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Abstract 

Configuration design problems, characterized by the selection and assembly of components into a final 

desired solution, are common in engineering design. Although a variety of theoretical approaches to 

solving configuration design problems have been developed, little research has been conducted to 

observe how humans naturally attempt to solve such problems. This work mines the data from a 

cognitive study of configuration design to extract helpful design heuristics. The extraction of these 

heuristics is automated through the application of hidden Markov models. Results show that, for a truss 

configuration problem, designers proceed through four procedural states in solving configuration design 

problems, transitioning from topology design to shape and parameter design. High-performing designers 

are distinguished by their opportunistic tuning of parameters early in the process, enabling a heuristic 

search process similar to the A* search algorithm. 
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1 INTRODUCTION 

The selection and assembly of specific components to accomplish a well-defined objective is a familiar 

task in engineering, commonly referred to as configuration design (Mittal and Frayman, 1989).  

Although a variety of theoretical approaches to solving configuration design problems have been 

developed, little research has been conducted to observe how humans naturally approach such problems. 

Such descriptive research is a necessary first step before any attempt at a prescriptive methodology can 

be undertaken. Thus, the overarching goals of this work are (1) to analyze the results of a cognitive study 

of configuration design to provide a descriptive model, and (2) to extract beneficial prescriptive 

heuristics by comparing performance-differentiated models. The approach used to extract these 

heuristics is formal and novel. We mine the cognitive study data using hidden Markov models to 

automatically create representations of design behavior and process. It is shown that hidden Markov 

models trained on the data are sensitive enough to discover and clarify the procedural differences 

between high- and low-performing designers. A comparison of these performance-differentiated models 

provides insights that constitute heuristics for effective configuration design.  

This work specifically mines data generated by human participants during a truss design task. In that 

study, the solving approach used by participants generally conformed to a propose-critique-modify 

methodology, one frequently identified in configuration design (Chandrasekaran, 1990). This method 

begins with an initial solution (propose), evaluates the solution against constraints and objectives 

(critique), and changes the solution to reduce constraint violations or improve objectives (modify). 

Propose-critique-modify and other methods (Wielinga and Schreiber, 1997) provide a structured 

approach to searching the solution space associated with a given configuration problem. However, the 

solution space for configuration design problems branches in a polynomial fashion (Mittal and Frayman, 

1989), meaning that it tends to be both complex and large. Methods like propose-critique-modify cannot 

search efficiently unless they are guided by insights about the problem or heuristics that reduce the 

effective size of the solution space. Through a data-mining approach this work will extract and codify 

any such beneficial heuristics used by human designers. 

Other work has examined the patterns of rule-based operations that are used by humans to solve a truss-

type configuration problem. The rule-based operations for truss design problems are typically broken 

into three classes: topology operations (which modify the connectedness of the truss), spatial operations 

(which change the location of existing joints), and parameter operations (which modify the 

characteristics of structural members). In a cognitive study, participants were shown to predominantly 

use topology operations during the early phases of design, and progressively use more spatial and 

parameter operations in later phases (McComb et al., 2015a). A comparison of high- and low-performing 

teams in that study showed that high-performing teams used a smaller proportion of topology operations 

throughout the study (McComb et al., 2015a). However, both high- and low-performing teams 

progressively introduced more parameter and spatial operations at approximately the same rate. 

Statistical models were used to examine the sequential patterns employed during configuration design 

(McComb et al., 2016).  It was revealed that sequencing was important for achieving high quality 

designs. Specifically, topology operations were often applied together with other topology operations, 

while spatial and parameter operations were applied separately. It has also been noted that strong spatial 

cognition abilities are correlated to better outcomes in configuration design tasks (Kim et al., 2008). 

In the later stages of the design process, designers are known to frequently switch between embodiment 

and detail design activities (Snider et al., 2014). Frequent switching between different levels of detail 

and/or abstraction can be an indication of opportunistic design behavior (Guindon, 1990; Visser, 1994). 

Bender and Blessing (2004) linked the concept of opportunism in design to the use of strongly 

prescriptive methodologies in early conceptual design. Specifically, it was demonstrated that a 

hierarchical, phase-oriented approach (i.e. a highly structured prescriptive methodology) produced final 

design solutions with worse quality than those produced with a completely unstructured trial-and-error 

approach. The best solutions resulted from participants who used a balanced approach that merged an 

opportunistic approach to solving with a small degree of hierarchical structure (Bender and Blessing, 

2004). 

In order to direct designers towards effective configuration design procedures, it is necessary to identify 

heuristics that can be used to reduce the effective size of the solution space. The treatment of designer 

activity as a hidden Markov process in this work makes it possible to automatically infer process models 
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from a log of designer activity, from which heuristics can then be identified. The following sections will 

provide background on hidden Markov models, introduce the human study data set that is examined in 

this work, and detail the methodology used to mine heuristics from the data set. Next, hidden Markov 

models are trained on the entire data set in order to identify aggregate procedural characteristics, and 

separate hidden Markov models are also trained on high-performing and low-performing segments of 

the data. A comparison of these performance-differentiated models indicates that there may exist 

generalizable heuristics that improve human performance on configuration design problems. These 

heuristics can be provided to designers to increase the efficiency of design space search without choking 

out the potential for opportunistic processing. 

2 HIDDEN MARKOV MODELS 

A hidden Markov model describes a stochastic process in which a system transitions between a finite 

number of discrete states that cannot be directly observed (Durbin et al., 1998). Instead, the states 

probabilistically output tokens that can be observed. Each state is assumed to have a probability 

distribution over the set of possible output tokens, and one token is emitted from the system at every 

timestep. Therefore, the sequence of tokens that is produced by a hidden Markov model gives 

information about the structure of the hidden states. The parameters that define the hidden Markov 

model are the transition matrix, 𝑻, and the emission matrix, 𝑬. The transition matrix contains the 

probability of transitioning to a future hidden state from the current hidden state, where the value of 𝑇𝑖𝑗

is the probability of transitioning from state 𝑖 to state 𝑗. The transition matrix has size 𝑘 × 𝑘, where 𝑘 is 

the number of hidden states. The emission matrix contains the probability that a token will be emitted 

from a given hidden state, where 𝐸𝑖𝑗 is the probability that state 𝑖 will emit token 𝑗. The emission matrix

has size 𝑘 × 𝑚, where 𝑚 is the number of tokens and 𝑘 is the number of hidden states. 

 The mathematics describing hidden Markov Models were established by Baum and colleagues (Baum, 

1972; Baum et al., 1970; Baum and Eagon, 1967; Baum and Petrie, 1966; Baum and Sell, 1968). One 

of the first practical uses of hidden Markov models was for speech recognition (Jelinek et al., 1975), but 

they have also been utilized in fields as diverse as protein modeling (Krogh et al., 1994), economic 

forecasting (Gonzalez et al., 2005), team military tactics (White et al., 2009), and cognitive skill 

acquisition (Tenison and Anderson, 2016). Figure 1 shows a hidden Markov model with three hidden 

states and three emission tokens. Hidden states are shown by circles, and emission tokens are shown 

with squares. The transitions between hidden states are shown with solid arrows, and the emissions are 

shown with dashed arrows. The entries of the emission matrix are shown next to the dashed arrows that 

indicate the relevant emission, and transition probabilities are shown next to the solid arrows denoting 

the relevant transition. 

Figure 1. Example of a hidden Markov model with three states and three emission tokens. 
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In the current work, the tokens emitted by the hidden states are design operations. By treating the design 

operations as probabilistic representations, the hidden states that constitute the model become the 

underlying cognitive or procedural states that the designer goes through during the design process.  

3 TRUSS DESIGN DATA SET 

In a previously conducted experiment, teams of three senior mechanical engineering students were 

tasked with the design of a truss structure. The original study was also designed to test teams’ responses 

to dynamic and changing design scenarios, so the problem statement was unexpectedly changed at two 

points during solving. The initial problem statement asked participants to design a truss to cross two 

spans and support a load at the middle of each. The first unexpected change instructed participants to 

consider the possibility that one of the three supports for the truss could fail due to an adversarial attack. 

Thus, participants were required to make their truss structurally redundant to survive such an attack. The 

second change introduced an area through which no members could pass, essentially requiring students 

to design around an obstacle. For each problem statement, participants were given a required factor-of-

safety and a target mass. 

 

Figure 2. Example truss operation sequences. 

Every participant was given access to a graphical truss design computer program to facilitate completion 

of the design task. Through this interface, participants could construct, analyze, and share trusses within 

their team. The interface was also used to record a full log of the actions and operations of the 

participants. In constructing their trusses, participants could perform seven distinct design operations: 

adding a joint, removing a joint, adding a member, removing a member, moving a joint, changing the 

size of all members simultaneously, and changing the size of a single member. Every participant 

performed an average of 400-500 such operations. A short example operation sequence is provided in 

Figure 2. The truss design problem constitutes a full configuration design problem, per the guidelines 

provided by Wielinga and Schreiber (1997). This type of problem is characterized by parametrized 

components (e.g., size of members, location of joints), the lack of a predefined arrangement, and 

functional or global requirements and constraints (e.g., factor of safety, mass). 

4 APPROACH AND ANALYSIS 

The current work analyzes data from the study in the previous section using Hidden Markov models. 

This section outlines the specific methodology used in that analysis. The first sub-section outlines the 

Baum-Welch algorithm. This algorithm provides a means for computing transmission and emission 

matrices for a hidden Markov model based on an observed sequence of tokens. The Baum-Welch 

algorithm assumes that the number of hidden states is known, but such information is not known for the 

OBSERVABLE

? ? ? ? ? ?

Add	member Move	joint Move	joint Resize	all Resize	singleAdd	Member

HIDDEN
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current application. For that reason, the second sub-section outlines the procedure used here to estimate 

the correct number of hidden states. The final sub-section details the procedure used for identifying 

high- and low-performing designers. 

4.1 The Baum-Welch Algorithm 

If the number of hidden states (𝑘) is known, a hidden Markov model can be trained using the Baum-

Welch algorithm (Baum et al., 1970). This algorithm uses an expectation-maximization approach 

(Dempster et al., 1977) to provide maximum-likelihood estimates of the transition matrix (which dictates 

the transition probabilities between hidden states) and the emission matrix (which defines the 

distribution of token emissions over hidden states). The expectation step of the Baum-Welch algorithm 

utilizes the forwards-backwards algorithm to compute the probability that every observation in the 

training data resulted from any state in the model (Stratonovich, 1960). The maximization step then 

updates the transmission and emission probabilities of the model so that the likelihood of the observed 

data (given the model parameters) is maximized. A more detailed account of the algorithm is given in 

(Durbin et al., 1998).  

4.2 Determining the Number of Hidden States 

The correct number of hidden states to use for the current application in design is not known. Therefore, 

it becomes necessary to use the Baum-Welch algorithm to train a number of models with varying values 

of 𝑘, and then compare them in some way. In this work we trained several models with values of 𝑘 from 

one to a maximum of seven, the number of operations associated with the design problem.  Higher 

values of 𝑘 are not necessary because the emission probabilities of the states are no longer linearly 

independent when the number of hidden states is greater than the number of emission tokens (design 

operations). For each value of 𝑘, models were trained using leave-one-out cross-validation (Arlot and 

Celisse, 2010). For a data set consisting of 𝑛 samples, this cross-validation approach trains a model with 

𝑛 − 1 samples, and then tests the model on the sample that was not used for training. This procedure is 

repeated until every individual sample has been used for testing.  

A preferred model was then selected from the set of trained models based on the testing log-likelihood 

(indicative of the model’s ability to represent data that it was not explicitly trained on). Specifically, we 

selected the simplest model for which the testing log-likelihood was not significantly different from the 

testing log-likelihood of the most complex model. This selection criterion balances between model 

parsimony and descriptive accuracy by selecting the model that has the smallest number of hidden states 

necessary to offer a significantly accurate description of the data. 

4.3 Comparing High- and Low-performing Designers 

A key aspect of this work is the utilization of hidden Markov models to compare the procedures used 

by high-performing designers and low-performing designers. Of the 48 individuals who took part in the 

truss design study, 15 individuals (31.25% of the population) were designated as high-performing 

designers and 15 individuals (31.25% of the population) were designed as low-performing designers 

based on an evaluation of the final and intermittent design solutions provided by their teams. A detailed 

account of how high- and low-performing designers were designated is available in (McComb et al., 

2015b). 

5 RESULTS 

Figure 3 shows the results of training hidden Markov models with varying numbers of hidden states on 

the data from all participants of the truss design study. Models trained with three or fewer hidden states 

had testing log-likelihood values that were significantly lower than the most complex model (seven 

hidden states in this case), indicating that these models offered relatively low accuracy. The first model 

that is statistically indistinguishable from the highest complexity model in terms of testing log-likelihood 

is that trained with four hidden states. Therefore, the four-state model is selected as the preferred model 

in this application. 
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Figure 3. Testing log-likelihood on Truss Design Study data for models with increasing 
number of hidden states (error bars show ±1 S.E.). 

Hidden Markov models were also trained separately on the data from the high-performing and low-

performing designers from the study, using four hidden states as chosen based on Figure 3. A graph-

based representation of each of these four-state hidden Markov models is provided in Figure 4. Circular 

nodes indicate the hidden states, numbered 1 through 4. These states are numbered according to the 

ordering with the highest probability, with State 1 being the most likely initial state, and State 4 being 

the most likely terminal state. Rectangular nodes represent the most probable emissions from each 

hidden state (and are labeled with the appropriate operation name). The arrows connecting the nodes 

represent the probability of a transition between hidden states (if the arrow connects two circular nodes) 

or the probability of a design operation given the current hidden state (if the arrow connects a circular 

node to a rectangular node). 

Interestingly, the model trained on the low-performing designers (see Figure 4(a)) is structurally 

identical to that trained on all designers (see Figure 4(b)), although specific probabilities differ slightly. 

This indicates that the general procedural characteristics encoded in these models were followed by the 

majority of study participants. In States 1 and 2 of these models, the designer is exclusively concerned 

with the topology of the truss. State 1 specifically corresponds to construction of a truss topology 

(through joint addition and member addition operations) while State 2 corresponds to destruction of 

parts of the truss topology (through joint and member removal operations). There is a greater chance of 

transitioning from State 2 to State 1 than of the opposite transition (as indicated by the weights of the 

arrows between the two states). This indicates that the default topology mode of designers during the 

study was construction (State 1); transitions to the destructive state (State 2) were rare and did not last 

long before a return to construction. In State 3 the designer performs operations to reposition joints or 

for modification of the size of all structural members simultaneously. A designer in State 3 has a 78% 

chance of remaining in that state (indicated by the heavy weight of the border of State 3). However, 

when they finally leave the state, they have a higher chance of transitioning back to one of the topology 

states (14%) than transitioning forward to the parameter state (8%). Once a designer reaches State 4 they 

have a very high probability of remaining in that state (94%, evidenced by the thick black border around 

the state). In this state, designers apply a single operation that changes the size of a single member at a 

time. This impacts only one structural member at a time, and is thus indicative of very detailed design 

that might occur when a solution is nearing completion. 

The model trained on data from the high-performing designers, shown in Figure 4(c), shows distinct 

differences from both the aggregate model and the low-performing model. The primary structural 
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difference in the model is that the operation for global resizing of structural members (“Size (All)”) 

moves from State 3 to State 2. This indicates the introduction of a parameter operation to a state that 

was previously dominated by topology operations (namely, operations for removing elements from the 

truss), demonstrating that coarse member-sizing operations should be applied early during truss design 

to better guide the subsequent design operations. A secondary effect of this rearrangement is that State 

3 is now devoted entirely to moving joints of the truss, which might indicate the importance of sweeping 

through a truss design to adjust joint locations (similar to how State 4 indicates a sweep through the 

design to adjust member size). 

  

(a) Model trained on data from low-
performing designers. 

(b) Model trained on data from all 
designers. 

 

(c) Model trained on data from high-performing designers 

Figure 4. Visual representation of four-state hidden Markov models.  

6 DISCUSSION 

A comparison of the hidden Markov models trained on data from high- and low-performing designers 

is provided in Table 1. The benefit derived from the differences between these models is likely twofold. 

First, the devotion of State 3 to a spatial operation indicates that high-performing designers are engaged 
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in prolonged phases of spatial activity with no modification of solution parameters. Since a spatial 

operation can impact multiple portions of the current solution, interweaving parameter operations with 

spatial operations (as did the low-performing designers) can be premature – moving a joint can make it 

necessary to re-adjust the size of a member that has already been fine-tuned. A superior strategy, as 

evidenced by this analysis, is to engage in spatial and parameter optimization separately. Second, the 

incorporation of a parameter operation in an early state that is otherwise dominated by topology (namely, 

State 2) indicates that high-performing designers co-evolved solution topology and parameter values. 

Rather than focusing purely on modifying topology like the low-performing designers did, high-

performing designers incorporated parameter tuning operations concurrently with topology operations, 

which allowed them to more accurately approximate the final performance of their early concepts. This 

resulted in their ability to select a more effective topology, which in turn led to a higher quality solution. 

Initially, early application of parameter operations may appear to be greedy in nature, since the designer 

appears to be making needlessly granular improvements at an early stage. However, this activity is better 

described as opportunism, and aligns with other work that has demonstrated opportunistic activity in 

designer behavior and correlated that opportunism with beneficial design outcomes (Bender and 

Blessing, 2004; Guindon, 1990; Visser, 1994). 

Table 1. Comparison of models for high- and low-performing designers. 

State Number Low-performing High-performing 

1 Topology – Add member 

Topology – Add joint 

Topology – Add member 

Topology – Add joint 

2 Topology – Remove member 

Topology – Remove joint 

    — 

Topology – Remove member 

Topology – Remove joint 

Parameter – Size (all) 

3 Spatial – Move joint 

Parameter – Size (all) 

Spatial – Move joint 

    — 

4 Parameter – Size (single) Parameter – Size (Single) 

 

This pattern of activity is also similar (at least analogically) to A* search (Hart et al., 1968). The A* 

algorithm is used for finding the minimum cost path between two points (typically represented as nodes 

in a graph) and follows a best-first search pattern. Search is specifically guided by an estimate of total 

path cost that is the sum of the cost of the path from the starting node to the current node (committed 

cost) and a heuristic estimate of the cost of the path from the current node to the goal node (expected 

cost). In this work, the current performance of a given solution topology is analogous to the committed 

cost, while the analogical equivalent of the expected cost is estimated differently by the high- and low-

performing designers. Low-performing designers took the current performance as a direct indication of 

the expected cost heuristic, which resulted in relatively naïve early search. To maintain the search 

analogy, this could be likened to breadth-first search. In contrast, high-performing designers performed 

some parameter modifications to early topologies, which allowed them to more accurately estimate an 

expected cost heuristic. This provided better design performance information to guide early search 

towards a system topology with a high likelihood of delivering high final performance. To return to the 

search analogy, high-performing designers departed from the breadth-first style employed by low-

performing designers and achieved a heuristic style that can be likened to the A* algorithm. 

7 CONCLUSION 

Configuration design is a common task in engineering, yet few studies have been conducted to examine 

how humans naturally engage in the task. Such descriptive research is necessary before prescriptive 

recommendations can be created. Thus, the objectives of this work were (1) to produce a descriptive 

model of aggregate human behavior in configuration design, and (2) to extract beneficial prescriptive 

heuristics by comparing models trained on different segments of the design data. Hidden Markov models 

were utilized as a data-mining technique to fulfill both of these objectives. 

This work first applied hidden Markov models to the entirety of the data from the cognitive study, 

producing an aggregate model of designer activity. The best model for the given data contained four 
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hidden states. The states in the model aligned with specific activities: the first two states were devoted 

to topology operations, the third state contained spatial (and other) operations, and the final state was 

devoted to parameter operations. It is unclear if the number and operation type of the hidden states is 

due to a general pattern of human cognition, is reflective specifically of the truss design task, or is due 

to some combination of influences both internal and external to the designer. 

Next, separate hidden Markov models were trained on the data from high- and low-performing 

designers. The model trained on the low-performing designers was identical in structure to the model 

trained on all designers, but the model trained on the high-performing designers showed different 

patterns of activity. The key structural difference between the models was that high-performing 

designers incorporated parameter operations in an early state that were otherwise dominated by topology 

operations. In doing so, high-performing designers could roughly tune the parameters of early design 

concepts. This in turn allowed them to better estimate the final quality of those early concepts, providing 

more accurate information to guide their search process. 

The propensity of high-performing designers to use topology and parameter operations together in the 

early phases of their process is similar to opportunistic behavior that has been observed and correlated 

with high performance in other domains (Bender and Blessing, 2004; Guindon, 1990; Visser, 1994). 

This process also bears some similarity, at least analogically, to the A* search algorithm. That algorithm 

is used for path-finding and employs a heuristic estimate of the final path cost (Hart et al., 1968). That 

heuristic estimate is similar to the way in which high-performing designers were able to estimate the 

final quality of solutions by judiciously applying early parameter operations. 

This work showed that hidden Markov models can be an effective tool for automating the construction 

of models for design processes. By employing this statistical tool, it was also demonstrated that nuanced 

early search is crucial to creating high-quality configurations, and that more effective early search can 

be obtained through the judicious application of parameter operations concurrently with topology 

design. This approach constitutes a heuristic that can be provided to designers to increase the efficiency 

of design space search without choking out the potential for opportunistic processing. Future work 

should apply the methodology used here to other design data sets (both for configuration design and 

other tasks) to examine the extent to which the results can be generalized. The heuristic of coevolving 

topology and parameters (and variants of it) should also be experimentally validated as a means of 

demonstrably improving solution quality.  

REFERENCES 

Arlot, S. and Celisse, A. (2010), “A survey of cross-validation procedures for model selection”, Statistics Surveys, 

Vol. 4, pp. 40–79. 

Baum, L.E. (1972), “An equality and associated maximization technique in statistical estimation for probabilistic 

functions of Markov processes”, Inequalities, Vol. 3, pp. 1–8. 

Baum, L.E. and Eagon, J.A. (1967), “An inequality with applications to statistical estimation for probabilistic 

functions of Markov processes and to a model for ecology”, Bulletin of the American Mathematical Society, 

Vol. 73 No. 3, pp. 360–364. 

Baum, L.E. and Petrie, T. (1966), “Statistical Inference for Probabilistic Functions of Finite State Markov Chains”, 

The Annals of Mathematical Statistics, Vol. 37 No. 6, pp. 1554–1563. 

Baum, L.E., Petrie, T., Soules, G. and Weiss, N. (1970), “A Maximization Technique Occurring in the Statistical 

Analysis of Probabilistic Functions of Markov Chains”, The Annals of Mathematical Statistics, Vol. 41 No. 

1, pp. 164–171. 

Baum, L.E. and Sell, G. (1968), “Growth transformations for functions on manifolds”, Pacific Journal of 

Mathematics, Vol. 27 No. 2, pp. 211–227. 

Bender, B. and Blessing, L. (2004), “On the superiority of opportunistic design strategies during early embodiment 

design”, Proceedings of DESIGN 2004, the 8th International Design Conference, pp. 1–6. 

Chandrasekaran, B. (1990), “Design Problem Solving: A Task Analysis”, AI Magazine, Vol. 11 No. 4, pp. 59–71. 

Dempster, A., Laird, N.M. and Rubin, D.B. (1977), “Maximum Likelihood from Incomplete Data via the EM 

Algorithm”, Journal of the Royal Statistical Society. Series B (Methodological), Vol. 39 No. 1, pp. 1–38. 

Durbin, R., Eddy, S.R., Krogh, A. and Mitchison, G. (1998), Biological Sequence Analysis, Cambridge University 

Press, Cambridge. 

Gonzalez, A.M., Roque, A.M.S. and Garcia-Gonzalez, J. (2005), “Modeling and Forecasting Electricity Prices 

with Input/Output Hidden Markov Models”, IEEE Transactions on Power Systems, Vol. 20 No. 1, pp. 13–

24. 

Guindon, R. (1990), “Designing the Design Process: Exploiting Opportunistic Thoughts”, Human-Computer 

Interaction, Vol. 5 No. 2, pp. 305–344. 

59



  ICED17 

Hart, P., Nilsson, N. and Raphael, B. (1968), “A Formal Basis for the Heuristic Determination of Minimum Cost 

Paths”, IEEE Transactions on Systems Science and Cybernetics, Vol. 4 No. 2, pp. 100–107. 

Jelinek, F., Bahl, L. and Mercer, R. (1975), “Design of a linguistic statistical decoder for the recognition of 

continuous speech”, IEEE Transactions on Information Theory, Vol. 21 No. 3, pp. 250–256. 

Kim, M.J., Korea, S. and Maher, M. Lou. (2008), “The impact of tangible user interfaces on spatial cognition 

during collaborative design”, Design Studies, Vol. 29 No. 3, pp. 222–253. 

Krogh, A., Brown, M., Mian, I.S., Sjölander, K. and Haussler, D. (1994), “Hidden Markov models in 

computational biology. Applications to protein modeling.”, Journal of Molecular Biology, Vol. 235 No. 5, 

pp. 1501–1531. 

McComb, C., Cagan, J. and Kotovsky, K. (2015a), “Lifting the Veil: Drawing insights about design teams from a 

cognitively-inspired computational model”, Design Studies, Vol. 40, pp. 119–142. 

McComb, C., Cagan, J. and Kotovsky, K. (2015b), “Rolling with the punches: An examination of team 

performance in a design task subject to drastic changes”, Design Studies, Elsevier Ltd, Vol. 36 No. 1, pp. 

99–121. 

McComb, C., Cagan, J. and Kotovsky, K. (2016), “Utilizing Markov Chains to Understand Operation Sequencing 

in Design Tasks”, in Gero, J.S. (Ed.), Design Computing and Cognition ’16, Springer International 

Publishing, Cham, Switzerland, pp. 401–418. 

Mittal, S. and Frayman, F. (1989), “Towards a Generic Model of Configuration Tasks”, IJCAI’89 Proceedings of 

the 11th International Joint Conference on Artificial Intelligence - Volume 2, pp. 1395–1401. 

Snider, C., Dekoninck, E. a and Culley, S.J. (2014), “The appearance of creative behavior in later stage design 

processes”, International Journal of Design Creativity and Innovation, Vol. 2 No. 1, pp. 1–19. 

Stratonovich, R.L. (1960), “Conditional Markov Processes”, Theory of Probability & Its Applications, Vol. 5 No. 

2, pp. 156–178. 

Tenison, C. and Anderson, J.R. (2016), “Modeling the distinct phases of skill acquisition.”, Journal of 

Experimental Psychology: Learning, Memory, and Cognition, Vol. 42 No. 5, pp. 749–767. 

Visser, W. (1994), “Organisation of design activities: Opportunistic, with hierarchical episodes”, Interacting with 

Computers, Vol. 6 No. 3, pp. 6–3. 

White, B., Blaylock, N. and Bölöni, L. (2009), “Analyzing Team Actions with Cascading HMM Team action 

analysis: Bounding Overwatch”, FLAIRS Conference. 

Wielinga, B. and Schreiber, G. (1997), “Configuration-design problem solving”, IEEE Expert-Intelligent Systems 

and Their Applications, Vol. 12 No. 2, pp. 49–56. 

 ACKNOWLEDGMENTS 

This material is based upon work supported by the National Science Foundation Graduate Research 

Fellowship under Grant No. DGE125252 and the United States Air Force Office of Scientific Research 

through grant FA9550-16-1-0049. Any opinions, findings, and conclusions or recommendations 

expressed in this paper are those of the authors and do not necessarily reflect the views of the sponsors. 

60


	DS87_2_DesProc
	DS87_2_2_162




