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Abstract: Enterprise architecture (EA) may be considered an organizational 

blueprint that helps experts manage organizational complexity. In this regard, EA 

analysis is an emerging field gaining greater attention, and considering EA as an 

intertwined system of components and relationships and performing EA analysis 

from a structural perspective are promising areas of research. This paper analyzes 

EA data from a German commercial vehicle manufacturer, modeling a subset of its 

EA with the help of design structural and domain mapping matrices. Thus, we 

propose an analysis approach based on network measures that uses structural 

knowledge generated by the network analysis to validate or refine experts’ tacit 

knowledge about EA key components from different layers. We refer to this 

approach as the diagnosis analysis method. Based on our results, we successfully 

combine the structural knowledge with expert knowledge and provide useful 

validations for experts. 
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1 Introduction 

Enterprise architecture (EA) can be considered a blueprint that describes a general 

organization in terms of its components to help experts manage organization complexity. 

Management of all these components (e.g., goals, business process, applications, and IT 

infrastructure), their interdependencies, and their evolution allows organizational 

changes to be coordinated and aligned with mid- to long-term company objectives 

(Ahlemann, 2012). In companies that deal with a vast set of applications supporting 

several business processes, the task of gleaning additional value from current EA models 

(EA analysis) is made even more complex by the lack of suitable analysis tools (Santana 

et al., 2016). 

EA analysis has attracted researcher attention in the last decade (Santana et al., 2016). 

The literature includes several different paradigms for EA analysis, such as probabilistic 

relation models (Buschle et al., 2010), EA intelligence (Veneberg et al.,, 2014), 

complexity management (Schneider et al., 2014), ontology-based analysis (Antunes et 

al., 2013) and network-based analysis (Dreyfus and Wyner, 2011). 

Considering EA as an intertwined system of layers, components, and relationships and 

performing EA analysis from a structural perspective holds promise. However, the 

application of network measures in EA analysis still has considerable room to grow, 

according to Santana et al. (2016) and Simon and Fischbach (2013). A similar challenge 
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of analyzing interdependent components has also been faced in other fields such as 

system engineering and product engineering. In these areas, the literature has 

emphasized the importance of the design structure matrix (DSM). The principles on 

which DSM and other similar methods are based have proven to be valuable and viable 

in numerous applications (Kreimeyer et al., 2009). Related research also reports the 

application of the DSM through the use of strength-based graphs and algorithms from 

network theory (Kreimeyer et al., 2009). 

In this paper, we take a similar approach to analyze EA data from a large commercial 

vehicle manufacturer located in Germany, modeling a subset of its EA with the help of 

DSMs and applying network measures. In the end, we offer two contributions: First, we 

frame an empirical subset of EA data as DSMs and apply matrix transformations to this 

subset, deriving a co-affiliation network. We then apply network measures to identify 

key components in the primary and derived networks. With that, we expect to foster the 

discussion for applying DSM to EA analysis with primary and derived data. Second, we 

propose an analysis approach based on network measures to be applied to our data, 

modeled as primary and derived DSMs. We take the expert knowledge and compare it 

with the structural information generated by the network measures in order to validate 

and/or refine experts’ perceptions about key EA components. We refer to this approach 

as the diagnosis analysis method. We demonstrate the use of this approach, aiming to 

answer the following research question: How can expert and structural knowledge about 

EA components be combined to help an expert perform EA analysis? 

This paper is organized as follows: Section 2 presents key concepts discussed. Our 

research design is described in Section 3. Section 4 presents results and our analysis. 

Section 5 presents our conclusions. 

2 Key concepts 

This section is a short introduction to the topics covered in the paper: enterprise 

architecture, EA analysis, the DSM and multiple-domain matrix (MDM), and EA 

network analysis. Related works are also detailed in this section. 

2.1 Enterprise architecture 

EA is defined in a variety of ways. We adopt the definition proposed in the literature 

review of Schütz et al. (2013), which is also supported by Open Group (2011). 

According to that definition, EA is a system formed by four subsystems: business (or 

business layer), data (or information layer), application (or application layer), and 

infrastructure (or technology layer). In this paper, we model these EA subsystems (which 

might also be called EA layers or architectures) as networks/graphs. 

2.2 Enterprise architecture analysis 

EA can be considered an organizational blueprint composed of the four layers above. 

Creating such a blueprint is worthwhile only if resultant models can add value to the 

architectural decision-making process, help in managing organizational complexity, and 

lower risks (Naranjo et al., 2014). As part of the broader EA management lifecycle, EA 

analysis initiatives might target different concerns such as EA domain redesign, 

application support to business processes support, identification of misalignment of 

resources, EA decision making, and so on. These analysis initiatives may have different 
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degrees of abstraction and coverage, ranging from a full-edged impact analysis over the 

entire model to an in-depth analysis of a specific domain (Naranjo et al., 2014). 

2.3 Modeling EA as a complex network 

In the context of network theory, according to Scott (1992), a graph or network is a set 

of components (nodes or vertices) and links (edges or relations). The use of graph theory 

and network measures to analyze single software systems extends back to the 1980s 

(Hall and Preiser, 1984). Clustering algorithms, a common approach found in software 

modularity studies (group or cluster analysis), was introduced in the EA context by Aier 

and Winter (2009) to identify EA virtual domains and thus aid in EA redesign. However, 

analysis measures at the individual level—such as eigenvector and degree centrality—

appear more frequently in EA research than does clustering, as shown in Santana et al. 

(2016).  

When modeling EA as a set of networks or layers, nodes may represent different 

components. In the application layer, for instance, nodes might represent applications 

that support business functions that integrate the business layer (Simon and Fischbach, 

2013). Nodes in the technology layer can represent IT infrastructure components such as 

application servers. Edges represent relationships and interdependencies between 

applications. In general, these relationships can take different forms (Simon and 

Fischbach, 2013). For example, links between application components in the application 

layer may indicate the same vendor or a data flow. These modeling choices for nodes 

and relationships are closely related to the EA concerns one may wish to analyze 

(Wasserman and Faust, 1994). 

2.4 DSM, MDM 

If the goal of architecture is to provide flexibility, robustness, and adaptability, then any 

change to the architecture must be managed to minimize its complexity (Schmidt, 2013). 

Schütz et al. (2015) define EA complexity as having two dimensions: structural 

(interdependence of the elements) and heterogeneity. In this paper, we focus on the first 

of these two.  

The DSM-based methods have been well established for many years, and are typically 

applied to systems engineering, product architecture, and so on, to analyze aspects such 

as dependency and modularity (Kreimeyer et al., 2009). We find, however, only a few 

applications of DSM in the context of enterprise architecture (Lagerström et al., 2013).  

According to the literature review of Santana et al. (2016), research that considers DSM 

modeling in EA analysis is scarce; the exceptions are the works of Lagerström et al. 

(2013) and Lagerström et al. (2014). In the view of Lagerström et al. (2013), 

“interestingly, many of the problems encountered by software architects dealing with a 

single software system are similar to those that occur for enterprise architects on a 

system-of-systems level.” The authors took the DSM expertise from the analysis of 

single software architectures in Baldwin et al. (2013) and applied it to EA. In the end, 

Lagerström et al. (2013) proposed the “hidden structure method” to classify EA 

components into four categories according to their position in the network. Later, 

Lagerström et al. (2014) used their previous method and adding a correlation analysis 
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between the position occupied by the component in the network and the cost of change 

propagation and architecture flow.  

The multiple-domain matrix (MDM) is an extension of the DSM to model entire systems 

consisting of multiple domains, each having multiple elements and connected by various 

relationship types. Bartolomei et al. (2012) present an MDM representing several 

domains of systems engineering for modeling large-scale, complex systems projects. 

They consider six component classes belonging to five domains. Hollauer et al. (2015) 

also propose an MDM that supports dynamic modeling of sociotechnical systems 

consisting of seven domains.  

In this paper, we advocate and reinforce the use of EA as an organizational blueprint, 

together with DSM and MDM modeling and constructs taken from network theory, to 

build a toolbox to perform EA structural analysis. One possible application that arises 

immediately is to use an MDM to model EA and derive single DSMs to explore new 

analysis perspectives.  

3 Methodological aspects 

This work can be classified as exploratory and applied research. We have adopted a 

design science research approach (Hevner et al., 2004).  

In practice, EA analysis depends critically on human cognitive abilities (e.g., expertise) 

(Hevner et al., 2004) to produce effective results (Simon and Fischbach, 2013). We 

believe that, particularly in organizations with dozens or even hundreds of business 

processes supported by a similar number of applications, one might want to use 

additional knowledge sources to add confidence to the analysis. As our design artifact, 

we develop a method to combine expert knowledge (subjective by nature) about EA 

components (critical business units (BUs), business process (BPs), and business objects 

(BOs)) with network measures outputs (structural criteria). Figure 1 depicts this 

approach.  

Figure 1: Combined EA analysis. Cycle I: EA models are analyzed with expert-based techniques; Cycle II: EA 

models are converted into EA network data; Cycle III: EA network analysis is performed using network 

measures; Cycle IV: Combined EA analysis 

We believe this approach allows for designing a more robust method for EA analysis. 

We validated the artifact with a real-world example, using data from a business unit of a 

German automotive company with global operations. The company (henceforth referred 

I – EA Models for expert based analysis 

III – EA  

network  

analysis 

II –EA network 

data modelling 

IV–Combined 

EA analysis 
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to as “Autocompany”) has multibillion-dollar revenues and more than 40,000 employees 

around the world. 

To model our networks, we preprocessed documents made available by Autocompany 

that were complemented with a round of two meetings to model the data properly. Table 

1 describes the subset of EA layers analyzed. Components such as application (from 

application layer) and technology (from technology layer) are not discussed in this paper 

due to space limitations.  

We used these data to build the primary or original networks (i.e., BOxBO, BPxBP). The 

primary network was created based on the data provided by Autocompany. We also 

worked with a second category of data, so-called derived network data. For instance, the 

BUxBU is a network (or DSM) derived from the BUxBP network (or a MDM) by the 

co-affiliation mechanism described in Borgatti and Halgin(2016).  

Table 1. Dataset description of our case 

EA component EA layer Amount of 

components in dataset 

Network model 

Business unit Business 15 BUxBU 

Business process step Business 101 BPxBP 

Business object Information 70 BOxBO 

According to Scott (1992), different network measures can be used as proxies for various 

structural concepts. We use the set of measures described in Table 2.  

Table 2. Network measures used, and their contextualization 

Network measures Meaning in the context of BPxBP network 

Betweenness centrality BPs that are important intermediary channels of information 

In-Closeness centrality BPs can be reached easily from other nodes (in our case, BPs that are 

common destinations of information flow) 

Eigenvector BPs connected with other significant (well-connected) BPs; these are 

structural nodes in the network of BPs 

In-degree centrality BPs that receive several inputs from other BPs 

Out-degree BPs that provide several inputs for other BPs 

Total degree BPs with high total degree centrality represent BPs that interact 

directly with several other BPs 

To capture this diversity of concepts, we define a majority voting strategy to select the 

“Y” most recurrent outliers from our voting committee based on the “X” outliers 

identified by each network measure. With this voting strategy, we consider the TOP 15 

(X=15) outliers of each of the six measures in Table 2. We then compute the most 

“cited” outliers among them to build a ranking containing the ”Y” most recurrent 

components, as depicted in Figure 2. The “Y” and “X” parameters are adjusted ad hoc 

by the experts (one might want to analyze the 10, 20, or 30 most recurrent outliers 

among the TOP X outliers of each measure). This ranking represents a synthesis of the 

most significant outlier components in terms of structure. 
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“X” Betweenness votes 

“X” In-closeness votes 

“X” Eigenvector votes 

“X” Out-degree votes 

“X” Total-degree votes 

∑ 

“Y” most 

recurrent 

outlier´s 

Ranking 

“X” In-degree votes 

Figure 2. Voting strategy to build the outliers´ ranking 

We can use this information in different ways. The most obvious one is a context- 

independent analysis to identify the components that play important roles in terms of 

structure. We propose, thus, a second possibility, which is to combine this structural 

knowledge with expert’s tacit knowledge (a priori knowledge). We call this diagnosis 

analysis. We are interested in validating the expert knowledge with the components that 

are true positives (i.e., components identified as critical both by network measures and 

the experts) and potentially providing new information for the experts with the false 

positives (i.e., components identified as critical only by the network measures). 

We performed this analysis for the BUxBU, BPxBP, and BOxBO networks, aiming to 

answer the following research question: How can expert and structural knowledge about 

EA components be combined to help an expert perform EA analysis? Section 4 presents 

our results. 

4 Results and discussion 

In this section, present the three aspects of our network analysis: BPxBP, BOxBO, and 

BUxBU. 

4.1 BPxBP network analysis 

With this analysis, we aimed to answer the following question: Can the business process 

outliers (central points of the network BPxBP) also be identified as elements of the 

critical path defined by experts? Our EA analysis concern, then, was to identify key 

structural components of an EA layer (in this instance, the business process layer). We 

used as input for this analysis the BPxBP network (primary data) extracted from 

Autocompany’s documents.  

Our hypothesis H1 is that network measures will be able to identify the main 

components belonging to the critical path already defined by Autocompany’s experts. 

Additional components will also be identified and may have their importance validated. 

The experts identified seven BP components in the critical path (the data had to be 

anonymized). Following the algorithm of the diagnosis analysis method defined in 

Section 3, we selected the TOP 15 outliers generated for each of six network measures. 

We then took the most recurrent components among all measures, using the voting 

strategy. This resulted in the selection of 21 distinct components (BPs), among which it 

was possible to identify successfully, from a universe of 102 BPs, the seven BPs that 

constitute the critical path defined in Autocompany’s documents. This selection also 

included components considered for further analysis by Autocompany’s experts, who 

classified all of them as important BPs. As one expert remarked about these 
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complementary BPs, for example, “BP64 confirms the overall tech concept. BP68 

formalizes this concept and turns it into a planned bill of material, and BP73 makes a 

document that contains these three aspects. Thus, this cluster makes total sense.” In 

short, the experts found the results consistent with their expectations and very helpful. 

Thus, we found support for H1. 

4.2 BOxBO network analysis 

The research question here is: Can network measures identify the most important BOs 

(according to the experts’ opinions)? Thus, our concern with the analysis concern was 

about key components of business object components, entities produced by business 

processes that might be handled by other business process components. The BOxBO 

network is a primary network that aims to represent how a BO is related to other BOs.  

The experts classified 12 BOs as critical. Applying the diagnosis analysis method, we 

first selected the TOP 15 (X=15) components voted by each network measure from a 

universe of 70. From among all voted components, we chose the 19 most voted (Y=19), 

seeking to verify whether the 12 critical BOs were among the BOs in the ranking (H2 

hypothesis). As a result, nine (9 of 12) critical BOs were identified among the 19 ranked 

components. 

The experts indicated that identifying this set was a good result. As one said, “This is a 

very nice result. We recreated a discussion that we had when we designed the critical 

path for the BOs. At the time, and until now, we were unsure what the critical path 

indeed included.” We still had 10 additional BOs identified as critical by the network 

measures (10/19) that had not been mentioned a priori by the experts (see yellow circles 

in Figure 3). One expert stated that “these 10 components might take part in the main 

information flow in case of a broader selection.” Therefore, we decided to build the 

Ishikawa diagram in Figure 3 to check this information visually:  

Figure 3. Ishikawa diagram for true positive, false positive, and false negative BOs 

The red BOs (triangles) in Figure 3 were not identified by our method. We can divide 

the yellow BOs(squares) into two subsets. The first is components with high values for 

global centrality measures. This is the case for BO152 (high betweenness), BO171, 

BO97 (high eigenvector), BO178 (high betweenness), and BO97 (high eigenvector). 

These BOs appear in the surrounding areas of the significant BOs (green circles). The 

second subset comprises components with high values for local centralities, such as 

BO57 (high in-degree centrality value) and BO91, BO99, and NB05 (total degree 

centrality). This second group is not connected with the important BOs identified by the 
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experts but is identified as important due to local importance of the components (high 

number of in-connections or out-connections to other local BOs) and may be worth of 

the experts’ attention. We claim that these results support H2. 

4.3 BUxBU network analysis 

We consider organization business units (BUs) as stakeholders that execute different 

workloads depending on each process phase. We consider two phases for analysis 

purposes: PROD (phase I) and KONZ (phase II), and we pose this question: Can we 

identify key stakeholders in different process phases? Thus, our analysis concern here is 

stakeholder management, which might be important when it comes to involving the right 

people (BUs) in the EA decision-making process. As input, we took the BUxBP and 

applied a matrix transformation to generate a derived BUxBU network. With this 

derivation method, if two processes BP1 and BP2 are connected an artificial connection 

is created between their respective BUs in the BUxBU network (a co-affiliation 

network). The hypothesis H3 formulated by the experts is then broken down as follows. 

H3.1: In Phase I, the focus of the project management unit (BU1) should be fairly 

continuous as they manage all activities. H3.2: In Phase II, the focus will be more on the 

technology people, with a ramp up to production and logistics and possibly to 

purchasing. H3.3: Overall, in Phase II, design engineers will be fairly central, as they 

function as a sort of information hub around which all technical concept design focus. 

We combined two types of network analysis outputs: the network measures rankings 

described in Figure 2 and the heat maps depicted in Figure 4. With the heat map, it was 

possible to check the high intensity of the information flow from B1, BU5, and BU7, 

which is spread out in Phase I. There was intense activity inside BU1, as can be seen in 

the dark blue cell, confirming the importance of BU1 for Phase I (thus supporting H3.1). 

Figure 4 also suggests a strong interaction from BU5 to BU1. This might confirm that 

both BUs together are the most active BUs in Phase I in terms of process interactions. 

From Table 3, we notice that BU1, BU5, BU2, and BU7 also appear in different 

rankings of network measures, reinforcing our visual analysis results from Figure 3. 

Table 3. Network analysis at the component level for BUxBU Prod (Phase I) 

For H3.2, we obtained the following results: BU13, responsible for production aspects, 

became imperative in Phase II (detected by high in-degree centrality components and 

eigenvector centrality); Purchasing (B15) had importance detected by high in-degree 

centrality and also was among the most recurrent outliers; Validation and integration 

(BU7, BU10, BU3) aspects received focus in Phase II, detected by eigenvector 

centrality, most recurrent outliers, and out and in-degree centralities. Although identified 

TOP Out-degree BUs TOP Eigenvector BUs Most recurrent BUs 

BU5 product management BU1 project management BU1 Project management 

BU1 project management BU5 product management BU13 Prod. Preparation 

BU7 total vehicle integration BU2 controlling BU2 Controlling 

BU3 quality BU7 total vehicle integration BU5 Prod. management 

BU2 control BU13 production preparation BU7 Total vehicle integration 
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by the experts a priori, logistics did not appear as a focus in Phase II. In conclusion, we 

found H2.3 to be partially supported. 

For hypothesis H3.3, integration, validation, and preparation for production activities 

were the main ones in Phase II. So, we can conclude that H3.3 was also supported.  

Figure 4. Heat map for BUxBU Prod phase 

5 Conclusions 

In this research, we propose an analysis approach we call diagnosis analysis that we 

believe provides two key information gains: 1) confirmation of components’ importance, 

including from the structural perspective (confirming what experts identify prior to 

analysis as the critical BPs and BOs), and 2) suggesting for further analysis other 

components with similar network values and labeled as important by network measures, 

at first neglected by experts (based only on their own opinions), and ultimately validated 

as important by the experts. We also detected the expected shift of BUs’ focus along the 

two process phases. In the end, we showed that combining expert and structural 

knowledge (the latter provided by primary and derived data) is a useful tool to assist 

experts in EA analysis. 

There are some limitations to our research. First, the data collection and modeling 

processes were manual; future research might benefit considerably from use of a 

software plugin that can convert data from architecture models to network 

representations. Second, we analyzed only two EA layers. Other EA MDMs and DSMs 

(primary and derived) must be explored. Finally, we need to apply the proposed 

approach in other organizations and to other EA concerns to test whether it can be 

generalized. 

We agree with Lagerström et al. (2013; 2014) that DSM and network analysis-based 

methods should be explored further in the context of enterprise architecture. Thus, we 

are working on the development of a matrix-based framework to support EA modeling 

with DSMs, including their possible co-affiliation networks. 
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