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Abstract 

Successful transformation of design information from customer requirements to design implementation 

is critical for engineering design. As systems become complex the tracking of how customer 

requirements are implement becomes difficult. Existing approaches suggest so called domain modelling 

for mapping requirements to architecture. These approaches do not fully support the steps and 

information created during product design synthesis. Design Specifications used to guide the design are 

often documented in text based documents, outside the design models. This results in lack of traceability 

which may impede the ability to evolve, maintain or reuse systems. In this paper the Multi Entity Domain 

Approach (MEDA) is presented. The approach combines different design information within the domain 

views, incorporates both Software and Hardware design and supports iterative requirements definition. 

The results suggest that it is possible to present design information in structural domain views, 

presenting more elaborate information of the design synthesis than provided by previous approaches. 

However, further validation in a practical project setting is required to validate the approach. 
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1 INTRODUCTION 

In engineering, compelling arguments justify why an early understanding of stakeholder’ requirements 

lead to systems that better satisfy their expectations (Nuseibeh, 2001). It is generally considered as good 

practice to capture solution neutral requirements, reflecting the “problem domain” separately allowing 

engineers to devise the best solution without being limited by premature design constraints. Typically 

the effectiveness of a solution is determined with respect to a defined problem, however, the nature of 

the problem and its scope could depend on what solutions already exist or what solutions are plausible 

and cost-effective (Chen et al., 2013). Existing systems, infrastructure and capabilities provide a rich 

base from which to create new capabilities but also introduce a set of complex constraints. Architecture 

at one level must support requirements at that level, but since generates constraint to the solution space; 

it drives requirements at lower levels (Cole, 2006). There is a common misconception that requirements 

engineering is just a single phase carried out and completed at the outset of product development. Instead 

requirements and design should rather be treated as interactive activities, handled simultaneously 

throughout the development life-cycle (Hull et al, 2011).  

One approach to improve engineering design performance is through reusing previous knowledge. 

Ideally, identifying and reusing front-end knowledge such as market information and Customer 

Requirements (CRs) should be the optimal origin of information reuse, leading to reuse in subsequent 

process steps. This requires a successful transformation of design information. The mapping between 

requirements and architecture has e.g. been addressed by Quality Function Deployment, Axiomatic 

Design and Product Family Engineering methods. In these approaches requirements are mapped to 

functional systems or physical design parameters, using matrixes or hyperlinks, resulting from a given 

solution. These approaches might be sufficient for analysing the product design or for configuring 

products, but in engineering design it is important to capture in more detail the information synthesis as 

moving between the product design domains.   

The solutions concepts explaining how components of the systems work together to achieve an end 

result and the rationales for a particular design are usually described in so called Design Specifications 

(DSs) used to guide the design. The DSs are often documented in text based documents, outside the 

design models. In this context, an explicit link for how CRs are address in the DS is missing and no 

mapping method is clearly available (Sun et al., 2009). The loss of this understanding may impede the 

ability to evolve, maintain or reuse systems. Information models capturing the design synthesis between 

requirements and physical design realization in a more elaborative manner could therefore provide 

improved documentation support for engineering design.  

The purpose of this paper is to present a conceptual modelling method supporting the mapping from 

requirements to design realization capturing the information needed to sufficiently support design 

synthesis. Such a modelling method will need to integrate different types of design information in a 

more iterative manner than currently available and to support requirements management on different 

design abstraction levels. The objective is further that the method can manage information for electronic 

products and thus integrate hardware and software design information. Hutcheson et al. (2007) present 

a method for Functional based System Engineering (FuSE) describing stepwise activities to identify and 

synthesize system solutions. The method presented in this paper, the Multi Entity Domain Approach 

(MEDA), has been inspired by the functional system deployment described by FuSE and the intention 

is that the modelling method can capture the information needed to reflect the activities included. 

The paper is organized as follows: In Section 3 an overview of the current research is summarized. In 

Section 2 the research design is presented. In Section 4 the FuSE method is presented. Section 5 provides 

a conceptual basis for the paper, followed by a description of the suggested method; MEDA, in Section 

6. A discussion of the method is provided in Section 7 and the paper is concluded in Section 8.  

2 STATE OF THE ART 

In this section, a review of well-established approaches mapping requirement to design and how they 

address requirements in the solution domain is summarized.  
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2.1 Requirements Engineering Traceability 

Hull et al. (2011) suggest four abstraction levels of requirements; stakeholder-, system-, sub-system- 

and component requirements. The highest levels of system description should be firmly rooted in the 

problem domain, whereas subsequent layers, starting with system requirements, operate in the solution 

domain (Hull et al., 2011).  In the requirements engineering context, tracing is about understanding how 

high level requirements are transformed into low-level requirements (Hull et al., 2011). 

Elementary traceability is where requirements are simply broken down to more detailed requirements, 

e.g. user requirements are broken down to system requirements.  The traceability relationships are 

usually many-to-many and therefore, the simplest way is to implement layers of requirements with traces 

between them.  However, this way the rationale for why a lower-level requirement meets a higher-level 

requirement is not documented (Hull et al., 2011). 

A variety of information can be captured in between levels of requirements to provide a more knowledge 

rich traceability Hull et al. (2011). This helps in assessing the logic, validity and completeness of the 

requirements breakdown. Visual models can furthermore provide important background information for 

requirements and design realization.  

These layers of design information are like the “filling” between the layers of requirements and can be 

gathered into a DS document. In this context the DS summarizes – textually and visually – why one 

layer of requirements is sufficient and necessary to satisfy the layer above. However, the approach does 

not provide traceability to requirements or a structured layout of the design information is not provided.  

2.2 Matrix Based Design Transformation 

Quality Function Deployment (QFD) originally developed by Dr. Yoji Akao, in 1966 (Akaor, 2004) 

divides the product development process into four steps using four correlation matrices. The first phase 

transforms the CRs for the product (the WHATs) into technical measures (technical requirements, 

product design specifications, engineering characteristics, etc.) (the HOWs). This phase, called product 

planning, is given a special attention in the House of Quality (HOQ) approach. The second phase, called 

Part Deployment transforms the prioritized technical measures into part characteristics. The four phases 

in QFD are demonstrated in Figure 1. 

 

Figure 1. Quality function deployment overview 

The mapping between the information domains is done by a correlation matrix, one matrix between each 

two domains. In the model, the design elements are not provided by a comprehensive description, as 

would be required for a DSs. Furthermore, the flowdown from requirements to design is one directional 

that is requirements are not synthesized on the basis of a given design. It can in general be assumed that 

the application of QFD is rather to analyze the quality and completeness of a given design, than to drive 

or document design implementation or to generate DSs.  

Axiomatic design (AD) developed by N.P. Suh in the late 1970s to provide a systematic and scientific 

basic for making design decisions (Gonçalves-Coelho, 2005). The system is represented by four 

domains; customer-, functional-, physical- and process domains. The customer and functional domains 

describe the “WHATs” while the physical and process domains describe the “HOWs”.   

Mapping between the functional and physical domain has been described as the primary step in 

identifying a good solution and is where the transformation is made from the problem domain to the 

solution domain. The decomposition of these vectors cannot be done by remaining in a single domain, 

but can only be done through zigzagging between the domains to decompose the design problem (Suh, 

1998). At a given level of design hierarchy, there exists a set of FRs defined as the minimum set of 

requirements needed at that level. Before zigzagging to the next level of FRs, the corresponding 
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hierarchical level DPs shall be selected. The design team will develop different solutions and optimize 

the best alternative at each level (Tang et al., 2009). The relationship between FR and DP vectors can 

be presented in a design equation where the design matrix (DM) characterizes the product design. The 

zigzagging and a DM for one level of decomposition are shown on Figure 2.  

FR1.1

FR2.1 FR2.2

FR3.1 FR3.4FR3.2 FR3.3 FR3.5

FR4.2FR4.1 FR4.3

DP1.1

DP2.1 DP2.2

DP3.1 DP3.4DP3.2 DP3.3 DP3.5

DP4.2DP4.1 DP4.3

 
𝐹𝑅2.1
𝐹𝑅2.2

 =  
𝐴2.1,2.1 𝐴2.1,2.2
𝐴2.2,2.1 𝐴2.2,2.2

  
𝐷𝑃2.1
𝐷𝑃2.2

  

 

Figure 2. Zigzagging between the Functional and Physical domain 

The DM construction is guided by Solution Principles (SPs). The designer considers through what SPs 

a set of FRs can be realized and then conceives the corresponding structure candidates in the DM (Tang 

et al., 2009) as shown in Figure 3.  

DP1 DP’1 DP2 DP’2 DP’’2

FR1

FR2

FR3

DP3
DP

FR

X X

XX X

X

XX

X

X

X

Solution 1

Solution 2

Solution 3

 

Figure 3. Three solutions presented in the DM (Tang et al., 2009) 

Similarly, as in QFD design matrixes are applied for the mapping between the domains. However, 

instead of mapping all items from one domain to the next, in a single DM as in QFD, in AD the mapping 

is done for each level of abstraction (Suh, 1998) unveiling the interplay that exists between the design 

elements (Gonçalves-Coelho, 2005). However, the AD approach does not incorporate a description of 

the identified SPs or other design information, as required to construct a DS. Furthermore, there is not 

a “backward” matrix, mapping the DPs to FRs. It is therefore not explicitly demonstrated which FRs 

result from which DPs. 

2.3 Product Family Engineering 

Product Family Engineering (PFE) (or Product Line Engineering) is an engineering practice that focuses 

on developing a stream of products by creating an underlying architecture from which new product 

variants can be generated by applying shared designs in a new context. A significant body of research 

has been presented for domain engineering and modelling of a reusable reference architecture. In 

Software Product Line Engineering four domain views have been suggested; Requirements Engineering, 

Design, Realization and Test (Pohl et al., 2005). For Hardware PFE a well-established approach called 

the Product Variant Master (PVM) suggests three domain views, Customers-, Engineering- and Parts 

views (Hvam et al., 2008). 

The different domain views are modelled independently, each presenting one type of information, and 

trace links are then established between the domains. In both approaches the requirements are only 

addressed in one domain; the requirements engineering or customer view. The requirements are 

furthermore focused on identifying the variance in the product family from a customer point of view 

rather than identifying a completed set of requirements. 

The application of PFE is to mass customize products. This means that most of the solutions have been 

implemented in the product architecture, prior to the product configuration and a product variant can be 

generated based on a set of customer attributes. In product development, the objective is however to 

identify optimal solutions to incorporate CRs is a new product. Therefore product development requires 

including more detailed design knowledge to negotiate the optimal product design. It could be a valuable 

addition to more information rich domain models to better facilitate engineering design by domain 
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modelling, or one could say to extend the PFE modeling concepts to better support traditional 

engineering design.  

3 RESEARCH DESIGN 

The objective for the research is to identify an improved method to document DSs that could support 

platform based product development by systematically incorporating additional design knowledge in 

structural domain model views. Another object was to find a way to explicitly specify and manage 

solution dependent requirements to drive testing of sub-systems and modules.  This implies a set of 

characteristics that the methodology should possess. The research questions are defined as follows:  

RQ1: Can the DSs capturing the information required for design synthesis be established in a structural 

domain view? 

RQ2: For embedded products, how can both hardware and software related design information be 

incorporated in structural domains? 

The presented technique was validated using an example from industry to demonstrate the suggested 

method and assess its utility.    

4 FUNCTIONAL BASED SYSTEMS ENGINEERING 

Function-based Systems Engineering (FuSE) is a design method that uses functional modeling 

throughout the first three phases of engineering design: product planning, conceptual design and 

embodiment design. A functional model is defined as a graphical model of the transformations of 

energies, materials and signals that occur through use of the product (Hutcheson et al., 2007). The 

process for FuSE defined by Hutcheson et al. (2007) is as follows.  

During the Product Planning phase of design, FuSE includes five activities. 

1. Black box functional modeling: The first step is to begin modeling a black box functional model 

representing the overall, desired, functionality of the product. It is created by mapping customer 

needs to overall functionality and product-level flows.   

2. Identification of Product-level requirements: To accomplish this step, the input and output flows 

are listed and used as a reference for placing requirements.  

3. Conceptual Functional Model (CFM) development: A CFM, including minimal information about 

form-specific solutions, is made to identify the basic functions required ensuring that the potential 

solution space of conceptual design is kept open.  

4. System boundary identification: Based on the CFM boundaries for functional systems can be 

identified. Figure 4 shows the identified functions and the corresponding systems for a power 

train.  
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Change 
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Energy
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Distribute 
Rotational 
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Control
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Status
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Rotational 
Energy

Rotational 
Energy

 

Figure 4. Powertrain System Boundaries (Hutcheson et al., 2007) 

1. Requirements flowdown from product level to the system level through the use of conceptual 

behavioral models: Mathematical models are established for the individual functions in the CFM 

and assembled into a solvable model. This model is then used to determine the states of internal 

flows in the system.  The objective is to establish a relationship between the inputs and outputs, 

for each function, with minimal assumptions regarding the form of the system.  The result is a 

series of equations that allow the internal states of the system to be solved.   

The system-level requirements are identified in a similar manner to the product-level requirements, but 

using the internal flows of the CFM. 

During the conceptual design of a system, FuSE is applied to four activities.  

2. Identifying potential system solutions: Involves finding components or collections of components 

that solve the desired functionality for the systems identified in the CFM. 
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3. Developing behavioral models for these solutions:  Behavioral models allow the performance of 

concepts to be evaluated and compared to the product and system-level requirements. 

4. Updating requirements and functionality: The functional model should be updated to reflect 

changes in functionality that have occurred as a result of the identified solutions. At this point, 

the functional model begins to become a Form-Specific Functional Model (FSFM). The FSFM is 

used to identify additional requirements specific to the particular solution. It is then used to further 

refine the design for the remainder of the design process.  

5. Iterating this process until feasible solutions have been found: If multiple feasible solutions are 

desired for a product, the previous steps should be repeated until a sufficient set of solutions has 

been identified.  

FuSE then follows a similar process (Activities 10-13) for identifying sub-systems and auxiliary 

functions during the embodiment design phase.  

When the activities are concluded, feasible solutions should be identified for all functionality. The 

remainder of the design process, the detailed design phase, is then performed.  

FuSE misses an identification of how the elaborated information can be documented in a structured way. 

This is the target of the method presented in this paper.  

5 CONCEPTUAL BASIS 

This section introduces the conceptual basis used in this paper:  

• Requirement: A thing (characteristic or function) that is needed or wanted.  

• Function: A transformation of input flows into desired output flows.  

• System: A abstract unit of intelligent activity that provides a specific function or collection of 

functions. 

• Solution: A working physical structure that solves a specific function or collection of functions. 

• Module: A component of a collection of components that are grouped by their physical interfaces. 

• Interface: A surface that forms a common boundary or a point of interaction between two 

components or systems. Here 4 types of interfaces are included:  

– System interface: Interactions between two systems, in form of energy, material or information 

flow. 

– Technical interface: Interactions between technological disciplines as a part of a specific solution.  

– Hardware interface: A plane forming the common boundary between two parts of matter or space.  

– Software interface: The layout or design of the interactive elements of a computer program.  

In the context of the presented approach it is important to understand the different meaning of functional 

requirements (FRs) and a function A FRs present a functionality or an effect that the product provides 

to its external environment, where the product is presented as a “black box” while a function describes 

the transformation of input and output flows inside the product, therefore describing a “white box view” 

of the product in an abstract way (Negal, at al., 2011).  

6 THE MULTI ENTITY DOMAIN APPROACH 

In this paper the Multi Entity Domain Approach (MEDA) approach is presented. The main identifier of 

the approach compared to other structured design approaches, is that it suggests describing the product 

in 3 separated domain views while at the same time combining more than one information types in the 

domains. This enables expressing closely linked information worked on in the design process as the 

information are defined. It should therefore establish a logical route from requirements origin, to the 

design implementation.  

This is accomplished by using a functional system and design concepts as a link between requirements 

and design. The design concepts can include both HW and SW based solutions which enables an 

identification of which functions will be implemented using which technology. Traceability between 

design elements is captured through a tree structure and hyperlinks between the views. Figure 6 provides 

an overview of the domains included in MEDA.  
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Figure 5. Multi Entity Domain Approach overview 

6.1 The Requirement Domain 

The first step of the development process is to identify the requirements to the intended product as 

described in activities 1 and 2 in the FuSE approach. The requirements primarily origin from the 

customer needs, the operational environment of the product as well as from the standards and legislations 

that apply to it. To capture the requirements from their origin in a structured way, the structure presented 

by Hauksdóttir et al. (2012) organized based on the requirement origin, is suggested. The Requirements 

Specification (RS) contains, properties and constraints, combined in the same structure. 

When a RS that covers all the necessary requirements, for the black-box view of the system, have been 

identified the requirement domain is completed. However all the development activities are interactive 

and at later stages, some of the initial requirements might need to be negotiated due to the capabilities 

of identified solutions and existing product architectures. 

6.2 The Functional System Domain 

The next step is to define the functional system of the product. When defining the functional systems 

the viewpoint is on the main internal functionality of the product, starting from its most high level 

functionality. This step, corresponds, to activities 3, Conceptual Functional Model (CFM) development, 

and activity 4, System Boundary Identification, described by Hutcheson et al. (2007). Here it is however 

suggested that the main auxiliary functions of the product, identified in activity 10, Auxiliary 

Functionality Identification, would be included from the beginning. The identified systems form the 

structure for the system DS structure. It can be expected that the highest level of systems definition will 

remain stable between products within the same product domain. A consistent and logic structure 

provides support for reuse based product development. The black-box requirements are mapped to the 

systems which, either fulfil them or are affected (e.g. constrained) by the requirements.  

The system item will describe the functions the system provides, its inputs and output and a behavioral 

model. For each system interface, one of the interfacing systems must be declared an owner of the 

interface. This means that the design team responsible for this owning system is also responsible for the 

interface and has the authority to make decisions regarding changes of the interface. The interfaces 

between the systems are presented explicitly, as child elements of the interface owning system. This is 

to enable capturing the relevant information of the interface. A traceability link should furthermore be 

established between interfacing systems.   

The next step is to identify system requirements by the use of conceptual behavioral models, as described 

in activity 5 in FuSE. Instead of modeling the identified system level requirements in the requirement 

structure, they are added as child items to the systems, in the functional system view domain. This 

approach is taken since the system level requirements have the system viewpoint; they would have 

multiple relationships to the product requirement structure and would not fit into the requirement view. 

Furthermore, since the systems and the system requirements are closely linked and worked on at the 

same time, it is practical to view them in the same domain. An attribute value is given to the design 

elements to identify different types of elements in the same structure.  

Next the design team identifies and evaluates possible solution concepts for the identified systems, 

corresponding to activity 6. At this point the solutions are quite abstract. Activities 7, Developing 

behavioral models for these solutions, activity 8, Updating requirements and functionality, and 9, 

Iterating this process until feasible solutions have been found, are followed.  Hubka et al. (1988) define 

a process that provides better support designers when working out the form specific design solutions, 

that can be used at this stage. When adequate solutions have been established, a solution concept 

description is added to the system view structure. For embedded products a special attention is given to 
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the technical interfaces as different technologies will interact to provide the required results. Technical 

interfaces are defined explicitly as child elements of the corresponding system.  

The systems are then broken down to sub-systems following activities 11, CFM development for sub-

systems and auxiliary functionality, 12, Detailed behavioral modeling including system to sub-system 

level requirements flowdown, and 13, Identification of solutions for auxiliary functionality and sub-

systems, generating the corresponding information items in a hierarchical tree-structure, in the System 

SD domain. The product design is synthesized in this manner until the detailed design can start. For 

each step sub-systems, requirements, system interfaces, solutions and technical interfaces are explicitly 

added to the system model. The resulting information structure is shown in the Functional System 

domain on Figure 6. 

6.3 The Architecture Domains 

As system solutions are detailed, the design team begins to unravel the physical components. The same 

components might be present and have different roles in different systems (Bruun et al., 2013). Therefore 

if components were presented in the system view, the same component might be duplicated at different 

locations. Furthermore it is important to communicate and optimize the physical structure of the product 

to enable platform based development. Therefore, the components are modeled in an architecture view, 

presenting the architecture that is most suitable for the physical allocation of the components (presenting 

each component only once).  The communication of which components are a part of which solution is 

accomplished with traceability links between the domains. 

For embedded products the SW and HW architecture structures are separated. A description of how 

design elements from different technical domains work together is provided in the technical interface 

description, in the system view. This gives the ability to map from the system view, to the SW and HW 

architectures. A module or a component contains a description of the module, its capabilities and its 

usage in existing products. Interfaces between modules are documented explicitly in the architecture 

structures. To ensure that the components are designed in such a way that they enable fulfilment of 

higher level requirements, the requirements for components and interfaces are explicitly documented in 

the architecture structures. Figure 6 demonstrates how information is constructed in the requirement, 

system design and architecture views.  

Requirements Specification

Business Requirements

Product Properties

Standard and Laws

Life Cycle Requirements

System [1...i]

System Design Specification

Requirement [1...i.  0...k]

Solution Concept [1...i.  1...l]

Technical Interface [1...i.  1...l. 0...m]

Requirement [1...i.  1...l. 0...n]

Requirement Origin [1...i.]

Requirement [1...i.  0...j]

Module [1...i]Sub-System [1...i.  1...l. 0...p]

Hardware Architecture

Componenet [1...i] 

Software Architecture

Module [1...i.  1...l]

Requirement [1...i.  0...k]

Design requirements

System interface [1...i.  0...j]

Software Interface [1...i. 0...j]

Componenet [1...i.  1...l]

HW Interface [1...i. 0...j]
Structure repeats itself

Requirement [1...i.  0...k]

Requirement [1...i.  0...j. 0...k]

Structure repeats itself

Structure repeats itself

Figure 6. Data structure overview for the three domain views in MEDA 

Figure 7 shows an example for the cooling system in a frequency converter product.  
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Figure 7. Cooling System for a Frequency converter 

The example shows that several customer requirements coming from separate origins all affect the 

cooling system of the product. Two solution concepts for the cooling system exist; air cooling and liquid 

cooling. In this example the air cooling is selected based on a set of customer requirements. The air 

cooling solution concept consists of the mechanical parts of a fan and a heat sink and software to controls 

the fan. The fan is a critical part for the lifetime of the product and therefore it is critical that one can 

replace the fan easily and that it has a robust design. These requirements are a result of the selected 

solution.  

When applying the MEDA approach the first step is to define the high level system and architecture 

structure based on existing product platforms. When the structures are ready the information content for 

each structure is generated, either based on existing products or build up as new products are developed. 

When a new project is started, the design team reuses and generates new requirements. The design team 

then works their way thought the system view, evaluating which solutions can be applied to fulfil the 

requirements and what the capabilities of the existing product architecture allows. New requirements or 

new combination of requirements might require implementation of new solutions. This is likely to result 

in adjustment of technological or physical interfaces and the corresponding design modules. The design 

team then enters new items in the structural views describing planned items and changes that will be 

implemented in the detailed design phase. After the design has been implemented the new items are 

consolidated to the model to be used by future products.  

7 DISCUSSION 

In this paper the MEDA method is presented. The approach provides structural domain views capturing 

design information, which is considered sufficient to serve as DSs for the application of reuse driven 

product design for embedded products, thus addressing RQ1. The method is different from other 

comparable approaches, as it allows information of more than one type to be included in the same 

domain view and as it includes systematic steps to identify systems and solutions. Finally it allows 

requirements identification at different abstraction levels throughout the design life-phases.  

Both HW and SW components are identified on an abstract level as the solutions are synthesized. The 

MEDA approach takes into account the relationship between technological domains (RQ2) by including 

technological interface descriptions, specified in dedicated interface items in the structure. This gives 

clear instructions for how the system solutions are realized in different technologies and thus, how to 

map solutions to the HW and SW architectures. At the same time HW and SW each have an independent 

architecture view to enable design.  

Design reuse is shortly address by describing how the design team can generate DSs by selecting existing 

solutions for already implemented requirements, as well as to implement new ones, for describing how 
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they plan to implement new requirements, prior to doing it. This enables the design team to generate 

DSs communicating an agreed way for how to design the product providing instructions for the detailed 

design.  

The validation of the suggested method has been established by constructing examples based on existing 

information, one of which is presented in the paper. The examples show that the information required 

in an engineering development process can be structured using the method. The approach has 

furthermore been introduced to a number of lead engineers, whom presume that the method would 

support a more systematic creation of the system DS. However, to convincingly validate the approach a 

more complete modeling of an entire product family as well as practical experience of using the method 

in a product development project would be required.  

8 CONCLUSION 

In this paper the MEDA method for mapping requirements to product architecture has been presented. 

The strength of the FuSE is that the method systematically demonstrates how to identify and evaluate 

solution concepts against requirements and how to break requirements and solutions down to a more 

detailed level. An important role of DSs is to show how requirements will be fulfilled by design and to 

describe how technological domains will interact to provide given results. By applying the MEDA 

method it is possible to generate DSs that provide this knowledge in a concrete manner.  
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