addressing at least one of the identified

problems. In the following initial development phase, this vision is refined and developed into a proof-

of-concept prototype following the idea of an MVP. UI concepts are tested and implemented, technology

stacks considered and tested and the most important features are implemented to ensure viability,

desirability and feasibility of the concept. Additionally, ways of collecting data to monitor the user's

acceptance according to the AARRR metrics are implemented. In the final Development Phase, the

MVP will be tested and extended according to the original concept or feedback gained during the build-

measure-learn-life-cycle. In this phase, the team will run agile sprints combined with lean practices to

establish a build measure learn lifecycle. Depending on the outcome of the learn phase the team might

decide to pivot their project or continue to the next sprint. Similar to DT@Scrum and MoIT, InnoDev

proposes to make use of Design Thinking tools in an ad-hoc manner in case of blockers or problems

related to the product. During all phases, the team makes use of the sprint and backlog concepts from

Scrum to plan and structure their activities, thus providing transparency over Design Thinking, design

and development activities and being able to move forward while staying flexible to changing

requirements.

Figure 4. The new process model: InnoDev

We consider InnoDev to be general model applicable to different company settings (e.g. Start-Ups,

SMEs, or large organizations). However, differences between these target groups exists and some of

those are reflected in specific features of the compared processes as our analysis has shown. Therefore,

specific needs that exist in a company should be targeted by adapting InnoDev to the context of the

company. For example, the Design Thinking Phase can prescribe methods and tools, similar to MoIT,

for an inexperienced team while a more experienced team can choose methods that they find suitable.

326

ICED17

Similarly, the transition between the three phases of InnoDev can take on the form of a management

approval meeting as proposed by DT@Scrum. If this is not necessary (e.g. in a Start-Up or SME), the

team can make the transition decision by itself. While the development of a business model is a crucial

aspect no matter the companies size, suitable tools vary. Therefore, the creation of new or the adaption

of existing business models should be started during the Initial Development Phase and can be supported

by suitable tools, e.g. the lean startup canvas for start-ups or the business model canvas for larger

organizations. Our suggestions do not present a complete list of possible adaptions but rather stem from

our former analysis and can be extended for other needs.

6 DISCUSSION

This study aimed to develop a new conceptual model by singling out the relevant dimensions from two

already existing models that may improve a new software development process. The specific research

question intended to identify relevant aspects from a software development process used by startups that

could be used by large organizations and vice versa. Based on our analysis, we suggest that large

organizations could benefit from the use of Lean Startup. Based on the build-measure-learn life cycle, a

company could enhance its software development process by making use of lean concepts such as MVP,

actionable metrics, and pivot. Although the universal application of lean principles to software

development is still under debate (Staats et al. 2011), our findings are in agreement with findings in

(Poppendieck and Cusumano 2012), which showed that some characteristics of software products, such

as its value proposition and malleability, open new opportunities for combining agile and lean practices

in a software domain. For instance, the use of checklists or specific test environments that allow for

quantitative measuring of user feedback (such as landing page design, smoke-test, etc.) would help the

team to track growth and scale the product based on “Innovation Metrics. Moreover, pivoting seems to

be a promising technique to strengthen the software development process. Early testing of hypotheses,

might save time and resources and could result in a better output of successful project results. According

to (Ries 2011), pivots are a permanent fact of life for any growing business and even after a company

achieves initial success, it must continue to pivot. Accordingly, we consider pivoting as an important

aspect of the software development process regardless of the company’s size.

In addition, we suggest that startups could benefit from the use of design planning. The insights from

DT@Scrum on design planning might allow the startup to make more informed decisions with regard

to implementation and evaluation. Due to the fact that startups develop software under highly uncertain

conditions with severe lack of resources, specifying the design activities scope and resources required

would help the startup to avoid waste. Since software startups are often familiar with Scrum, Design

Planning would not require a change of mindset, thereby facilitating the model's adoption. Our findings

contribute to the ongoing discussions (Lindberg et al. 2011; Hildenbrand and Meyer 2012; Häger et al.

2015) of whether planning Design Thinking activities has positive effects on software development.

Aggregating these ideas resulted in our newly proposed model, InnoDev.

7 CONCLUSION

This paper provides a structured analysis and comparison of the two innovation strategies - DT@Scrum

and MoIT - with the goal to propose one synthesized model that aggregates relevant aspects of each

model. The detailed analysis of both innovation strategies contributes to better understand the particular

aspects of software development for two different organizational settings: startups and large

organizations. The findings provide a deep understanding of the relevant dimensions that can be used to

improve the new software development process. Based on the findings, this study suggests that the

creation of design planning and a scalable plan should be considered as an important aspect of the

software development process regardless of the company’s size. This research concludes that InnoDev

has potential to be applied in different settings (startups, SMEs, large organizations, etc.). However,

even though the new model was developed based on best practices, it is necessary to implement it in a

software development project in order to verify whether our assumptions are correct. Based on that, one

limitation of this study is not trying to apply the new model in organizations. To address this limitation,

future work will validate the application of the suggested model in one or more case studies. The present

work contributes to the academic discussions on design and software development in two ways. First,

we present a new conceptual model for software development based on a comparison analysis of

software development process from two different organizational setups.

327

 ICED17

REFERENCES

Beverland, M., Farrelly, F.J. (2007) ‘What Does It Mean to Be Design-led?’, Design Management Review,

18(4), 10–17.

Dybå, T., Dingsøyr, T. (2008) ‘Empirical studies of agile software development: A systematic review’,

Information and Software Technology, 50(9–10), 833–859.

Erickson, J., Lyytinen, K., Siau, K. (2005) ‘Agile modeling, agile software development, and extreme

programming: the state of research’, Journal of database Management, 16(4), 88.

Grossman-Kahn, B., Rosensweig, R. (2012) ‘Skip The Silver Bullet: Driving Innovation Through Small Bets

And Diverse Practices’, LEADING THROUGH DESIGN, 815–829.

Häger, F., Kowark, T., Krüger, J., Vetterli, C., Übernickel, F., Uflacker, M. (2015) ‘DT@Scrum: Integrating

Design Thinking with Software Development Processes’, in Plattner, H., Meinel, C. and Leifer, L., eds.,

Design Thinking Research, Understanding Innovation, Springer, 263–289.

Hildenbrand, T., Meyer, J. (2012) ‘Intertwining Lean and Design Thinking: Software Product Development from

Empathy to Shipment’, in Maedche, A., Botzenhardt, A. and Neer, L., eds., Software for People:

Fundamentals, Trends and Best Practices, Management for Professionals, Springer, 217–237.

Larman, C. (2004) Agile and Iterative Development: A Manager’s Guide, Addison-Wesley.

Liedtka, J. (2011) ‘Learning to use design thinking tools for successful innovation’, Strategy & Leadership,

39(5), 13–19.

Lindberg, T., Meinel, C., Wagner, R. (2011) ‘Design Thinking: A Fruitful Concept for IT Development?’, in

Meinel, C., Leifer, L. and Plattner, H., eds., Design Thinking, Understanding Innovation, Springer, 3–18.

Maurya, A. (2012) Running Lean: Iterate from Plan A to a Plan That Works, O’Reilly Media, Inc.

Miles, M.B., Huberman, A.M. (1994) Qualitative Data Analysis: An Expanded Sourcebook, Sage.

Müller, R.M., Thoring, K. (2012) ‘DESIGN THINKING VS. LEAN STARTUP: A COMPARISON OF TWO

USER-DRIVEN INNOVATION STRATEGIES’, in Leading Innovation through Design Proceedings of

the DMI 2012 International Research Conference 2012, 8-9 August, Boston.

Paternoster, N., Giardino, C., Unterkalmsteiner, M., Gorschek, T., Abrahamsson, P. (2014) ‘Software

development in startup companies: A systematic mapping study’, Information and Software Technology,

56(10), 1200–1218.

de Paula, D.F.O., Araújo, C.C. (2016) ‘Pet Empires: Combining Design Thinking, Lean Startup and Agile to

Learn from Failure and Develop a Successful Game in an Undergraduate Environment’, in International

Conference on Human-Computer Interaction, Springer, 30–34.

Poppendieck, M., Cusumano, M.A. (2012) ‘Lean software development: A tutorial’, IEEE software, 29(5), 26–

32.

Ragin, C.C. (1987) The Comparative Method: Moving beyond Qualitative and Quantitative Strategies,

University of California Press,.

Ries, E. (2011) The Lean Startup: How Today’s Entrepreneurs Use Continuous Innovation to Create Radically

Successful Businesses, 1st ed. ed, Crown Business.

Rodríguez, P., Markkula, J., Oivo, M., Turula, K. (2012) ‘Survey on agile and lean usage in finnish software

industry’, in Proceedings of the ACM-IEEE International Symposium on Empirical Software Engineering

and Measurement - ESEM ’12, ACM, 139–148.

Schwaber, K., Beedle, M. (2001) ‘Agile Software Development with Scrum’.

Staats, B.R., Brunner, D.J., Upton, D.M. (2011) ‘Lean principles, learning, and knowledge work: Evidence from

a software services provider’, Journal of Operations Management, 29(5), 376–390.

Ter Hofstede, A.H., Verhoef, T. (1997) ‘On the feasibility of situational method engineering’, Information

Systems, 22(6), 401–422.

Thoring, K., Müller, R.M. (2011) ‘Understanding design thinking: A process model based on method

engineering’, in DS 69: Proceedings of E&PDE 2011, the 13th International Conference on Engineering

and Product Design Education, London, UK, 08.-09.09. 2011.

Thorpe, R., Holt, R., Macpherson, A., Pittaway, L. (2005) ‘Using knowledge within small and medium-sized

firms: A systematic review of the evidence’, International Journal of Management Reviews, 7(4), 257–281.

Verganti, R. (1997) ‘Leveraging on systemic learning to manage the early phases of product innovation

projects’, R&D Management, 27(4), 377–392.

Vilkki, K. (2010) ‘When agile is not enough’, in Lean Enterprise Software and Systems, Springer, 44–47.

Wölbling, A., Krämer, K., Buss, C.N., Dribbisch, K., LoBue, P., Taherivand, A. (2012) ‘Design Thinking: An

Innovative Concept for Developing User-Centered Software’, in Software for People: Fundamentals,

Trends and Best Practices, Management for Professionals, Springer Berlin Heidelberg, 121–136.

Yin, R.K. (2003) Case Study Research: Design and Methods, Applied Social Research Methods, SAGE.

ACKNOWLEDGMENTS

The research is supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPQ) – Brazil.

328

