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Abstract 

During the development of any end-user product, a multitude of design decisions need to be made. But 

if design activities and decisions happen at the wrong time, or not at all, unintentional and sometimes 

negative design outcomes can be the result. Determining all requirements early in the product 

development is traditionally recommended, but may force design decisions to be made prematurely on 

the basis of incomplete preconditions. Requirements at different degrees of resolution are useful and 

purposeful at different stages of the development process. To address these requirements management 

challenges, this paper proposes an approach for incrementally developing requirements in parallel with 

design, based upon a previously developed framework called ACD³, which draws on a combination of 

theoretically compatible ideas and concepts from Design Engineering, Human Factors/Ergonomics, 

Usability and Systems Theory. This approach helps designers identify and handle the possible 

interdependencies of design variables. The paper also theoretically motivates and demonstrates with an 

example how the different resolution levels of requirements relate within the framework. 

 

Keywords: Organisation of product development, Design management, Multi- / Cross- / Trans-

disciplinary processes, Requirements 

 

Contact: 

Dr. Cecilia Berlin 

Chalmers University of Technology 

Product and Production Development 

Sweden 

cecilia.berlin@chalmers.se 

 

21ST INTERNATIONAL CONFERENCE ON ENGINEERING DESIGN, ICED17 
21-25 AUGUST 2017, THE UNIVERSITY OF BRITISH COLUMBIA, VANCOUVER, CANADA 
 

 

 

Please cite this paper as:  

 Surnames, Initials: Title of paper. In: Proceedings of the 21st International Conference on Engineering Design (ICED17), 

Vol. 4: Design Methods and Tools, Vancouver, Canada, 21.-25.08.2017. 

425



  ICED17 

1 INTRODUCTION 

During the development of any end-user product, a multitude of design decisions need to be made. These 

design decisions are shaped by a combination of the individual product designer’s unique knowledge 

and experience; input from multi-disciplinary perspectives; the organization’s procedures, culture and 

routines regarding design work; constraints given by known end-user or customer demands; constraints 

given by previous production and sales of similar products, all of which shape expectations on the 

function and appearance of new products; and many more.  

For products with a high degree of user-product interaction (e.g. involving manipulation of user 

interfaces), a multi-disciplinary design team is often tasked with the development. This may require 

complex work organization processes to optimize the use of each team member’s expertise, leading to 

multi-disciplinary work at multiple levels of product definition. A successful series of design decision-

making leads to the design team gradually narrowing down the maximal scope of design solutions to a 

well-defined set of requirements that indicate which desired criteria the end result should live up to. 

Given that end-user products can be extremely complex in functionality and performance demands, 

these design teams can be very large and diverse, with people whose scope of expertise ranges from the 

visionary and strategic realm to that of the highly specialized components-level perspective. Involving 

them all at the right time to submit their expertise into the decision-making process can be an 

organizational and temporal challenge, not to mention one of getting them to communicate their design 

intentions effectively and at the currently appropriate detail resolution. Orchestrating the input requires 

a holistic yet sequential approach to generating, selecting, refining and managing requirements. If 

activities and decisions are made at the wrong time, or not at all, it can have unintentional and sometimes 

negative impact on the final result of the development. For example: if the design of a product is not 

evaluated from a human factors perspective until the prototype stage, interaction problems may be 

discovered too late (due to other constraints) to effectively re-design the product’s interfaces in such a 

way that human factors demands are met - and any attempted patch-ups may render the product a bad 

fit for the user population.  

To cope with this, researchers like Pahl et al. (1996) have stressed the necessity for systematic design 

processes that support the definition of design activities to be carried out for a specific project, thus 

supporting design work without imposing the rigidity of a generic procedural template. To create such 

a systematic design process, many models have been suggested (Ullman, 2010; Ulrich and Eppinger, 

2011; Pahl et al., 1996; ISO, 2010; Dubberly, 2005). Most of the models describe the design process in 

one dimension, i.e. one type of aspect or feature makes up the backbone of the process. Often, these 

processes are dived into phases or activities originating from one type of main flow; linear/sequential or 

iterative/cyclic.  

In light of this, the conventional perception that requirements are to be finally determined early in the 

product development process (e.g. Ulrich and Eppinger, 2011; Cross, 2008) may “lock in” a sub-optimal 

design before all the necessary input has been given from appropriate stakeholders, which may force 

decisions to be made on uncertain preconditions. This may make the design vulnerable to late-stage 

inputs from overlooked stakeholder perspectives. Pew and Mavor (2007) emphasize the evolving nature 

of system requirements, since all the knowledge needed to write a complete requirement specification 

in beginning of a project usually does not exist. Rather, new requirements emerge during the whole 

design process, in a so-called co-evolution of requirements and design (Braha and Reich, 2003). This is 

particularly true of end-user products with multiple user categories (e.g. primary users as well as 

maintenance or disassembly personnel), since many requirement types do not emerge before user testing 

starts. Hubka and Eder (1988) describe the function-means tree as a structure for co-evolution, but 

without specific levels of abstraction. 

Requirements are not uniform in scope or definition; they can be established at different degrees of 

resolution that are useful and purposeful at different stages of the development process. For example, 

System Engineering and the V-model (Stevens, 1998) in particular distinguishes between User 

Requirements and System Requirements, where the former concerns what the user wants to with the 

product, and the latter concerns what the product must do. Szejka et al. (2014) describe the difficulty of 

refining requirements throughout the development process, saying that "Requirements (…) must be 

controlled inside all these phases and domains to avoid misinterpretation and mistakes that would 

compromise the final results (...) there is still a semantic gap between all requirements definitions when 
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they are defined in different domains for the same engineering project and requirement consistency 

management in different systems life cycle phases”. 

Also, companies are becoming more interested in cradle-to-cradle perspectives, adding to the design 

complexity. Facing such challenges places large demands on the organization of design work, so as to 

draw the greatest benefit from involving various types of expertise in early phases without too quickly 

constricting the design space – this is notoriously difficult, since such a multitude of perspectives and 

demands may render the requirements list very long and difficult to address in a coherent order. 

To summarize: finalizing requirements early in the development process, before enough knowledge of 

the product and its use is known, may lead to sub-optimal design solutions. To address the above 

challenges holistically, this paper proposes an approach for handling incremental development of 

requirements in parallel with design, in the domain of end-user product development. This is achieved 

by building upon a previously developed framework for product development and design work called 

ACD³. The specific contribution is a model with abstraction levels for the co-evolution of design and 

requirements. The levels are based on systems theory and termed Effect, Usage, Architecture, 

Interaction and Elements. The model is used as guide to requirement management and design. 

2 THE ACD³ FRAMEWORK  

This section describes the fundamentals of the ACD³ framework – previously described chiefly in 

Swedish (Bligård, 2015; Bligård et al., 2016; Berlin and Bligård, 2016) – to provide the reader with a 

good foundation to comprehend the paper’s main concept, the ACD³ Ladder for managing multi-phase 

requirements on end-user products.  

2.1 A brief overview of the framework 

The explicit goal for ACD³ is to support multidisciplinary product development teams in making 

coherent design decisions that propagate logically from the product’s intended effects down to the 

technical detail-level design. The purpose is to ensure a more successfully designed interaction between 

humans and a “machine” – this term is used instead of product to signal that the artifact being designed 

is complex and involves functionality, architectural structure and interaction with a user (Bligård, 2015). 

The “D³” in ACD³ refers to that the framework advocates development based on three fundamental 

dimensions: Design levels, Design Perspectives and Design Activities. When combined, the three 

dimensions provide a holistic guidance framework for which design decisions need to be made as logical 

consequences to the desired overall effect, all the way down to the technical detail-level solution. ACD³ 

is Use-centered rather than User-centered, i.e. it aims primarily to design a successful user-machine 

interaction; as a consequence, the hierarchy of design decisions consistently relates to intended 

functionality and activities. It also emphasizes that there is an end user, and thus the framework should 

not be evaluated as e.g. a tool for design optimization of individual machine components, as this is not 

what it is intended to facilitate.   

2.2 Theoretical basis 

The ACD³ Framework is based on a combination of theoretically compatible ideas and concepts from 

Design Engineering, Human Factors/Ergonomics, Usability and Systems Theory, as shown in Table 1:  
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Table 1. Theoretical basis for the ACD³ Framework 

Theory Authors  Implications for the framework 

Systems theory (Bertalanffy, 

1973) 

 

 

The Design levels in ACD³ are derived from the idea of 

“abstraction levels” and other terminology from General 

Systems Theory (GST), which has provided the overall 

philosophy of viewing the product development as a system. 

ACD³ follows the GST logic of defining a total systems 

boundary and the sub-systems it consists of, and gradually 

refining the description of elements, the hierarchical 

relationships between them, and how they affect each other 

(feedback).  

Activity theory (Karlsson, 

1996) 

The use- and activity-centered perspective is derived from the 

focus on agents, goals and means as described specifically in 

Karlsson’s (1996) application of Activity theory.   

Joint Cognitive 

Systems 

(Woods and 

Hollnagel, 

2006) 

A Joint Cognitive Systems view means viewing the human (the 

user) as an integral part of the overall system, and not just 

designing the product as an independent technical entity.  

Systems 

Engineering 

(Stevens, 

1998) 

 

The Systems Engineering perspective provides concepts related 

to requirements management (e.g. the V-model) and the role of 

functions in technical systems. This theoretical framework also 

provides the name of the ”Architecture” design level.  

Cognitive 

Systems 

Engineering 

(Rasmussen 

et al., 1994) 

The contribution from Cognitive Systems Engineering is to view 

systems at several different abstraction levels based on the 

interplay between the human and the machine; in ACD³, this has 

been applied as Design levels. 

Use-centered 

design 

(Bennett and 

Flach, 2011) 

Use-centered design focuses on the goals for the users and tasks 

that are carried out within the specific domain where the 

problems are. The match between human, activity and 

environment is central to Use-Centred Design, aiming towards a 

successful design of the machine (which in turn is defined as its 

achieving the intended purpose). The task is defined as the 

action taken by the user, with the machine as an assisting device, 

to solve the overall problem. This is a fundamental philosophy 

of the ACD³ framework.  

Function-means 

law (“Hubka’s 

law”)  

(Hansen and 

Andreasen, 

2002) 

The Function-Means law, a.k.a. Hubka’s Law, states that goals 

and means can be organized in a hierarchical structure, and that 

in a hierarchy of effects, the behavioural and structural aspects 

of a machine – i.e., the functions and the means – are causally 

related. This is applied in how the design and requirements are 

developed interactively and in parallel throughout the design of 

the product.   

 

As stated in Bligård et al. (2016), “ACD³ emerged as a result of combining different frameworks and 

process models in these areas into a coherent whole, with the aim of enabling a clearer understanding 

of a design process, as in making it easier to implement and teach.” The framework advocates the 

viewing of the machine from multiple systems perspectives, to continually address different disciplines 

of machine design at all design levels. This helps the design team identify and handle the possible 

interdependencies of design variables. The levels are described in greater detail in Section 2.3. 
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The framework postulates that the utility of a machine only emerges when the product is successfully 

used; therefore designing the use first, and then a machine to support this use, is a philosophical 

cornerstone derived from the theoretical basis.  Further, a design decision is defined as the action (taken 

by the designer) of constraining the possible value of a design variable; i.e. once the variable properties 

of the machine are specified (e.g. length, maximum weight, colour), determining their values (e.g. 4 

metres, max 350 g, blue) constrains the space of possible solutions, and constitutes the design decisions. 

A design variable “(…) is always determined in a design process, regardless of whether this is due to an 

active decision or if it results unintentionally. (…) their interdependence results from the precedence 

relationship between the variables.” (Bligård et al., 2016). The crucial element that regulates the 

intentional making of design decisions is therefore requirements – these narrow down the design space 

and emerge gradually (just like the design itself) as the result of the interplay between requirements and 

the design in the process. Accordingly, the requirements and the design give input to each other and 

ideally evolve in a top-down manner, from an initial overall principle to final technical details. The 

requirements from one phase frames the design in the next, and then that design generates new reasons 

to elicit requirements for the following stage. This structure, called the ACD³ Ladder, is presented in 

Section 3.  

2.3 The three dimensions of ACD³ 

The first dimension of ACD³ provides a systemic perspective of the product development. Called Design 

levels, it refers to the abstraction level at which the product can be described, ranging across a continuum 

from the desired overall Effect (which defines the product’s objective but leaves the design solution 

space wide open) down to the Elements (which mean that the design space has been maximally 

constrained and thereby the product specification has been defined in detail). Figure 1 provides an 

overview and a practical example of a vacuum cleaner, which will be revisited later.  

  

Figure 1. The Design Levels, exemplified by a vacuum cleaner (from Bligård et al., 2016)  

The second and third dimensions, Design Perspectives and Design Activities, are only briefly described 

here as they have a lesser role in requirements management, and are described in full elsewhere (Bligård, 

2015; Bligård et al., 2016). Design Perspectives reflect the notion that many different types of foci can 

be useful to the development of a product, and that these need to be orchestrated. The Design 

Perspectives specify five multi-disciplinary perspectives of the product design (Problem, Structure, 

Function, Activity and Realization). In the ACD³ framework, design of the product from each of these 

perspectives happens at each Design Level, from Effects to Elements. Finally, the Design Activities 

involve the identification, determination and communication of the design variables that make up the 

solution, iteratively within each phase in the design work – the specified iterative activities are Planning, 

Data Collection, Analysis, Ideation, Synthesis, Evaluation and Documentation. These activities are 

understood to be part of a design process that is both linear, with distinct phases (defined in the ACD³ 

Process as Needfinding, Design of use, Overall design, Detailed design and Structural design), and also 

iterative, with the design activities repeating within each phase.   
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The pairwise combination of the three dimensions has led to two separate sub-frameworks called the 

ACD³ Matrix and the ACD³ Process, which are described in full in Bligård et al. (2016) and Bligård 

(2015). 

3 THE ACD³ LADDER  

3.1 Handling Requirements with The ACD³ Framework  

One cornerstone of the ACD³ framework regards the interplay between requirements and the product 

design – they must be developed in parallel and successively, in order for detailed design decisions to 

become logical consequences of the overall desired effects. The requirements guide the design decisions 

in a particular direction, ideally to realize the overall effect goals. We argue that to achieve this, the 

resolution of requirements should be coupled to different design levels. In ACD³ each design level has 

been assigned a corresponding type of requirements (Table 2), which are developed in parallel with the 

design to an increasing degree of detail resolution.  

Table 2. Summary of requirement purpose and resolution at each design level 

Design 

Level 

Purpose Requirement 

Effect Frame the whole product 

development process 

Needs - the needs that the human-machine 

system is expect to fulfil to achieve the effect 

Use Frame the machine in the context 

of the socio-technical system 

Use requirements - Requirement on the 

human-machine system that needs to be 

fulfilled to enable the use  

Architecture Frame the design of machine as a 

whole 

Machine (system) requirements - requirement 

on the machine as whole 

Interaction Frame the design sub-parts of the 

machine and how they interact 

Sub-system requirements - requirements on the 

different sub-parts of the machine 

Element Frame the manufacturing of the 

machine 

Manufacturing requirements - requirements on 

how the parts of machine should be produced 

3.2 Setting requirements at each design level 
The design levels with their respective requirement types are visualized in Figure 2, which shows the 

ACD³ Ladder of Requirements Management. The Ladder implies that the design work should advance 

as a result of an iterative interplay with the requirement specifications, evolving gradually and iteratively 

as the development progresses and the detail level increases. This means that there is a continuous 

exchange of influence, and the design and requirements become prerequisites for each others’ 

incremental development.  

According to this logic, every level in the ACD³ Ladder (except the first Effect) is determined and 

constrained by the design- and requirements levels preceding it, and in turn it determines and constrains 

all subsequent design- and requirements levels. Every level of requirements constrains the possible 

design solution space in the subsequent design work, i.e., the requirements operationalize design 

decisions made in preceding levels into demands for the subsequent specification and precision. This 

follows the structure of the function-means tree (Hubka and Eder, 1988), but the abstractions levels are 

defined beforehand. 

Throughout the design process, the design and the requirements are made more precise and specified at 

more or less formalized intermittent “checkpoints” at which the design is evaluated, often called phases 

or gates. Accordingly, the requirements and the design give input to each other and iteratively evolve in 

a top-down manner. The requirement from one stage in the sequence frames the design in the next stage, 

and then that design is the basis for eliciting requirements for the following stage. This interaction 

between design and requirements continues until the machine is described at a level where it can be 
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produced in one decisive way; i.e., such that the subsequent design decisions made during the production 

phase do not affect the function and construction of the machine. 
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Figure 2. The ACD³ Ladder of Requirements Management 

It is important to note that the Ladder of Requirements Management does not prescribe the order in 

which designs decisions are made, but rather the hierarchical relationship between design and 

requirements at different abstraction levels. The ladder should therefore not be interpreted as a strict 

working procedure. Within each of the design levels, the design and the requirements grow together as 

result of the iterative design activities. Furthermore, there is often a need to explore the succeeding 

design level to fully understand which aspects are relevant to put into requirements at the current level. 

Also here an interactive approach is advocated, proposing that the design and requirements may co-

evolve at all design levels in parallel. This is especially important when requirements change and evolve 

due to increased learning and external restrictions and change. The role of the ladder is to provide the 

structure and logic for the co-evolution and iteration of all the levels of design and requirements. 

4 EXAMPLE: VACUUM CLEANER 

Table 3 shows an example product – a vacuum cleaner – to provide a guide for how the design and 

requirements at different levels interrelate when mapped onto the ACD³ framework. Here, we offer a 

walkthrough of the example to explain the logic of the interplay between design and requirements.  
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Table 3. Requirements at each level, with a vacuum cleaner as an example 

Level Example design Example of detail resolution of requirements 

Effect A cleaner home (Use, User and Stakeholder) Needs, e.g. 

- Cleaning should be performed in a healthy working posture  

- No damage to the dwelling and furniture 

- Cheaper than existing equivalent cleaning equipment 

- Possible to store in a normal closet 

- Be styled in the company profile colours 

- Conform with CE marking regulations 

Use Manually moving 

the device when 

cleaning 

Use requirements, e.g. 

- Connect to the general power grid (if electric) 

- Reach at least 1.5m away from the user 

- Be used by 5-95 percentile users aged 10 and up 

Architecture An electrical 

motor that sucks 

air through a filter 

Machine requirements, e.g. 

- Cord should be at least 8 meters 

- The suction pipe should be adjustable by 40 cm 

 -The force when pressing the button shall be between 0,5 and 2 N 

- The hand grip / handle should be between 4 and 6 cm wide 

- The casing radii of the machine should be at least 2 cm 

- The length of the main unit must not exceed 35 cm 

Interaction Design of the 

physical form and 

user interface 

Sub-system requirements, e.g. 

- Detailed requirements on the nozzle, hose, dust bag, filter, fan, 

motor, controller, software, cord, cord winder, etc. 

Element Structural design 

of the motor, the 

dust bag, etc.  

Manufacturing requirements, e.g. 

- Tolerances for drilled holes 

- Smoothness of surfaces  

 

The central design decision at the Effect level is that the result of the user-machine interaction should 

be “a cleaner home”.  This is the basis for identifying the Use- and User Needs that must be fulfilled to 

achieve the effect in a desirable way for all stakeholders (not just users), e.g. by not forcing unhealthy 

working postures and by not being more expensive than existing solutions. Needs for other stakeholders 

are to "Conform with CE marking regulations" and "Be styled in the company profile colours". The 

needs should be fulfilled by the use, whereby the machine’s utility emerges. Central to the Use design 

level is what the machine and the user must do respectively. In this example, the human should be 

"manually moving the device when cleaning" while the machine should fulfil the rest of the functions. 

The design of the use then logically leads to demands on the machine related to the intended use context, 

like "Reach at least 1.5m away from the user" and "be used by 5-95 percentile users aged 10 and up", 

both of which must be fulfilled in order for the intended use to be made possible. The use requirements 

in turn constrain the technical Architecture towards the solution "An electrical motor that sucks air 

through a filter". From this architecture, Machine requirements can be set at a more precise level of 

detail, such as "Cord should be at least 8 meters" and that "The suction pipe should be adjustable by 40 

cm". If these requirements are fulfilled, they should (due to their internal logical coherence) enable the 

intended use possible which in turn enables the achievement of the desired effect. The Machine 

requirements then constrain the Interaction, i.e. the "Design of the physical form and user interface" for 

the vacuum cleaner, and the aggregated design decisions up to that point amount to detailed 

requirements for all sub-systems (like the nozzle, hose, dust bag, filter, fan, motor, controller, software, 

cord, cord winder, etc). This is followed by the Elements level, at which e.g. the structural design of the 

motor, the dust bag etc. finally determine the Manufacturing requirements, e.g. tolerances for drilled 

holes and smoothness of surfaces. 
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5 DISCUSSION  

Given the organizational, multi-disciplinary and complex nature of end-user product development, it 

may seem that there is a gap between the conventional paradigm to specify requirements as 

comprehensively and early as possible, and the growing understanding in contemporary research that 

requirements evolve during the on-going design process. We argue that handling requirements 

development incrementally and in parallel with the gradually emerging design, and benefiting from the 

interplay between them, allows the design decisions to not only become more internally coherent, but 

also more robust in the face of late-stage suggestions for change. New demands at odds with the overall 

desired effect can be addressed critically in order to avoid a solution that is a bad compromise, and the 

multi-perspective guidance of the ACD³ structure avoids this risk in the first place.  

The idea of co-evolution is previously established and there is support in other literature for viewing 

design work at different levels and perspectives; for example, the Requirements Abstraction Model, 

RAM (Gorschek and Wohlin, 2006) describes software engineering at Product Level, Feature Level, 

Function Level and Component Level. ACD³ was developed independently of RAM, but the levels 

match quite well. Another model proposing abstraction levels is Leveson’s model for safety-critical 

technical systems, called Intent Specifications (Leveson, 2017). It has seven levels, five of which map 

quite well onto the levels of ACD³. Table 4 shows a side-by-side comparison of the models’ respective 

levels.  

Table 4. Comparison of level structures of ACD³, RAM and Leveson’s model 

ACD³ 

 

Requirements Abstraction 

Model (RAM) 

Leveson’s model (2017) 

Effect Level 

Use Level 

Architecture Level 

Interaction Level 

Element level 

Product Level 

Feature Level 

Function Level 

Component Level 

Level 1: System Purpose 

Level 2: System Design Principles 

Level 3: System Architecture 

Level 4: Design Representation 

Level 5: Physical Representation 

 

The logical coherence of these three models demonstrates that current research supports a generalization 

of these combined theoretical perspectives to consider design from multiple abstraction levels, a notion 

backed by Savioja et al (2014). The ACD³ framework can also counteract problems teams may have 

with understanding requirements (Lehtinen et al., 2015; Szejka et al., 2015) since each level of 

requirements is direct related to a design level, i.e. it makes it easier to trace the raison d’être of the 

requirements and put them into context for appointing the correct stakeholder to interpret the need and 

choose a solution.  

The validity of the ACD³ framework is currently being tested in a budding “Community of Practice” 

(Wenger, 2000; Wenger and Snyder, 2000) including Master thesis projects, an ongoing verification 

project involving Swedish product developers, and collaboration with a Swedish management 

consultancy firm specialized in organizational development.  

6 CONCLUSIONS 

This paper has presented an approach for incremental requirements management in parallel with the 

advancement of design work, based on a novel framework for product development. The specific 

contribution is a model with abstraction levels for the co-evolution of design and requirements 

thoroughly based on systems theory. It has also theoretically motivated and demonstrated with an 

example its utility for multi-disciplinary requirements handling. 
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