

USING THE ACD³-LADDER TO MANAGE MULTI-PHASE

REQUIREMENTS ON END-USER PRODUCTS

Berlin, Cecilia (1); Bligård, Lars-Ola (2); Simonsen, Eva (2)

1: Chalmers University of Technology, Division of Production Systems, Sweden; 2: Chalmers

University of Technology, Division of Design and Human Factors, Sweden

Abstract

During the development of any end-user product, a multitude of design decisions need to be made. But

if design activities and decisions happen at the wrong time, or not at all, unintentional and sometimes

negative design outcomes can be the result. Determining all requirements early in the product

development is traditionally recommended, but may force design decisions to be made prematurely on

the basis of incomplete preconditions. Requirements at different degrees of resolution are useful and

purposeful at different stages of the development process. To address these requirements management

challenges, this paper proposes an approach for incrementally developing requirements in parallel with

design, based upon a previously developed framework called ACD³, which draws on a combination of

theoretically compatible ideas and concepts from Design Engineering, Human Factors/Ergonomics,

Usability and Systems Theory. This approach helps designers identify and handle the possible

interdependencies of design variables. The paper also theoretically motivates and demonstrates with an

example how the different resolution levels of requirements relate within the framework.

Keywords: Organisation of product development, Design management, Multi- / Cross- / Trans-

disciplinary processes, Requirements

Contact:

Dr. Cecilia Berlin

Chalmers University of Technology

Product and Production Development

Sweden

cecilia.berlin@chalmers.se

21ST INTERNATIONAL CONFERENCE ON ENGINEERING DESIGN, ICED17
21-25 AUGUST 2017, THE UNIVERSITY OF BRITISH COLUMBIA, VANCOUVER, CANADA

Please cite this paper as:

 Surnames, Initials: Title of paper. In: Proceedings of the 21st International Conference on Engineering Design (ICED17),

Vol. 4: Design Methods and Tools, Vancouver, Canada, 21.-25.08.2017.

425

 ICED17

1 INTRODUCTION

During the development of any end-user product, a multitude of design decisions need to be made. These

design decisions are shaped by a combination of the individual product designer’s unique knowledge

and experience; input from multi-disciplinary perspectives; the organization’s procedures, culture and

routines regarding design work; constraints given by known end-user or customer demands; constraints

given by previous production and sales of similar products, all of which shape expectations on the

function and appearance of new products; and many more.

For products with a high degree of user-product interaction (e.g. involving manipulation of user

interfaces), a multi-disciplinary design team is often tasked with the development. This may require

complex work organization processes to optimize the use of each team member’s expertise, leading to

multi-disciplinary work at multiple levels of product definition. A successful series of design decision-

making leads to the design team gradually narrowing down the maximal scope of design solutions to a

well-defined set of requirements that indicate which desired criteria the end result should live up to.

Given that end-user products can be extremely complex in functionality and performance demands,

these design teams can be very large and diverse, with people whose scope of expertise ranges from the

visionary and strategic realm to that of the highly specialized components-level perspective. Involving

them all at the right time to submit their expertise into the decision-making process can be an

organizational and temporal challenge, not to mention one of getting them to communicate their design

intentions effectively and at the currently appropriate detail resolution. Orchestrating the input requires

a holistic yet sequential approach to generating, selecting, refining and managing requirements. If

activities and decisions are made at the wrong time, or not at all, it can have unintentional and sometimes

negative impact on the final result of the development. For example: if the design of a product is not

evaluated from a human factors perspective until the prototype stage, interaction problems may be

discovered too late (due to other constraints) to effectively re-design the product’s interfaces in such a

way that human factors demands are met - and any attempted patch-ups may render the product a bad

fit for the user population.

To cope with this, researchers like Pahl et al. (1996) have stressed the necessity for systematic design

processes that support the definition of design activities to be carried out for a specific project, thus

supporting design work without imposing the rigidity of a generic procedural template. To create such

a systematic design process, many models have been suggested (Ullman, 2010; Ulrich and Eppinger,

2011; Pahl et al., 1996; ISO, 2010; Dubberly, 2005). Most of the models describe the design process in

one dimension, i.e. one type of aspect or feature makes up the backbone of the process. Often, these

processes are dived into phases or activities originating from one type of main flow; linear/sequential or

iterative/cyclic.

In light of this, the conventional perception that requirements are to be finally determined early in the

product development process (e.g. Ulrich and Eppinger, 2011; Cross, 2008) may “lock in” a sub-optimal

design before all the necessary input has been given from appropriate stakeholders, which may force

decisions to be made on uncertain preconditions. This may make the design vulnerable to late-stage

inputs from overlooked stakeholder perspectives. Pew and Mavor (2007) emphasize the evolving nature

of system requirements, since all the knowledge needed to write a complete requirement specification

in beginning of a project usually does not exist. Rather, new requirements emerge during the whole

design process, in a so-called co-evolution of requirements and design (Braha and Reich, 2003). This is

particularly true of end-user products with multiple user categories (e.g. primary users as well as

maintenance or disassembly personnel), since many requirement types do not emerge before user testing

starts. Hubka and Eder (1988) describe the function-means tree as a structure for co-evolution, but

without specific levels of abstraction.

Requirements are not uniform in scope or definition; they can be established at different degrees of

resolution that are useful and purposeful at different stages of the development process. For example,

System Engineering and the V-model (Stevens, 1998) in particular distinguishes between User

Requirements and System Requirements, where the former concerns what the user wants to with the

product, and the latter concerns what the product must do. Szejka et al. (2014) describe the difficulty of

refining requirements throughout the development process, saying that "Requirements (…) must be

controlled inside all these phases and domains to avoid misinterpretation and mistakes that would

compromise the final results (...) there is still a semantic gap between all requirements definitions when

426

ICED17

they are defined in different domains for the same engineering project and requirement consistency

management in different systems life cycle phases”.

Also, companies are becoming more interested in cradle-to-cradle perspectives, adding to the design

complexity. Facing such challenges places large demands on the organization of design work, so as to

draw the greatest benefit from involving various types of expertise in early phases without too quickly

constricting the design space – this is notoriously difficult, since such a multitude of perspectives and

demands may render the requirements list very long and difficult to address in a coherent order.

To summarize: finalizing requirements early in the development process, before enough knowledge of

the product and its use is known, may lead to sub-optimal design solutions. To address the above

challenges holistically, this paper proposes an approach for handling incremental development of

requirements in parallel with design, in the domain of end-user product development. This is achieved

by building upon a previously developed framework for product development and design work called

ACD³. The specific contribution is a model with abstraction levels for the co-evolution of design and

requirements. The levels are based on systems theory and termed Effect, Usage, Architecture,

Interaction and Elements. The model is used as guide to requirement management and design.

2 THE ACD³ FRAMEWORK

This section describes the fundamentals of the ACD³ framework – previously described chiefly in

Swedish (Bligård, 2015; Bligård et al., 2016; Berlin and Bligård, 2016) – to provide the reader with a

good foundation to comprehend the paper’s main concept, the ACD³ Ladder for managing multi-phase

requirements on end-user products.

2.1 A brief overview of the framework

The explicit goal for ACD³ is to support multidisciplinary product development teams in making

coherent design decisions that propagate logically from the product’s intended effects down to the

technical detail-level design. The purpose is to ensure a more successfully designed interaction between

humans and a “machine” – this term is used instead of product to signal that the artifact being designed

is complex and involves functionality, architectural structure and interaction with a user (Bligård, 2015).

The “D³” in ACD³ refers to that the framework advocates development based on three fundamental

dimensions: Design levels, Design Perspectives and Design Activities. When combined, the three

dimensions provide a holistic guidance framework for which design decisions need to be made as logical

consequences to the desired overall effect, all the way down to the technical detail-level solution. ACD³

is Use-centered rather than User-centered, i.e. it aims primarily to design a successful user-machine

interaction; as a consequence, the hierarchy of design decisions consistently relates to intended

functionality and activities. It also emphasizes that there is an end user, and thus the framework should

not be evaluated as e.g. a tool for design optimization of individual machine components, as this is not

what it is intended to facilitate.

2.2 Theoretical basis

The ACD³ Framework is based on a combination of theoretically compatible ideas and concepts from

Design Engineering, Human Factors/Ergonomics, Usability and Systems Theory, as shown in Table 1:

427

 ICED17

Table 1. Theoretical basis for the ACD³ Framework

Theory Authors Implications for the framework

Systems theory (Bertalanffy,

1973)

The Design levels in ACD³ are derived from the idea of

“abstraction levels” and other terminology from General

Systems Theory (GST), which has provided the overall

philosophy of viewing the product development as a system.

ACD³ follows the GST logic of defining a total systems

boundary and the sub-systems it consists of, and gradually

refining the description of elements, the hierarchical

relationships between them, and how they affect each other

(feedback).

Activity theory (Karlsson,

1996)

The use- and activity-centered perspective is derived from the

focus on agents, goals and means as described specifically in

Karlsson’s (1996) application of Activity theory.

Joint Cognitive

Systems

(Woods and

Hollnagel,

2006)

A Joint Cognitive Systems view means viewing the human (the

user) as an integral part of the overall system, and not just

designing the product as an independent technical entity.

Systems

Engineering

(Stevens,

1998)

The Systems Engineering perspective provides concepts related

to requirements management (e.g. the V-model) and the role of

functions in technical systems. This theoretical framework also

provides the name of the ”Architecture” design level.

Cognitive

Systems

Engineering

(Rasmussen

et al., 1994)

The contribution from Cognitive Systems Engineering is to view

systems at several different abstraction levels based on the

interplay between the human and the machine; in ACD³, this has

been applied as Design levels.

Use-centered

design

(Bennett and

Flach, 2011)

Use-centered design focuses on the goals for the users and tasks

that are carried out within the specific domain where the

problems are. The match between human, activity and

environment is central to Use-Centred Design, aiming towards a

successful design of the machine (which in turn is defined as its

achieving the intended purpose). The task is defined as the

action taken by the user, with the machine as an assisting device,

to solve the overall problem. This is a fundamental philosophy

of the ACD³ framework.

Function-means

law (“Hubka’s

law”)

(Hansen and

Andreasen,

2002)

The Function-Means law, a.k.a. Hubka’s Law, states that goals

and means can be organized in a hierarchical structure, and that

in a hierarchy of effects, the behavioural and structural aspects

of a machine – i.e., the functions and the means – are causally

related. This is applied in how the design and requirements are

developed interactively and in parallel throughout the design of

the product.

As stated in Bligård et al. (2016), “ACD³ emerged as a result of combining different frameworks and

process models in these areas into a coherent whole, with the aim of enabling a clearer understanding

of a design process, as in making it easier to implement and teach.” The framework advocates the

viewing of the machine from multiple systems perspectives, to continually address different disciplines

of machine design at all design levels. This helps the design team identify and handle the possible

interdependencies of design variables. The levels are described in greater detail in Section 2.3.

428

ICED17

The framework postulates that the utility of a machine only emerges when the product is successfully

used; therefore designing the use first, and then a machine to support this use, is a philosophical

cornerstone derived from the theoretical basis. Further, a design decision is defined as the action (taken

by the designer) of constraining the possible value of a design variable; i.e. once the variable properties

of the machine are specified (e.g. length, maximum weight, colour), determining their values (e.g. 4

metres, max 350 g, blue) constrains the space of possible solutions, and constitutes the design decisions.

A design variable “(…) is always determined in a design process, regardless of whether this is due to an

active decision or if it results unintentionally. (…) their interdependence results from the precedence

relationship between the variables.” (Bligård et al., 2016). The crucial element that regulates the

intentional making of design decisions is therefore requirements – these narrow down the design space

and emerge gradually (just like the design itself) as the result of the interplay between requirements and

the design in the process. Accordingly, the requirements and the design give input to each other and

ideally evolve in a top-down manner, from an initial overall principle to final technical details. The

requirements from one phase frames the design in the next, and then that design generates new reasons

to elicit requirements for the following stage. This structure, called the ACD³ Ladder, is presented in

Section 3.

2.3 The three dimensions of ACD³

The first dimension of ACD³ provides a systemic perspective of the product development. Called Design

levels, it refers to the abstraction level at which the product can be described, ranging across a continuum

from the desired overall Effect (which defines the product’s objective but leaves the design solution

space wide open) down to the Elements (which mean that the design space has been maximally

constrained and thereby the product specification has been defined in detail). Figure 1 provides an

overview and a practical example of a vacuum cleaner, which will be revisited later.

Figure 1. The Design Levels, exemplified by a vacuum cleaner (from Bligård et al., 2016)

The second and third dimensions, Design Perspectives and Design Activities, are only briefly described

here as they have a lesser role in requirements management, and are described in full elsewhere (Bligård,

2015; Bligård et al., 2016). Design Perspectives reflect the notion that many different types of foci can

be useful to the development of a product, and that these need to be orchestrated. The Design

Perspectives specify five multi-disciplinary perspectives of the product design (Problem, Structure,

Function, Activity and Realization). In the ACD³ framework, design of the product from each of these

perspectives happens at each Design Level, from Effects to Elements. Finally, the Design Activities

involve the identification, determination and communication of the design variables that make up the

solution, iteratively within each phase in the design work – the specified iterative activities are Planning,

Data Collection, Analysis, Ideation, Synthesis, Evaluation and Documentation. These activities are

understood to be part of a design process that is both linear, with distinct phases (defined in the ACD³

Process as Needfinding, Design of use, Overall design, Detailed design and Structural design), and also

iterative, with the design activities repeating within each phase.

429

 ICED17

The pairwise combination of the three dimensions has led to two separate sub-frameworks called the

ACD³ Matrix and the ACD³ Process, which are described in full in Bligård et al. (2016) and Bligård

(2015).

3 THE ACD³ LADDER

3.1 Handling Requirements with The ACD³ Framework

One cornerstone of the ACD³ framework regards the interplay between requirements and the product

design – they must be developed in parallel and successively, in order for detailed design decisions to

become logical consequences of the overall desired effects. The requirements guide the design decisions

in a particular direction, ideally to realize the overall effect goals. We argue that to achieve this, the

resolution of requirements should be coupled to different design levels. In ACD³ each design level has

been assigned a corresponding type of requirements (Table 2), which are developed in parallel with the

design to an increasing degree of detail resolution.

Table 2. Summary of requirement purpose and resolution at each design level

Design

Level

Purpose Requirement

Effect Frame the whole product

development process

Needs - the needs that the human-machine

system is expect to fulfil to achieve the effect

Use Frame the machine in the context

of the socio-technical system

Use requirements - Requirement on the

human-machine system that needs to be

fulfilled to enable the use

Architecture Frame the design of machine as a

whole

Machine (system) requirements - requirement

on the machine as whole

Interaction Frame the design sub-parts of the

machine and how they interact

Sub-system requirements - requirements on the

different sub-parts of the machine

Element Frame the manufacturing of the

machine

Manufacturing requirements - requirements on

how the parts of machine should be produced

3.2 Setting requirements at each design level
The design levels with their respective requirement types are visualized in Figure 2, which shows the

ACD³ Ladder of Requirements Management. The Ladder implies that the design work should advance

as a result of an iterative interplay with the requirement specifications, evolving gradually and iteratively

as the development progresses and the detail level increases. This means that there is a continuous

exchange of influence, and the design and requirements become prerequisites for each others’

incremental development.

According to this logic, every level in the ACD³ Ladder (except the first Effect) is determined and

constrained by the design- and requirements levels preceding it, and in turn it determines and constrains

all subsequent design- and requirements levels. Every level of requirements constrains the possible

design solution space in the subsequent design work, i.e., the requirements operationalize design

decisions made in preceding levels into demands for the subsequent specification and precision. This

follows the structure of the function-means tree (Hubka and Eder, 1988), but the abstractions levels are

defined beforehand.

Throughout the design process, the design and the requirements are made more precise and specified at

more or less formalized intermittent “checkpoints” at which the design is evaluated, often called phases

or gates. Accordingly, the requirements and the design give input to each other and iteratively evolve in

a top-down manner. The requirement from one stage in the sequence frames the design in the next stage,

and then that design is the basis for eliciting requirements for the following stage. This interaction

between design and requirements continues until the machine is described at a level where it can be

430

ICED17

produced in one decisive way; i.e., such that the subsequent design decisions made during the production

phase do not affect the function and construction of the machine.

Time

D
e

ta
il

le
v
e

l
o
f

s
o
lu

ti
o
n

Effect

Needs

Use

requirements

Architecture

Machine

requirements

Interaction

Sub-system

requirements

Elements

Manufacturing

requirements

Use

Design w
ork

Require
ments m

anagement

Product development progress

Figure 2. The ACD³ Ladder of Requirements Management

It is important to note that the Ladder of Requirements Management does not prescribe the order in

which designs decisions are made, but rather the hierarchical relationship between design and

requirements at different abstraction levels. The ladder should therefore not be interpreted as a strict

working procedure. Within each of the design levels, the design and the requirements grow together as

result of the iterative design activities. Furthermore, there is often a need to explore the succeeding

design level to fully understand which aspects are relevant to put into requirements at the current level.

Also here an interactive approach is advocated, proposing that the design and requirements may co-

evolve at all design levels in parallel. This is especially important when requirements change and evolve

due to increased learning and external restrictions and change. The role of the ladder is to provide the

structure and logic for the co-evolution and iteration of all the levels of design and requirements.

4 EXAMPLE: VACUUM CLEANER

Table 3 shows an example product – a vacuum cleaner – to provide a guide for how the design and

requirements at different levels interrelate when mapped onto the ACD³ framework. Here, we offer a

walkthrough of the example to explain the logic of the interplay between design and requirements.

431

 ICED17

Table 3. Requirements at each level, with a vacuum cleaner as an example

Level Example design Example of detail resolution of requirements

Effect A cleaner home (Use, User and Stakeholder) Needs, e.g.

- Cleaning should be performed in a healthy working posture

- No damage to the dwelling and furniture

- Cheaper than existing equivalent cleaning equipment

- Possible to store in a normal closet

- Be styled in the company profile colours

- Conform with CE marking regulations

Use Manually moving

the device when

cleaning

Use requirements, e.g.

- Connect to the general power grid (if electric)

- Reach at least 1.5m away from the user

- Be used by 5-95 percentile users aged 10 and up

Architecture An electrical

motor that sucks

air through a filter

Machine requirements, e.g.

- Cord should be at least 8 meters

- The suction pipe should be adjustable by 40 cm

 -The force when pressing the button shall be between 0,5 and 2 N

- The hand grip / handle should be between 4 and 6 cm wide

- The casing radii of the machine should be at least 2 cm

- The length of the main unit must not exceed 35 cm

Interaction Design of the

physical form and

user interface

Sub-system requirements, e.g.

- Detailed requirements on the nozzle, hose, dust bag, filter, fan,

motor, controller, software, cord, cord winder, etc.

Element Structural design

of the motor, the

dust bag, etc.

Manufacturing requirements, e.g.

- Tolerances for drilled holes

- Smoothness of surfaces

The central design decision at the Effect level is that the result of the user-machine interaction should

be “a cleaner home”. This is the basis for identifying the Use- and User Needs that must be fulfilled to

achieve the effect in a desirable way for all stakeholders (not just users), e.g. by not forcing unhealthy

working postures and by not being more expensive than existing solutions. Needs for other stakeholders

are to "Conform with CE marking regulations" and "Be styled in the company profile colours". The

needs should be fulfilled by the use, whereby the machine’s utility emerges. Central to the Use design

level is what the machine and the user must do respectively. In this example, the human should be

"manually moving the device when cleaning" while the machine should fulfil the rest of the functions.

The design of the use then logically leads to demands on the machine related to the intended use context,

like "Reach at least 1.5m away from the user" and "be used by 5-95 percentile users aged 10 and up",

both of which must be fulfilled in order for the intended use to be made possible. The use requirements

in turn constrain the technical Architecture towards the solution "An electrical motor that sucks air

through a filter". From this architecture, Machine requirements can be set at a more precise level of

detail, such as "Cord should be at least 8 meters" and that "The suction pipe should be adjustable by 40

cm". If these requirements are fulfilled, they should (due to their internal logical coherence) enable the

intended use possible which in turn enables the achievement of the desired effect. The Machine

requirements then constrain the Interaction, i.e. the "Design of the physical form and user interface" for

the vacuum cleaner, and the aggregated design decisions up to that point amount to detailed

requirements for all sub-systems (like the nozzle, hose, dust bag, filter, fan, motor, controller, software,

cord, cord winder, etc). This is followed by the Elements level, at which e.g. the structural design of the

motor, the dust bag etc. finally determine the Manufacturing requirements, e.g. tolerances for drilled

holes and smoothness of surfaces.

432

ICED17

5 DISCUSSION

Given the organizational, multi-disciplinary and complex nature of end-user product development, it

may seem that there is a gap between the conventional paradigm to specify requirements as

comprehensively and early as possible, and the growing understanding in contemporary research that

requirements evolve during the on-going design process. We argue that handling requirements

development incrementally and in parallel with the gradually emerging design, and benefiting from the

interplay between them, allows the design decisions to not only become more internally coherent, but

also more robust in the face of late-stage suggestions for change. New demands at odds with the overall

desired effect can be addressed critically in order to avoid a solution that is a bad compromise, and the

multi-perspective guidance of the ACD³ structure avoids this risk in the first place.

The idea of co-evolution is previously established and there is support in other literature for viewing

design work at different levels and perspectives; for example, the Requirements Abstraction Model,

RAM (Gorschek and Wohlin, 2006) describes software engineering at Product Level, Feature Level,

Function Level and Component Level. ACD³ was developed independently of RAM, but the levels

match quite well. Another model proposing abstraction levels is Leveson’s model for safety-critical

technical systems, called Intent Specifications (Leveson, 2017). It has seven levels, five of which map

quite well onto the levels of ACD³. Table 4 shows a side-by-side comparison of the models’ respective

levels.

Table 4. Comparison of level structures of ACD³, RAM and Leveson’s model

ACD³

Requirements Abstraction

Model (RAM)

Leveson’s model (2017)

Effect Level

Use Level

Architecture Level

Interaction Level

Element level

Product Level

Feature Level

Function Level

Component Level

Level 1: System Purpose

Level 2: System Design Principles

Level 3: System Architecture

Level 4: Design Representation

Level 5: Physical Representation

The logical coherence of these three models demonstrates that current research supports a generalization

of these combined theoretical perspectives to consider design from multiple abstraction levels, a notion

backed by Savioja et al (2014). The ACD³ framework can also counteract problems teams may have

with understanding requirements (Lehtinen et al., 2015; Szejka et al., 2015) since each level of

requirements is direct related to a design level, i.e. it makes it easier to trace the raison d’être of the

requirements and put them into context for appointing the correct stakeholder to interpret the need and

choose a solution.

The validity of the ACD³ framework is currently being tested in a budding “Community of Practice”

(Wenger, 2000; Wenger and Snyder, 2000) including Master thesis projects, an ongoing verification

project involving Swedish product developers, and collaboration with a Swedish management

consultancy firm specialized in organizational development.

6 CONCLUSIONS

This paper has presented an approach for incremental requirements management in parallel with the

advancement of design work, based on a novel framework for product development. The specific

contribution is a model with abstraction levels for the co-evolution of design and requirements

thoroughly based on systems theory. It has also theoretically motivated and demonstrated with an

example its utility for multi-disciplinary requirements handling.

REFERENCES

Bennett, K. B. and Flach, J. M. (2011), Display and interface design : subtle science, exact art, Boca Raton, Fla.,

CRC Press. doi.org/10.1201/b10774-2

Berlin, C. and Bligård, L. O. (2016), ”An activity centered design framework for determining design decision

levels in production systems”, Advances in Intelligent Systems and Computing.

https://doi.org/10.1007/978-3-319-41697-7_40

433

 ICED17

Bertalanffy, L. V. (1973), General system theory : foundations, development, applications, New York, Braziller.

Bligård, L.-O. (2015), Utvecklingsprocessen ur ett människa-maskinperspektiv - ACD3-procesen, Göteborg,

Chalmers University of Technology. http://dx.doi.org/10.13140/RG.2.1.1954.4400

Bligård, L. O., Simonsen, E. and Berlin, C. (2016), ACD3 - A new framework for activity-centered design.

Proceedings of NordDesign, NordDesign 2016, 2016.

Braha, D. and Reich, Y. (2003), ‘Topological structures for modeling engineering design processes’, Research in

Engineering Design, 14, 185-199.

Cross, N. (2008), Engineering design methods : strategies for product design, Chichester, John Wiley.

Dubberly, H. (2005), How do you design? San Francisco: Dubberly Design Office.

Gorschek, T. and Wohlin, C. (2006), “Requirements abstraction model”, Requirements Engineering, 11, 79-101.

doi.org/10.1007/s00766-005-0020-7

Hansen, C. T. and Andreasen, M. M. (2002), “Two approaches to synthesis based on the domain theory”,

Engineering Design Synthesis. London: Springer-Verlag. https://doi.org/10.1007/978-1-4471-3717-7_6

Hubka, V. and Eder, W. E. (1988), Theory of technical systems : a total concept of technical systems, Berlin ;,

Springer-Verlag.

ISO (2010), ISO 9241- 210:2010 Ergonomics of human-system interaction – Part 210: Human-centred design

for interactive systems. Brussels: ISO.

Karlsson, I. C. M. (1996), User requirements elicitation - A framework for the study of the relation between user

and artefact. PhD Thesis, Chalmers University of Technology.

Lehtinen, T. O. A., Virtanen, R., Heikkilä, V. T. and Itkonen, J. (2015), “Why the development outcome does

not meet the product owners’ expectations?”, Lecture Notes in Business Information Processing.

doi.org/10.1007/978-3-319-18612-2_8

Leveson, N. G. (2017), “Rasmussen's legacy: A paradigm change in engineering for safety”, Applied

Ergonomics, 59, 581-591. doi.org/10.1016/j.apergo.2016.01.015

Pahl, G., Beitz, W. and Wallace, K. (1996), Engineering design : a systematic approach, Berlin, Springer.

http://dx.doi.org/10.1007/978-1-4471-3581-4

Pew, R. W. and Mavor, A. S. (2007), Human-System Integration in the System Development Process: A New

Look, Washington, D.C., National Academy of Sciences. doi.org/10.17226/11893

Rasmussen, J., Mark Pejtersen, A. and Goodstein, L. P. (1994), Cognitive systems engineering, New York,

Wiley.

Savioja, P., Liinasuo, M. and Koskinen, H. (2014), «User experience: does it matter in complex systems?”,

Cognition, Technology and Work, 16, 429-449. doi.org/10.1007/s10111-013-0271-x

Stevens, R. (1998), Systems engineering : coping with complexity, London, Prentice-Hall Europe.

Szejka, A. L., Aubry, A., Panetto, H., Júnior, O. C. and Loures, E. R. (2014), “Towards a Conceptual

Framework for Requirements Interoperability in Complex Systems Engineering”, Proceedings - OTM

2014 Workshops: Confederated International Workshops: OTM Academy, OTM Industry Case Studies

Program, C&TC, EI2N, INBAST, ISDE, META4eS, MSC and OnToContent 2014, Amantea, Italy, October

27-31, 2014. Berlin, Heidelberg: Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-662-45550-

0_24

Szejka, A. L., Canciglieri, O., Jr., Loures, E. R., Panetto, H. and Aubry, A. (2015), “Requirements

interoperability method to support integrated product development”, Proceedings - CIE 45: 2015

International Conference on Computers and Industrial Engineering, 2015.

Ullman, D. G. (2010), The Mechanical design process, Boston, McGraw-Hill.

Ulrich, K. T. and Eppinger, S. D. (2011), Product design and development, New York, NY, McGraw-Hill/Irwin.

Wenger, E. (2000), ‘Communities of practice and social learning systems’, Organization, 7(2), pp. 225–246. doi:

10.1177/135050840072002.

Wenger, E. C., and Snyder, W. M. (2000), Communities of practice: The organizational frontier. Harvard

Business Review, 78(1), pp.139-146.

Woods, D. D. and Hollnagel, E. (2006), Joint cognitive systems: patterns in cognitive systems engineering, Boca

Raton:, CRC/Taylor & Francis.

ACKNOWLEDGMENTS

The authors wish to thank Chalmers Innovation and AFA Försäkringar for providing the funding to

carry out this research. We also wish to thank the growing ACD³ Community of Practice for helping us

test, challenge and grow this framework into something useful.

434

https://doi.org/10.1007/978-1-4471-3717-7_6
https://doi.org/10.1007/978-3-662-45550-0_24
https://doi.org/10.1007/978-3-662-45550-0_24

	DS87_4_344
	Title Page_ICED17_final_248.pdf (p.1)
	Contribution344_b_final.pdf (p.2-10)

