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Abstract 

The objective of this work is to structure a natural language description of analogies into a common 

causal language – which is chosen here to be SAPPhIRE model of causality. The motivation is to create 

a database of analogies that is structured so as to support focused search for analogies across the 

database. This should provide the benefit of utilizing the enormous data available on the Internet, while 

also providing relevant analogies to the designers as search results. This objective is achieved by 

implementing the following three steps: Firstly, detection of SAPPhIRE constructs in a document, 

achieved with an F-Measure of 0.834 using a text-classification approach; secondly, splitting sentences 

containing multiple SAPPhIRE constructs, achieved with an accuracy of 76.5% using a rule based 

approach; Thirdly, prediction of SAPPhIRE constructs for each text-input, implemented using the 

method proposed in literature. With these three steps, the time required to structure analogies into a 

common causal language can be reduced, thereby supporting population of the database and hence 

enabling designers in retrieving relevant analogies for novel idea generation. 
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1 INTRODUCTION 

Using analogies in designing supports novel idea generation. Analogical reasoning involves creation of 

similarity relations between familiar-domain (domain to which analogy is applied) and unfamiliar-

domain (domain from where analogy is drawn) to draw further inferences. However, retrieving 

analogies is a challenging task for designers; the following are some of the major reasons: a) designer’s 

knowledge is limited in unfamiliar domains; and b) there can be potentially innumerable analogies 

belonging to various domains. Therefore, researchers have proposed tools that support designers in 

retrieving analogies. These tools are based mainly on two approaches: a) tools that search a structured 

database of analogies (henceforth, denoted here as Approach-1); and b) tools that search natural-

language documents for analogies (henceforth, denoted here as Approach-2). The tools based on 

Approach-1 have the benefit of focused search, but populating their database is a time intensive activity. 

In contrast, tools based on Approach-2 have the benefit of retrieving a large number of analogies for a 

given problem, but require methods with which to filter out irrelevant analogies searched. In order to 

reap the benefits of both the approaches and yet avoid their pitfalls, we propose to integrate these. We 

aim to do this by automatically converting an unstructured natural-language description of an analogy 

into the structured constructs of a common causal language. This should support automated population 

of a structured database of analogies. To achieve this, Keshwani and Chakrabarti (2017) used supervised 

text classification to label clauses into the constructs of SAPPhIRE model– a common causal language 

(See Section 4 for details). The current work builds upon the work of Keshwani and Chakrabarti (2017) 

and presents an implementation that uses the existing machine learning and natural language techniques 

to implement the proposed approach.  

Analogies, in this work, belong to either natural- or artificial-systems; ‘natural-systems’ are those that 

occur in nature and are not human-made (for example, insects); ‘artificial-systems’ are taken as those 

that are human-made and belong to the domain of technical-products (for example, vacuum-cleaners). 

2 LITERATURE REVIEW 

This section reviews literature on the existing tools for retrieving analogies based on Approach-1 and 

Approach-2.  

Using Approach-1, computational tools that search across a structured database of analogies have been 

proposed. For instance, Chakrabarti et al. (2005) developed IDEA-INSPIRE, the database of which is 

structured using SAPPhIRE model of causality; Similarly, Vattam et al. (2011) developed DANE, in 

which the database is structured using SBF model. AskNature uses a biomimicry taxonomy of 

engineering functions to categorize the natural-systems in its database (Deldin and Schuknecht, 2014). 

Using Approach-2, tools that search for analogies in natural-language documents have been proposed. 

For instance, Hacco and Shu (2002) searched for potential analogies in the index and glossary of biology 

text book by incorporating the use of Wordnet part-of-speech tags with a keyword search method. Using 

Wordnet troponym and hypernym relations, word frequency and word collocation, they identified 

biologically meaningful keywords (Chiu and Shu, 2007), and later on translated functional terms of 

functional basis into biologically meaningful keywords (Cheong et al., 2011). Vandevenne et al. (2013) 

developed a webcrawler that continuously searches the Internet for biological strategies to update its 

knowledge base. Apart from these, research efforts have also been made to search for analogies from 

patent space (Verhaegen et al., 2011; Fu et al., 2013; Murphy et al., 2014). 

The intensity of research efforts using both the approaches indicates the perceived potential for 

supporting design-by-analogy for novelty. However, each of the approaches have some benefits and 

limitations. The tools based on Approach-1 have the benefit of focused search (Sarkar et al., 2008) but 

populating their database is a tedious activity. Similarly, the tools based on Approach-2 have the benefit 

of large database for retrieving a large number of analogies for a given problem, but they require 

methods with which to filter out irrelevant analogies searched (Glier et al., 2014).  

Therefore, in this work, we propose a third approach that integrates the above two approaches in such a 

way that the benefits of both are retained, while avoiding the limitations of both. We argue that this 

integration can be achieved by automatically converting natural-language descriptions of analogies into 

structured entries in a database.  

As far as we are aware, the closest work to this has been reported by Vandevenne et al. (2015) who used 

supervised classification to predict the category of a natural-system in the biomimicry taxonomy used 
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in AskNature. According to them, this will aid in the automatic population of the database of AskNature.   

Our work is distinct from theirs in the following ways:  a) while Vandevenne et al. (2015) have classified 

natural-systems into the categories of taxonomy of Ask Nature to populate the database, we have 

attempted to structure, both natural- and artificial-systems into a common causal language to populate 

the database; b) their work is restricted to natural-systems that are classified through the biomimicry 

taxonomy; our work on the other hand uses the features of a common causal language to classify 

analogies irrespective of the domain of the system; and c) due to the inherent nature of the common 

causal language used in our work, we have also been able to capture causal relations of an analogy – 

something that is not captured by Vandevenne et al. (2015). Another study that is somewhat similar to 

the work presented here is reported by Kaiser et al. (2013) who used keywords describing the constructs 

–‘functions of technical-systems’, ‘properties of technical-systems’ and ‘environmental influences’ – to 

search for relevant analogies in the database of PubMed. Our work is different from their work in the 

sense that the common causal language used here has seven constructs (SAPPhIRE model of causality) 

that provide a more detailed description than the three constructs used by them; SAPPhIRE model has 

been empirically tested to be representative of how designers proceed when they naturally carry out 

design (Srinivasan and Chakrabarti, 2010); further the model is developed by integrating multiple, 

fragmented models of functional reasoning, thereby providing a comprehensive, integrated description 

of causality in functional systems (Chakrabarti et al., 2005). This greater detail, more integral 

representation, and empirical grounding, we argue, should aid in more focused search, thereby helping 

retrieve more relevant analogies.  

3 RESEARCH QUESTION AND OBJECTIVE 

From the above literature review, the following research question has been asked: how to support 

designers in retrieving analogies that are relevant to the design problem? The following is the associated 

research objective: to automatically structure analogies into a common causal language so as to create a 

structured entry in the database.  

4 RELATED WORK 

Keshwani and Chakrabarti (2017) proposed to structure natural-language descriptions of analogies into 

SAPPhIRE model.  Using supervised text-classification approach, they automatically predicted 

SAPPhIRE constructs of the text-inputs within a natural language description of an analogy. According 

to them, a text-input is the sentence or a clause that includes only one SAPPhIRE construct. Using Linear 

SVM classifier, precision, recall, F-Measure and accuracy achieved by them were 0.71, 0.69, 0.70 and 

0.70±0.08 respectively. However, their work had the following limitations: a) they manually processed 

the documents to remove the sentences that did not belong to any SAPPhIRE construct; and b) they 

manually converted sentences into text-inputs, so as to predict the SAPPhIRE construct for each of these 

sentences. This work extends the above work of Keshwani and Chakrabarti (2017) by automating these 

two manual steps, thereby automating the process of structuring of an analogy.  

As this work builds upon the work of Keshwani and Chakrabarti (2017) who used SAPPhIRE model, in 

this work also, we have used SAPPhIRE model to structure analogies. Chakrabarti et al. (2005) 

developed this model for supporting design by providing causal descriptions of biological- and 

technical-systems as stimuli for inspiring ideation for designers searching for solutions to design-

problems. The acronym SAPPhIRE stands for its constructs State-Action-Part-Phenomenon-Input-

oRgan-Effect. The digits 1-7 in parenthesis in Figure 1 denote the hierarchy in SAPPhIRE abstraction 

levels. Ranjan et al. (2012) describe this model as follows:  

Components and interfaces that comprise an entity and its surroundings (parts) have some properties 

and conditions (organs). When the entity and the surrounding are not in equilibrium with each other, 

there is transfer of a physical quantity in the form of a material, energy or signal (input) across the 

boundary of the entity. This physical quantity, in combination with relevant properties and conditions, 

together activate a principle (physical-effect). This principle is responsible for an interaction (physical-

phenomenon) between the entity and the surrounding. The interaction between the entity and the 

surrounding changes various properties of the entity and the surrounding (state-change). The change in 

properties can be interpreted at a higher level of abstraction (action). This model of causality built upon 

the above constructs and links is called SAPPhIRE model.  
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5 RESEARCH APPROACH 

This section presents the methodology for achieving the objective mentioned in Section 3. The steps of 

this methodology are detailed in Sections 5.1 – 5.3 and illustrated in Figure 2. They are implemented in 

Python using Textblob (Loria, 2014), Scikit Learn  (Pedregosa et al., 2011) and NLTK (Bird, 2006).   

  

Figure 1. SAPPhIRE model of 
causality (Source: Chakrabarti et 

al., 2005) 

Figure 2. Steps for structuring an 
analogy into SAPPhIRE constructs 

5.1 Removal of sentences that do not belong to any SAPPhIRE construct (‘outliers’) 
from a document 

In order to automatically structure a natural-language description of an analogy from a document into 

its SAPPhIRE-model, it is important to first remove those sentences that do not belong to any construct 

of the SAPPhIRE model, for example, “In this edition of HowStuffWorks, we will discuss the history 

and technology behind these popular writing instruments so that you can understand them completely!” 

(Brain, 2001). Henceforth, such sentences will be termed here as ‘outliers’; and the sentences that belong 

to any of the SAPPhIRE constructs will be termed as ‘inliers’. In order to automatically distinguish 

outliers from inliers, the following alternative methods were tried: a) outliers were detected using One-

class SVM classification; b) probability estimates of outliers (in the opinion of the authors) obtained 

using Logistic Regression classifier were studied to observe if there exists a threshold probability for 

the outliers; c) ‘no-class’ was introduced as the eighth class for predicting outliers in the classification 

approach used by Keshwani and Chakrabarti (2017); and d) supervised binary classification of sentences 

into ‘inliers’ and ‘outliers’ using Linear SVM classifier. In this section, supervised binary classification 

(method (d) above) which gave the best result, is detailed.   

In machine learning, classification is the task of choosing the correct class label for a given input (Bird 

et al., 2009). This task of classification is performed by a function called classifier. Supervised 

classification involves training a classifier on training data, and then testing its performance on testing 

data. Both training and testing data contain texts, along with the correct class label for each text (Bird 

et al., 2009). In this work, the two class labels are ‘outlier’ and ‘inlier’. Table-1 shows the distribution 

of training and testing data used in this work. 

Table 1. Training and testing data for classification of sentences as outliers or inliers 

Data Outliers Inliers 

Training Sentences 338 776 

Testing Sentences (30-35% of training data) 103 264 
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Sentences in the training and the testing data were searched from the following sources: a) How stuff 

works? (Brain, 2001); b) Physical laws and effects (Hix and Alley, 1958); c) Idea Inspire database 

(Chakrabarti et al., 2005); and d) Extraordinary animals: an encyclopedia of curious and unusual animals 

(Piper, 2007).  

5.1.1 Pre-processing and feature extraction steps 

The sentences in the training data were first pre-processed. The pre-processing steps included the 

following: a) word tokenization; b) part-of-speech (POS) tagging; c) lemmatization; d) stop-word 

removal and e) reduction of variability in sentences. These steps are explained below.  

Word tokenization is the task of cutting strings into words and part-of-speech tagging is classifying these 

words into their parts-of-speech (Bird et al., 2009). These two tasks were implemented here using 

TextBlob. Lemmatization is the task of stripping off any affixes from a word and ensuring that the 

resulting form of the word is a known word in a dictionary (Bird et al., 2009). It was implemented using 

Wordnet Lemmatizer. Stopword removal is the task of removing high frequency words with little lexical 

content for example, ‘is’, ‘the’, ‘and’, etc. (Bird et al., 2009). This list was created using Stopwords 

Corpus and the authors’ experience of using SAPPhIRE model.  

Next, we studied approximately 80 documents from Brain (2001) and Piper (2007); from these, we 

identified topics associated with a product that should not be included in a SAPPhIRE model. These 

topics were as follows: product history, advantages or disadvantages, explanation of diagram, questions 

and emotions, symbolic meanings, product classifications, URLs, references and introductory and 

concluding statements in a document. Based on those topics, eleven clusters of words were created; 

these clusters, in the opinion of the authors, could occur in those topics and could be helpful in 

distinguishing outliers from inliers. The clusters for outliers are enlisted in Table 2. Similar clusters were 

required to be created for inliers. Fifteen such clusters for inliers, identified by Keshwani and 

Chakrabarti (2017), were considered in this work. Some examples of these clusters are enlisted in Table 

3. The words, characters, and phrases in these clusters were searched for across the training data, and 

replaced with the words marked in bold at the start of each cluster. This helped to reduce the variability 

in the sentences. Pre-processed sentences were then searched for features (described below) that 

distinguished an inlier from an outlier.  

Features highlight differences among the classes, using which a classifier predicts a label of a given 

input. According to Bird et al. (2009), “feature extractors are built through a process of trial-and-error, 

guided by intuitions about what information is relevant to the problem”. The following features were 

selected, after trial and error, based on the performance of classification: a) suffixes- ‘-nce’, ‘-ment’, ‘-

ion’; b) word unigrams; c) word bigrams; d) word trigrams; e) pos-tag bigrams; and f) pos-tag trigrams.  

For each sentence in the training data, its features along with the actual-label of the sentence were passed 

to Linear SVM classifier, in order to train the classifier. SVM is one of the best approaches used in the 

area of discriminative classification. In this work, selection of N-grams as features for classification 

created a very high dimensional and sparse vector space. For this type of large, sparse, vector space, a 

linear SVM classifier provides competitive and often better accuracy than its nonlinear counterparts 

(Yuan et al., 2012). Therefore, Linear SVM has been used here for classification. 

Table 2. Clusters of words likely to occur in outliers 

Cluster 1 [outlier, modern, year, chronicle, time, history, ……………] 

Cluster 2 [outlier, advantage, problem, reward, trouble, …………..] 

Cluster 3 [outlier, intend, envisage, guess, ideate, imagine, fantasize, …….] 

Cluster 4 [outlier, label, show, portray, depict, picture, outline, ……] 

Cluster 5 [outlier, lesson, illustrate, instance, exercise, exemplify, ……] 

Cluster 6 [outlier, interpret, feel, experience, learn, feeling, bet, …….] 

Cluster 7 [outlier, thought, scheme, idea, theme, rationale, strategy, ….] 

Cluster 8 [outlier, simple, basic, elementary, introductory, uncomplicated, ……] 

Cluster 9 [outlier, we, you, our, let’s, their, your, themselves, ………….] 

Cluster 10 [outlier, ?, !, @, :] 

Cluster 11 [outlier, as shown, as follows, include:, this article, let us, …..] 
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Table 3. Examples of clusters that may occur in inliers (Keshwani and Chakrabarti, 2017) 

Cluster 1 [inlier, purpose, objective, aim, goal, result, outcome, function, …….....] 

Cluster 2 [inlier, change, decrease,...] 

Cluster 3 [inlier, provide, inflow,...] 

Cluster 4 [inlier, provide, hooked up, pump in,…] 

Cluster 5 [inlier, connected, joined,….] 

5.1.2 Results of predicting outliers 

Once the classifier was trained, the above steps were implemented on the test data to predict if the 

sentence was an inlier or an outlier. For each sentence in the test data, the predictions made by the 

classifier were then matched against the labels assigned by the researchers (called here as ‘actual-

labels’). Based on the agreement between the actual- and the predicted-labels, the performance of the 

classifier was evaluated, as shown in Table 4. Precision determines out of the total documents (here, 

sentences) that were classified as X, how many were actually X. Recall determines the number of 

documents (here, sentences) belonging to class X, that were correctly classified. F-Measure is the 

harmonic mean of precision and recall (Martin and Jurafsky, 2000).  

Therefore, the classifier trained in this step can now be used for predicting outlier sentences from a given 

document describing an analogy.   

Table 4. Results of classification using Linear SVM classifier 

 Precision Recall F-Measure 

Outliers 0.762 0.747 0.759 

Inliers 0.901 0.908 0.904 

Average 0.831 0.827 0.829 

5.2 Splitting of inliers into text-inputs 

Once the outliers are removed from a document, it is important to split the remaining sentences into 

text-inputs (see Section 4 for definition). This is because, a sentence may include multiple SAPPhIRE 

constructs, for example, “With the fence gone (organ), the bolt can slide freely (phenomena) past and 

the safe can be opened (action)”.  

This section describes rules that have been used here to split a sentence into text-inputs. These rules 

have been framed, after observing 97 sentences (four complete documents of ‘How Stuff Works?’) and 

262 clauses, by the authors who had more than five years of experience in using SAPPhIRE model. 

Existing parsers could have been used here. However, we have used a rule based approach; this is 

because, we wanted to split the sentences according to the rules that are specific to the constructs of 

SAPPhIRE model. For each rule, an example has been provided. Text-inputs in these examples are 

denoted by { }. These rules are mentioned in the decreasing order of the priority in which they will be 

applied for splitting.  

• Rule 1: Do not split a sentence if the words in the given Cluster A are present in the sentence. This 

rule has been framed for the ‘Part’ construct of SAPPhIRE model.  

Example: {Shaft of the motor is connected to the blades of the fan.} This sentence describes a 

configuration of parts – the blades of a fan and its shaft. Therefore, whole sentence is a part level 

description which should not be split.   

Cluster A: [connect, attach, engage, fasten, fix, mount, include, compose, touch, touches, consist, 

composed, made, join].  

• Rule 2: Do not split a sentence if the words in the given Cluster B1 are followed by words in the 

given Cluster B2. This rule has been framed for Organ and Input SAPPhIRE constructs. It was 

observed by the authors that Input and Organ constructs have the following syntax in the natural 

language description of analogy: {A phrase involving words in Cluster B1}{words in Cluster 

B2}{condition}. Such sentences, if split at words in Cluster B2, will lose the notion of ‘condition’ 

– which is an essential feature of Organ and Input. Therefore, such sentences should not be split.  

 Example: {It is important that the battery remains charged as long as possible.} 
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 Cluster B1: [availability, require, need, necessary, requisite, important, essential, compulsory, 

mandatory, crucial, significant, affect, presence, absence, critical, sufficient, enough, determine, 

lack]. 

 Cluster B2: [to, for, of, that]. 

• Rule 3: Do not split a sentence if the words in the given Cluster C are present in the sentence. This 

rule has been framed for Physical_Effect, Organ and Physical_Phenomena constructs of the 

SAPPhIRE model. It was observed by the authors that description of a Physical_Effect, Organ, or 

Physical_Phenomena generally contain several clauses. However, since all the clauses together 

describe a single construct, the sentence should not be split.  

 Example: {The amount of drag force that air exerts on dust particles is proportional to the diameter 

of the particle and to the difference in velocities between the particle and air.} 

 Cluster C: [constant, ratio, number, proportion, sum, product, proportional, equal, inverse, 

inversely, vary, defined, known, called]. 

• Rule 4: Split a sentence if the phrases in the given Cluster D are present in the sentence. This rule 

is framed for separating Part and Action constructs from each other.  It was observed that certain 

sentences have the following syntax: {Noun Phrase}{Auxiliary verbs like is, ‘are’ ‘has been’, 

etc.}{Phrases in Cluster D}{Action}.  Therefore, such sentences should be split as shown in the 

following example: {A silencer}{is}{used to}{reduce the amount of noise and visible muzzle 

flash generated by firing.} 

 Cluster D: [used to, used for, useful for]. 

• Rule 5.1: Split a sentence at punctuation marks in Cluster E. 

Example: {If you push a wedge against an object},{it will push the object to the left or right.} 

Cluster E: [, , ; , :,“ ,”  ]. 

• Rule 5.2 (Exception for Rule 5.1): Do not split a sentence if the part-of-speech tags of preceding 

and succeeding words of the punctuation (,) are the same.  

Example: {a hook is generally coupled with a loop (NN), eye (NN) or hollow area.} Here word 

‘loop’ and ‘eye’ both are nouns separated by a comma (,).  

• Rule 5.3 (Exception for Rule 5.1): Do not split if the word succeeding punctuation (‘,’) is either a 

determiner, or an adjective or an adverb followed by a word with same part-of-speech tag as that 

of the word preceding conjunction.  

 Example: {Included in the carbohydrate group are natural sweeteners (NNS), refined (JJ) sugars 

(NNS), starches, cellulose, and various other substances.} 

 Rules 5.1 - 5.3 are framed according to the rules of English grammar and can be used to split any 

two SAPPhIRE constructs if they are separated by a punctuation mark in Cluster E.  

• Rule 6: Split a sentence at verb except light verbs present in Cluster F. A light verb is a verb that 

has little semantic content of its own. This rule can be used to split any two SAPPhIRE constructs 

if they are separated by a verb.  

Example: {Rotation of fan}, {creates swirling motion in air molecules.} 

Cluster F = [has, have, had, do, did, done, is, are, was, were, has been, have been, had been]. 

• Rule 7.1: Split a sentence at conjunctions. 

 Example: {In a car engine therefore}{all of the fuel is loaded into the cylinder}. 

• Rule 7.2 (Exception for Rule 7.1): Do not split if the part-of-speech tags of preceding and 

succeeding words for the conjunctions –‘and’, ‘or’, are same.  

 Example: {because they are simple (JJ) and sturdy (JJ).} 

• Rule 7.3 (Exception for Rule 7.1): Do not split if the word succeeding conjunction (‘and’, ‘or’) is 

either a determiner, or an adjective or an adverb followed by a word with same part-of-speech tag 

as that of the word preceding conjunction.   

 Example: {a motor consists of a stator (NN) and a rotor (NN).} 

 Rules 7.1 – 7.3 are framed according to the rules of English grammar and can be used to split any 

two SAPPhIRE constructs if they are separated by a conjunction.  

Please note that while Rules 1-4 are framed specifically according to the patterns followed by 

SAPPhIRE constructs as observed by the authors, Rules 5.1-7.3 are general rules for splitting a sentence 

into clauses. Therefore, Rules 1-4 are given higher priority over Rules 5.1-7.3 for splitting a sentence 

into clauses. Here pos tag ‘‘NN’ is singular noun, NNS is plural noun, and ‘JJ’ is adjective according to 

Penn Tree Bank’s (Marcus et al., 1993) list of POS tags. 
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5.2.1 Results of splitting a sentence into text-inputs 

In order to assess the accuracy of splitting done by Rules 1-7 created in this work, a test was undertaken. 

80 sentences (two complete documents from ‘How stuff works?’) were considered. The text-inputs 

produced by using these rules were then checked by the first author. A score of 1 was awarded if the 

splitting was correct; 0 was awarded if the splitting was incorrect according to the author. It was found 

the out of 80 sentences, 61(76.25%) sentences were correctly split.  

5.3 Prediction of SAPPhIRE construct of each text-input 

Once the sentences are split into text-inputs, the SAPPhIRE construct of each of them can be predicted 

using the previous work by Keshwani and Chakrabarti (2017), see Section 4 for detail.  

Once the SAPPhIRE constructs of clauses are predicted, these clauses can be updated into a database.  

6 DISCUSSION 

In this section, we provide a comparison of the results of evaluation of our tool with similar tools 

reported in literature and also discuss the reasons behind the errors that occurred in a) removing 

outliers; and b) splitting of sentences into SAPPhIRE constructs.   

6.1 Comparison of proposed support with similar supports  

Vandevanne et al. (2015) proposed to automatically populate the database of AskNature by identifying 

the category to which a biological system belongs in the biomimicry taxonomy. They reported 

classification precision of 62.5% for top ten classes in the taxonomy. For us, the challenge is different 

from those of Vandevanne et al. (2015). In order to populate the database of Idea Inspire (Chakrabarti 

et al., 2005), we aim to extract the SAPPhIRE models from natural language description. As described 

in Section 5, we have achieved this in the following three steps: a) removal of outliers with an F-Measure 

of 0.834; b) splitting sentences into clauses with accuracy of 76.5%; and c) prediction of SAPPhIRE 

constructs with F-Measure of 0.70. As these are sequential steps, the evaluation measures of the 

preceding step will influence the evaluation measures of the succeeding steps.  Calculation of overall 

accuracy of the database is a part of future work.  

We now explain the significance of the first step - outlier detection which is unique to our work. In 

general, a document will contain both relevant and irrelevant (inliers and outliers in this work) types of 

sentences with respect to the description of a particular phenomena under consideration. These sentences 

need to be segregated to effectively extract causal relations and to reduce the reading effort of the 

designer. With outlier removal proposed in this work, this process of segregation has been automated. 

This step was not implemented by Vandevanne et al.(2015) as their reference corpus consisted of 

manually cleaned up biological strategies  that were previously available in AskNature.  This manual 

cleaning requires lot of effort. According to Deldin and Schuknecht (2014),  “AskNature‘s original data 

set represents a huge amount of human labor …. Individuals continue to generate additional content for 

AskNature…”. We hope that this step can support, to some extent, researchers who create strategy pages 

in AskNature.  

6.2 Errors observed 

We now discuss the errors that occurred in the removal of outliers. Out of the 103 sentences labeled as 

outliers by the authors, 26 were predicted as inliers by the classifier; out of the 264 sentences labeled as 

inliers by the authors, 24 were predicted as outliers. Therefore, total 50 cases of errors were observed 

out of 367 sentences. These errors occurred because of the following reasons: a) seven cases were 

observed where the sentence was composed of multiple of clauses – where some clauses were outliers 

and some were inliers, for example, ‘since then, scientists have greatly improved upon Volta's original 

design (outlier) to create batteries made from a variety of materials that come in a multitude of sizes 

(inlier).’; b) twelve cases of errors were observed because certain words that indicated SAPPhIRE 

constructs were also present in the outliers, for example, ‘the ancient Egyptians had a great need for air 

conditioning.’; and c) for the remaining 31 cases, the reason behind errors in classification was not 

understood, for example, ‘new principal cells are produced from groups of undifferentiated cells at the 

base of the epithelium.’ Clearly, this sentence is an inlier but was predicted as outlier by the classifier.  
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We now discuss the errors that occurred in splitting sentences into SAPPhIRE constructs. Total 19 cases 

of errors were observed, the following are the main reasons: a) two occurred because punctuation (.) 

was used in abbreviation instead of period, for example, {All functions in a modern engine are controlled 

by the ECM communicating with an elaborate set of sensors measuring everything from R.P.M 

.}{engine coolant and oil temperatures and even engine position ( i.e.} {T.}{D.}{C.} {) .}; b) six errors 

occurred due to applicability of multiple rules, for example, {Piston rings provide a sliding seal between 

the outer edge of the piston and} {the inner edge of the cylinder.}; c) four due to incorrect POS tagging 

done by the pos tagger, for example, {The crankshaft turns the piston 's up (NN) and} {down (IN) motion 

into circular motion.}; d) three errors occurred due to missing words in the list clusters of created by the 

authors; and e) the remaining four occurred due to miscellaneous reasons. 

7 CONCLUSION 

In this work, we have attempted to automatically structure analogies using the SAPPhIRE model of 

causality. In the first step, the document was cleaned up by removing those sentences that did not belong 

to any construct of the SAPPhIRE model. Using text-classification approach, average precision, recall 

and F-Measure achieved for this step were 0.830, 0.837 and 0.834 respectively. In the second step, 

multiple SAPPhIRE constructs existing within a single sentence were split so as to correctly predict the 

SAPPhIRE constructs existing within a sentence. Using rule based approach, the accuracy achieved in 

this step was 76.5%. The third step - prediction of the SAPPhIRE construct for each text-input, was 

implemented using the method proposed by Keshwani and Chakrabarti (2017). These three steps 

together will aid in the creation of a structured database of analogies that can be used for searching 

analogies at the seven abstraction levels of the SAPPhIRE model, using simple, combination and 

complex search (Sarkar et al., 2008).  We hope that this implementation will be able to address the 

problem of scalability associated with computational tools based on structured databases.  The following 

are the main contributions of this work:  

• This work demonstrates a new approach for retrieval of analogies i.e. converting natural language 

description of analogies into a structured database.   

• The clusters identified in this work to distinguish sentences involving SAPPhIRE constructs from 

the remaining sentences are general. Therefore, these clusters can be used by other researchers 

working on building repositories for retrieval of analogies.  

• As SAPPhIRE model is domain independent, this approach can be adapted for mining patents. 

• Automatic creation SAPPhIRE model may aid other design tasks such as automatic evaluation of 

novelty of concepts which requires comparison of newly generated concepts with those of the 

existing concepts at various levels of abstraction (Srinivasan and Chakrabarti, 2010). 

This work has the following limitations:  

• Initially we intended to collect the data from Brain (2001). However, it was observed that the 

documents in Brain (2001) included State_Change and Physical_Effect constructs in lesser 

numbers than those of the other SAPPhIRE constructs. Therefore, we searched for these two 

constructs from two other sources - Idea Inspire database (Chakrabarti, et al., 2005) and Hix and 

Alley (1958). The data collected from these three sources was mostly related to artificial-systems. 

To incorporate data from natural-systems, Piper (2007) was referred. Therefore, data for this work 

was collected from four different sources having more than four authors.  It is likely that the 

difference in the writing styles of these authors would have introduced variability in the data, which 

would have reduced the performance of our support.   

• Rule based approach has been used for splitting sentences into SAPPhIRE constructs. Even though 

the rules were created by the authors who had experience in using SAPPhIRE model, the problem 

of scalability exists. Further work involves using parsing techniques for the same. 

• Description of a complex system requires creation of multi-instance SAPPhIRE model and 

identification of input – output relations among the instances. The current implementation cannot 

differentiate among the constructs of multiple instances of the SAPPhIRE model. This challenge 

needs to be addressed in future.  

Future work also includes replacing clusters with word2vec model, population and testing of the 

database, and testing the influence of the populated database on novelty of the designs produced.  
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