
 93 IDE’14|MD - 10

10TH INTERNATIONAL WORKSHOP ON INTEGRATED DESIGN ENGINE ERING
IDE WORKSHOP | 10.-12. SEPTEMBER 2014 | GOMMERN

TRACEABILITY – A FACTOR OF INTEGRATION AND
A METHOD TO DEAL WITH COMPLEXITY

Neven Pavkovi ć1, Tomislav Martinec 1, Mario Štorga 1
1University of Zagreb, Croatia

Keywords: Traceability, Visualization of Networks of Dependencies, Complexity, MDM

ABSTRACT

The paper aims to summarize several important issues in researching of modelling and implementation
of traceability frameworks in design engineering area. These issues are mainly focused to methods of
relationships generation and to visualization methods and techniques. We argue that a well defined
and established traceability framework could be an integration factor in engineering design
environments, primarily through improvement of design communication and information flow.
Secondly, through efficient visualization and browsing mechanisms, we propose how a traceability
framework could be based on existing matrix methods developed to deal with complexity. An
extended Multiple Domain Matrix (MDM) is proposed combined with general diagramming tool, IBIS
tool and tool for linking files (documents).

1 INTRODUCTION

The increased complexity of product development process, especially in large-scale projects, generates
situations with which existing tools and methods are not able to deal with. Huge networks of complex
dependencies and design communication in large teams are very difficult to be managed [KNV14].
The aim of this paper is to propose an approach where an implementation of traceability could
significantly contribute to:

• dealing with complexity through efficient visualization and browsing methods and tools for
large networks of dependencies and

• overcoming current problems in design product development process integration through
improving the quality of design communication.

Traceability should enable understanding the semantic relationships that exist within and across life
cycle of information objects containing information fragments about requirements, concept
explanation, design details, component description, production specification or maintaining
procedures. These semantic relationships could help engineering designers to understand the existing
information and reuse them in the right context. Research literature describes the impact of poor
traceability practices on project efficiency. A decrease in system quality, increase in the number of
changes, loss of knowledge due to turnover, erroneous decisions, misunderstandings, and
miscommunication are some of the common problems that arise due to lack of or insufficient
traceability of engineering information [HK07].

Based on our previous research on situations that occur in medium and large scaled projects in
industry, we distinguish two main directions of traceability:

1. Looking forward—guiding: where traceability process is planned and organized, followed by
assigning identification to information objects, activities, participants, locations, and resources, and
exchanging it among participants. Here the participants should find the answers, e.g., the overview of
design process, the knowledge about information needs, the availability of information and
documentation, and most important, the relationships (linkages) between all identified items.

IDE’14|MD - 10 94

Especially in complex products implemented traceability model should be able to provide the answers
like: what objects, parameters, etc. are affected if a particular change is to be made - who are the
persons responsible for those objects and parameters, etc.

2. Backtracking—management of the design history should allow participants to follow the
evolution of design items from its origins, through its development and specification, to its
deployment and realization, and through periods of ongoing refinement and iteration in any of these
phases. Also, tracing of the design history should improve understanding of the design routes by
linking designed items to justifications, important decisions, and the assumptions behind them. By
tracing designed items back to their sources, the impacts of later changes in any product feature can be
identified before a product is redesigned.

We argue that an implementation of traceability in engineering design frameworks could significantly
contribute to the quality of design communication. Creation of new channels of communication may
be also viewed as a facilitation of design engineering integration. This may be valid for all levels of
communication interfaces: designer to designer, multidisciplinary team, team and company
(organization), and interfaces of collaboration in an innovation network.

2 RELATED WORK

2.1 Software traceability

Traceability in software engineering has got more attention of researchers than in engineering design.
Several models and methodologies were developed, mainly focused on requirements traceability and
related issues – [MXC08], [RJ01]. An example of comprehensive research projects in this area is the
"MOST" project (http://most-project.eu). Schwarz et al. [SEW10] present the approach that supports
the definition of metamodels for traceability information, recording of traceability information in
graph-based repositories, identification and maintenance of traceability relationships using
transformations, as well as retrieval and utilization of traceability information using a graph query
language. A roadmap of research and practices related to software traceability together with open
issues is presented in Spanoudakis [SZ05]. This paper summarizes research work in area of software
traceability and presents a very useful discussion on manual, semi-automatic and automatic generation
of traceability relations.

2.2 Visualization

Efficient visualization (and manipulation) of large networks of relations is arguably the primary
condition for successful implementation of traceability in industrial practice.

Diagrams augment cognition [SEW08]. As such, a good diagram augments the capacity of the
diagram’s user to achieve goals. Visualization literally “makes visible” (or “evident”) things that
might not otherwise be so [SEW08] - authors made a review of existing diagramming tools and they
concluded that:

• Simplicity is important. The simpler the tool – even though its scope may be limited as a result
– the easier it is to use, and the more likely users are to adopt it willingly and “naturally.”

• Network hypergraphs are essential. The richly interrelated information elements typical in early
designing are highly coupled, and representing those relationships is essential.

• Diagram layout is essential. A proper layout for a diagram can actually simplify it without loss
of semantics.

Based on their findings the authors argue that there is no existent tool fully suitable to engineering
design support purposes and that a new framework for diagramming tools must be developed. By
making information structures organized, modern visualisations provide means for user to
interactively navigate and uncover the information engineers are looking for [KT05]. It is presumed
that the user is often being unaware of the precise information location by which the information can
be obtained or possesses incomplete specification relating the information necessary to perform

 95 IDE’14|MD - 10

search. Both of the latter could be the cases in the product development of the complex technical
systems involving large data and information sets and multitude of stakeholders generating and
interpreting information. In [MP14] we argue that diagrams are convenient for both fast recording and
retrieving of particular tracing context on design episode level, and consider diagram networks as the
basis of well-established traceability on project level. A computer-based diagramming tool was used to
test the methodology. It features basic node-link creation, formatting and arrangement, predefined
IBIS nodes, image import, hyperlink embedding, ontology support and search mechanisms.

3 MODELS AND METHODS FOR ESTABLISHING TRACEABILITY

From current research results it could be concluded that the achievement of engineering information
traceability in modern, highly automated product development environments is still very difficult.
There are many reasons for that. The current engineering design environments could not be supportive
of traceability procedures because people communicate and exchange engineering information across
organizational and discipline boundaries, so they reuse existing information in new and unpredictable
contexts and often information is translated from one format to another, during which information loss
occurs. Those facts make the development of suitable and efficient models and methods for
establishing and supporting traceability very complex and challenging.

Several current research projects are focused on the development of an integrated product and process
approach supporting the modelling of traceability in order to handle today’s rising complexity eg.
[KNV14] and [CWW14]. In [KNV14] authors argue that it is necessary to include sociotechnical
meta-model. Cycle-oriented traceability based on well defined templates of particular subprocesses is
proposed in [CWW14].

Generally traceability could be viewed as a generation of a network of relations between various
engineering objects (EO) where objects are considered as documents (or “information carriers”),
abstract notions from various domains (e.g. functions, requirements, changes, design tasks), “physical”
objects like elements of product structure (components) and finally employees. Based on research
findings focused to current traceability practice in industry it is arguably obvious that it is impossible
and unnecessary to establish a "full network" of all existent traceability relations, because of huge
number of EOs that exists in any sociotechnical system on levels of granularity that could satisfy
practical needs. Therefore it is necessary to focus the further research to models and methods that will
primarily be able to detect and manage a subset of beneficial relations for practical needs, both for
guiding and backtracking.

According to [SZ05], despite the wide recognition of its importance and numerous years of research,
effective traceability is still rarely established in contemporary industrial settings. It is very difficult to
automate the generation of traceability relations with clear and precise semantics that could,
adequately and cost-effectively, support the types of analysis necessary to deliver the benefits of
traceability. Spanoudakis and Zisman [ZS05] emphasize that most of the existing approaches,
environments and tools assume either that traceability relations should be identified manually or offer
traceability generation techniques which cannot identify relations with a rich semantic meaning. In the
former case, the cost of identifying traceability relations manually clearly outweighs the expected
benefits of traceability and makes organisations reluctant to enforce them, unless there is a regulatory
reason for doing so. In the latter case, the lack of a clear and precise semantics make the asserted
relations of little use and do not provide the benefits of using traceability as described above.
Therefore, the relevant techniques are not widely adopted in industrial settings.

Manual creation of traceability relations is difficult, error-prone, time consuming and complex,
[SZ05], [KNV14], [MSB11a]. Therefore a compromise must be found which will provide satisfactory
level of traceability functionality (benefits) to engineers, but at the same time which will not require
significant additional efforts to be developed, implemented and managed. Mainly in the area of
software traceability, several approaches which support automatic or semi-automatic generation of
traceability relations have been proposed [SZ05].

IDE’14|MD - 10 96

In survey written by Spanoudakis and Zisman [ZS05] the authors organise the semi-automatic
traceability generation approaches into two groups: (a) pre-defined link group, that is concerned with
the approaches in which traceability relations are generated based on some previous user-defined
links, and (b) process-driven group, that is concerned with the approaches in which traceability
relations are generated as a result of the software development process. Proposals of approaches to
support automatic generation of traceability relations use information retrieval (IR) techniques,
traceability rules, special integrators, and inference axioms.

At this point a main research question emerges:

Which kind of traceability model framework would enable a cost effective and beneficiary
implementation of automated and semi-automated generation of traceability relations?

All previously listed research findings and our own experiments made in [MSB11b] directed us
towards the idea (proposal) of developing of a “hybrid” model of traceability framework that will
comprise and integrate various approaches and methods. The intention is to use the most appropriate
method(s) for each identified issue – e.g. relation generation, network visualization, template
generation, modelling of processes and their cycles, etc., always from the primary viewpoint of
reducing the efforts required in practical industry application.

Further idea is to identify and classify most common (and important) traceability problems and issues
in engineering design practice, and for each of them to find and develop a focused (specialised)
approach and/or method of traceability relations generation and visualization.

In such an approach firstly we could distinguish traceability relations and EOs from the dynamic point
of view. Product structure and/or product architecture (or at least their elements) could be considered
as relatively static data structures (on higher levels of granularity) for majority of engineering design
environments. For example in automotive industry there is a high extent of mechatronic systems’
reuse [KNV14]. Product structures for complex products could contain large sets of EOs and relations
(especially for mechatronic systems). These structures (at least subassemblies and/or modules) do not
change significantly over time, (on higher levels of granularity), therefore we assume that it could be
cost-effective to build a template structure for them in form of diagrams. Such an approach could be
considered as a semi automated method, because engineers would reuse and update templates while
generating sets of relations.

Generally, at the highest level of abstraction, traceability relations can be classified as relations
between objects of the same domain and between objects from different domains.

Consequently we assume that the majority of the relations between different domains have a more
dynamic character, but probably smaller sets of EOs will have to be linked. For such situations manual
generation of relations and matrices as visualization method instead of diagrams seems to be more
appropriate. There are many assumptions here that still have to be validated – this line of reasoning is
mostly based on previous research findings presented in [PBF11] and [PTS12].

Design rationale may be viewed as traceability of design thinking and the decision process. We argue
that a design rationale capturing method have to be an element of traceability framework. We consider
that IBIS (Issue Based Information Systems) based diagrams proved to be presumably the most
appropriate design rationale capturing method [AB13].

Finally, how those various approaches could be integrated and/or merged? Our proposal is to use an
extended model of Multiple Domain Matrix (MDM) as the basic framework and a starting/basic
interface. Firstly we will describe a developed prototype tool for building a network of interlinked
diagrams, and then a proposal of extended MDM will follow.

3.1 Network of diagrams as one of the methods for e stablishing traceability

This chapter describes our research work [MP14] on establishing engineering information traceability
using diagram tools as means of information and relation generation and recording. Information

 97 IDE’14|MD - 10

displayed in diagrams is structured through the concept of nodes and links between the nodes. Every
diagram node is an information container, which can include information about digital entities storage,
displayed as hyperlinks to computer stored files. There is no limit in terms of file types that can be
linked (CAD, spreadsheets, text documents...), including other diagrams. Adding links between
diagram files creates a diagram network. Such a network allows users to cross boundaries of a single
record and browse information spread in multiple design episodes.

A prototype of computer-based diagramming tool was built and used to test the methodology. It
features basic node-link creation, formatting and arrangement, predefined IBIS nodes, image import,
hyperlink embedding, ontology support and search mechanisms.

Several types of diagrams were introduced throughout the methodology and diagramming tool
implementation on the ongoing project. These diagrams cover communication visualization, product
structure and specification, and design rationale. Traceability relations between computer files is very
important part of traceability framework, because files of any type are “carries” of product
information- they represent generated product documentation. In [MP14] we proposed a methodology
and interface for manual generation of relations between files. The visualization of file system content
interrelations is realized in both diagram (graph) and matrix form. The network of interrelated files is
created through an explorer-like interface, where one can establish and record relationships between
selected explorer items (Explorer Tool on Figure 1). File browsers enable navigation through
computer (server) content, and thus serve as Windows Explorer substitute. File system content can
also be displayed as a matrix, where rows and columns represent the content of two or more different
file system folders. Relationships can furthermore be visualized either manually by exporting node-
edge files, or automatically with the developed diagram network visualization tool.

The development of the project explorer environment was started mainly to integrate diagrams into
project documentation, but the application was further upgraded with other useful features and is still
in development phase. Two main objectives were set at the start of the development:

• Allow users to manually link diagrams with computer-stored files and display these links in the
explorer interface

• Facilitate diagram creation with templates since the tested diagramming tool doesn’t support
template importing

New development objectives were additionally set, including:

• File to file (or directory) linking, using the same principle as in diagram to file linking
• File enrichment using attributes
• File status association and status display in the explorer interface
• Automatic visualization of created links in an interactive diagram form

The environment is conceived as a central tool for the creation of diagram networks. The diagramming
tool, now a part of the environment, is supported with automated diagram storage and template
selection. Three main tools were developed within the environment (Figure 1):

• Explorer Tool - Serves as the file explorer. User can browse the computer/server file system
and create relations between computer-stored files and folders. The Explorer Tool also handles
documents statuses, ontologies and diagram templating. It also drives the diagramming and
visualization tools. File icons in the explorer are automatically modified depending on whether
the files are linked or associated with a status.

• Manual Diagramming Tool - Used to manually create diagrams such as Issue Based
Information System (IBIS), system architecture and function breakdown structure diagrams.
Diagrams can be created either from scratch or from prepared templates. The tool supports
different node types, customization, hyperlinks and image placement.

• Visualization Tool - Visualizes all established traceability links. The tool was developed to
automatically generate diagram networks for the file selected in the Explorer Tool. Each file,
diagram, ontology element or directory that is in any way linked with the selected file is

IDE’14|MD - 10 98

represented in the form of a diagram node. Traceability links between files are represented as
diagram links.

Although the creation of relationships in-between the content of the file system can result in a well-
established traceability of project documentation, it is limited to a single domain - computer-stored
files. In order to manage complex engineering data it is required to cover and trace elements from
multiple domains.

Figure 1: Components of tool for file (documentation) linking and for diagram network
manipulation

3.2 Extended Multiple Domain Matrix as the basis fo r traceability framework

Several methodologies exist for dealing with data complexity in product design, including the
application of graph theory and matrix-based approaches [LMB09]. Since the matrix-based
approaches to complexity management are widely applied, we decided to use them as the basic
architecture of the traceability framework. Nowadays, the large variety of matrix-based methods in
engineering can be classified by the quantity of the types of elements involved. Whereas some
approaches focus on the representation and analysis in between elements of the same type (e.g.,
dependencies within product components), others consider linkages between two types (e.g.,
dependencies between customer requirements and product functions) [M07]. According to [LMB09]
there are four types of general matrix systems. If relations within elements belonging to the same type
(domain) are examined, the related matrices can be defined as intra-domain. A commonly applied
approach of an intra-domain matrix is the Dependency Structure Matrix (DSM). Relationships
between file system content in our research were mapped and stored in form of a square intra-domain
matrix. Matrices combining different elements belonging to different domains are referred to as inter-
domain matrices. For example, components and functions of a product can be considered as elements
belonging to two different domains [LMB09]. Some applications make use of combinations of intra-
and inter-domain matrices, while some further include computations of some subsets by

 99 IDE’14|MD - 10

information stored in other subsets. Such an approach is called the Multiple-Domain Matrix (MDM)
[LMB09].

MDM is a square matrix comparable to a DSM containing system elements in identical order on both
axes. In contrast to a DSM, different types of system elements are included and grouped in domains;
the MDM can be subdivided into DSMs and DMMs (Domain Mapping Matrices) according to the
inherent domains. The MDM possesses features of a common DSM; in fact, it represents a DSM on a
higher level of abstraction: If the domains are considered as single elements, the areas of the DMM
subsets represent the matrix cells that can store dependencies between these elements. Applying this
logic, the areas of the DSM subsets are located on the matrix diagonal and can represent self-reflexive
dependencies [LMB09].

To further extend our proposed traceability framework, we need to establish relations between
engineering information stored as documentation in files with engineering objects (EOs) from other
different domains. Of course it is also necessary not only to relate documents and EOs, it is equally
important to establish and record relation between EOs. A schematic view of such approach is
presented on Figure 2. EOs from different domains are represented with different symbols and colours,
while relations are represented with different types of lines, similarly as in [LMB09].

Figure 2: Network of engineering objects from different domains

Figure 3 is a matrix representation of diagram shown on Figure 2, where each relation is denoted with
a mark in corresponding matrix cell. This is the Multiple Domain Matrix (MDM) as it is proposed in
[LMB09] and in other relevant literature.

IDE’14|MD - 10 100

Figure 3: Representation of engineering objects and their relations in a MDM

A similar approach of MDM usage, focused to creation of knowledge maps of employees is proposed
in [WSS13].

However, we think that for the purposes of traceability modelling, it is necessary to further extend the
MDM model and especially the process of manipulation with matrix, due to several reasons:

• Huge number of traceability relations in any kind of industrial application will generate huge
matrices, impossible to be manipulated and viewed as a whole – procedures and tools have to be
developed that will enable hiding unnecessary areas and/or extracting and visualizing areas of
current interest.

• Semantics of relations should be added, because this is very important in traceability.
Additionally it would be beneficial if a cell would contain (or point to) more contents than just a
mark of relation existence.

• Mechanisms (procedures) for generating and inserting predefined templates of selected matrix
areas should be developed and implemented.

We argue that such an extended MDM model could open the further opportunities for development
and implementation of semi-automatic generation of traceability relations. Also, with efficient
mechanisms for manipulation of huge matrix, the matrix itself could serve as the basic interface for
majority of operations in traceability framework.

An initial proposal of semantics of relations between a set of crucial domains for engineering design
traceability is shown on Figure 4. We don’t consider this set of domains as final, any particular design
environment could build and adapt domains and relations according to its own needs.

 101 IDE’14|MD - 10

Figure 4: A proposal of crucial domain relations in design traceability framework

First step in adding relation semantics to MDM model could be a classification of traceability relations
- a very good general proposal based on overview of several approaches could be found in [SZ05].
Thus, a class of relation could be indicated with a code e.g. “R2”, as shown on Figure 5. Furthermore
we think that in many cases would be beneficial if an additional content could be linked to each matrix
cell. That may be comments, hyperlinks, etc. – that way a cell could be “expandable” (Figure 5.)
pointing to any kind of information that may be of use for more detailed explanation of particular
relationship. In such an approach we plan to treat a matrix cell as an information container, combined
with a symbol that indicates generated (recorded) relation. A symbol (or its first digit) may be used for
already developed matrix calculations.

Another approach to semi-automated generation of traceability relationships is to develop a templates
of subprocess (scenarios) that could generate and/or record the relationships in matrix cells when a
pre-planned situation (event) is triggered. The appropriate candidates may be the processes with cyclic
character. Chucolowski et al. developed a data model and described a process sequence for traceability
in engineering change management [CWW14]. Such processes should be focused on one particular
area of MDM and should be precisely defined and modelled according to instances of MDM domains.

Figure 5: Extended semantics of MDM cells

The most important issue that has to be resolved for potential implementation of proposed MDM-
based traceability framework in industrial practice is the manipulation with huge matrix. The interface
and the visualization capabilities of the tool that will manage the huge matrix have to provide the
following mechanisms (Figure 6):

Documents

(Files)
Requirements Functions Components People

Design problem

(Task)
...

Documents

(Files)

Traceability of

information fragments

Files documenting

requirements

Files documenting

functions

Files defining

components

Organigrams,

Workflows

Files contain

design rationale

Requirements
Requirement

relations

Requirements impose

design problems

Functions
Functions correspond

with requirements

Function Analysis

Diagram (FAD)

Functions impose

design problems

Components
Components realize

requirements

Components

realize functions
Product structure

Component

design problem

People
People responsible

for documents

People responsible

for components
Team-based DSM

People working on

problems (tasks)

Design problem

(Task)

Problems

include files

Problems include

requirements

Problems include

functions

Problems include

components

Problems include

people
Task-based DSM

...

F1 F2 F3 F4 F5 ... DP1 DP2 DP3 DP4 DP5 ...

Design problem (Task)Functions

...

C
om

po
ne

nt
s

C1 ... R1 ...

C2 ... R1 ... R5

C3 ... R2 ...

C4 ... R2 R2 ... R3

C5 ... R1 ... R3 R5

...

Component C4 realizes functions F2 & F3

C
om

po
ne

nt
s

Besides indication of relationship

the element can contain other

types of information e.g. textual

description, hyperlinks, etc.

This could work similarly as

comments in MS Excel cells.

IDE’14|MD - 10 102

Figure 6: Reducing the “working space” on matrix to filtered - extracted areas
• Filtering on level of domains, and on level of rows and columns, enabling to hide/extract a set

(combination) of rows and/or columns belonging to different domains or extracting several full
domains. Applying of filters should enable the user to extract and merge the areas of matrix that
are of his current interest while working on matrix data. The extracted area should keep all the
indicators of domains and particular rows and columns as they are visible on the whole matrix.
Here by extracting we mean only visual extraction – the rest of the matrix is just being hidden.

• Extracting only the cells that have a symbol of relation from the set of selected (filtered) rows
and columns (or domains).

• Efficient way of inserting/updating areas that are built and stored outside of the “main” matrix
as predefined templates.

• Domain names and their instances (EOs) as well as the relationships should be based on
specially developed ontology as proposed in [PSBM13] and [SMS11].

• Layering / colouring schemes may also be beneficial in particular manipulation situations.

As equally important manipulation issue - the timeline should also be carefully considered – for which
period should one MDM be valid? Should one MDM be valid for e.g. one big project or some areas
will have permanent character while the others should represent certain periods in timeline? How to
combine areas of matrices and/or whole matrices from different projects and time periods?

4 SUMMARY AND FURTHER RESEARCH ISSUES

This section will further elaborate how an established traceability in particular engineering
environment could become a factor of integration as well as the method (instrument) to deal with
complexity. Situations and/or requirements that trigger utilization and deployment of recorded
traceability data varies across engineering domains (e.g. software, automotive industry, mechatronic
systems), but also the significant part of them are common to all domains.

According to [SZ05] traceability relations may be deployed in the development life cycle of a software
system to support different development and maintenance activities, including:

• change impact analysis and management;
• system verification, validation, testing and standards compliance analysis;
• the reuse of software artefacts; and
• software artefacts understanding.

X
X X X X

X X
X X

X X
X

X X X X Extracted and merged areas:

X X
X X X X

X X X X X
X X X X X

X X X X X X X
X X

X X X X
X X X X X X

X X X X X X
X X X

X X X X
X X X X X X

X X X X X X
X X X

X
X X

X X X X X X X
X X

X X X X
X

X
X X X X X

X

A
p

p
ly

in
g

 f
il

te
rs

A
p

p
ly

in
g

 f
il

te
rs

Domain 1 Domain 2 Domain 3

D
o

m
a

in
 1

D
o

m
a

in
 2

D
o

m
a

in
 3

D
o

m
a

in
 4

→

Applying filtersApplying filters Applying filters

Domain 5Domain 4

→ → →

→

→

D
o

m
a

in
 5

 103 IDE’14|MD - 10

Based on an analysis of the project management processes and findings gathered in [MSB11b], we
have extracted major traceability issues and requirements relevant for project management in one
medium sized automotive company:

• Which documents are associated with one particular context or viewpoint?
• What is the completeness and accuracy of document content involved in a particular project

milestone?
• Are all documents and information correctly and completely transferred from one main business

process to another (“handover” scenarios between different teams)?
• What were the major business changes in the project portfolio, when and why did they happen,

and how did they influence currently active projects?

Koehler [KNV14] and Chucolowski [CWW14] also emphasize the change impact analysis, change
management and understanding of complex (mechatronic) systems when they have to be reused (their
research is also focused to automotive industry).

According to [SZ05] the simplest form of analysing the impact of a change in a given artefact (e.g. a
requirement statement) is the identification of all the other artefacts that will be affected by the change
(e.g. design artefacts and software code). Primitive change impact analysis requires the provision of
basic querying facilities to retrieve traceability relations of specific types that may also have specific
values for the properties defined for these types. Most of the existing traceability tools and
environments provide such querying facilities (in the area of software engineering).

Spanoudakis and Zisman [SZ05] also state that more complex forms of change impact analysis may
also be desired in different settings. Examples of these forms are: (a) the classification of affected
artefacts into different groups subject to the exact effect that the change will have on them, (b) the
identification of side-effects that the change may have, and (c) the estimation of the cost of
propagating the change. The delivery of such capabilities requires support for the composition of
different traceability relations into tracepaths. These trace-paths can demonstrate how impact is
propagated across artefacts that are not directly related.

We believe that the MDM – based traceability model and framework could provide a good basis for
further development of algorithms that will realize above mentioned requirements and especially
visualization functionalities – where tracepaths will be shown as diagrams “extracted” from relevant
matrix areas.

Sherba et al. [SAF03] have proposed an approach that allows the generation of new traceability
relations based on relationship chaining. This approach uses special integrators, which can discover
and create traceability relations between software artefacts and other previously defined relations. The
new identified relations can be generated based on indirect and transitivity dependencies, complex
dependencies containing more than one source or destination elements being related.

Proposed MDM - based traceability framework should further contribute to two important factors that
influence design communication: an awareness of what information the other party needs and an
overview of the sequence of tasks in the design process [MKH08].

Besides bridging the gaps in information flow (described in [ECS01]), the proposed traceability
methodology should offer the possibilities to integrate knowledge toward the creation of shared
understanding in collaborative product development teams [KBV10]. Based on the proposed approach
to defining domains and EOs as elements/subsets of ontology, the knowledge integration could be
accomplished in two ways:

• using the existing relations in ontology to navigate (perform semantic searches) between related
elements of several domains;

• establishing new relationships (either compositional or associative) between elements of
different domains that were not recorded manually.

To conclude, all issues listed in this section are actually open research issues that require further
intensive efforts from engineering design community.

IDE’14|MD - 10 104

REFERENCES
[AB13] Aurisicchio, M. & Bracewell, R.H. (2013). Capturing an integrated design

information space with a diagram based approach, Journal of Engineering Design,
Vol. 24, Issue. 6, pp. 397-428.

[SZ05] Spanoudakis, G., Zisman, A., "Software traceability: a roadmap", Handbook of
Software Engineering and Knowledge Engineering, Vol.3, 2005, pp. 395-428.

[CWW14] Chucholowski N., Wolfenstetter T., Wickel M.C., Krcmar H., Lindemann U., Towards
Cycle-Oriented Traceability In Engineering Change Management, Proceedings of
the 13th International Design Conference DESIGN 2014, Dubrovnik, Croatia 2014,
pp, pp. 1491 – 1500

[KNV14] Koehler N., Naumann T., Vajna S., Supporting the Modeling of Traceability
Information, Proceedings of the 13th International Design Conference DESIGN
2014, Dubrovnik, Croatia, 2014. pp. 1811 – 1820.

[HK07] Hurwitz, J., & Kaufman, M. (2007). Leveraging information for innovation and
competitive advantage. Hurwitz & Associates White Paper, www.hurwitz.com.

[ECS01] Eckert, C., Clarkson, P.J., & Stacey, M. (2001). Information flow in engineering
companies: problems and their causes. Proceedings of ICED01, Glasgow.

[KT05] Keller, T., Tergan, S.O., (Eds), Visualizing Knowledge and Information: An
Introduction, Lecture Notes in Computer Science: Knowledge and Information
Visualization, Springer 2005.

[KBV10] Kleinsmann, M., Buijs, J., & Valkenburg, R. (2010). Understanding the complexity of
knowledge integration in collaborative new product development teams: a case
study. Journal of Engineering and Technology Management 27, 20–32.

[LMB09] Lindemann U., Maurer M., Braun T., (2009). Structural Complexity Management,
Springer 2009.

[MKH08] Maier, A.M., Kreimeyer, M., Hepperle, C., Eckert, C.M., Lindemann, U., &
Clarkson, P.J. (2008), Exploration of correlations between factors influencing
communication in complex product development. Concurrent Engineering: Research
and Applications 16, 37–59

[MSB11a] Marjanovic, D., Storga, M., Bojčetic, N., Pavkovic, N., Stankovic, T. (2011a).
EUREKA E4911 TRENIN Project Final Report, www.trenin.org.

[MSB11b] Marjanovic, D., Storga, M., Bojčetic, N., Pavkovic, N., Stankovic, T. (2011b).
EUREKA E4911 TRENIN Report on Stakeholder Perspectives on Traceability,
www.trenin.org.

[PBF11] Pavkovic, N., Bojcetic, N., Franic, L. & Marjanovic, D. (2011). Case studies to
explore indexing issues in product design traceability framework. Proc. of the ICED
11 Int. Conf. on Eng. Design 6, 131–140. Copenhagen.

[MP14] Martinec T., Pavković N., Visualization of Information Traceability In Product
Development, Proceedings of the 13th International Design Conference DESIGN
2014, Dubrovnik, Croatia 2014, pp. 1831 – 1842.

[SEW08] Salustri, F.A., Eng, N.L., Weerasinghe, J.S.(2008). Visualizing Information in the
Early Stages of Engineering Design. Computer-Aided Design & Applications, 5(1-4).

[SEW10] Schwarz, H., Ebert, J., & Winter, A. (2010). Graph-based traceability: a
comprehensive approach. Software Systems Modelling, Vol. 9, No 4, 473-492.

[SAF03] Sherba S.A., Anderson K.M., Faisal M., "A Framework for mapping Traceability
Relationships", proceedings of the 2nd International Workshop on Traceability for
Emerging forms of Software Engineering (TEFSE 2003), Montreal, September, 2003.

 [MXC08] Mohan, K., Xu, P., Cao, L., & Ramesh, B. (2008). Improving change management in
software development: Integrating traceability and software configuration
management. Decision Support Systems, 45, 922–936

 105 IDE’14|MD - 10

[RJ01] Ramesh, B., & Jarke, M. (2001). Toward reference models for requirements
traceability. IEEE Transastions on Software Engineering. 27(1), 58–93.

[WSS13] Wickel, M. C., Schenkl, S. A., Schmidt, D. M., Hense, J., Mandl, H., Maurer, M.,
Knowledge structure maps based on Multiple Domain Matrices, InImpact: The
Journal of Innovation Impact, Vol. 5 No1, 2013

[PSBM13] Pavković, N., Štorga, M., Bojčetić, N. & Marjanović, D. (2013). Facilitating Design
Communication Through Engineering Information Traceability, Artificial
Intelligence for Engineering Design, Analysis and Manufacturing, Volume 27,
Special Issue 02, pp. 105-119.

[PTS12] Pavković, N., Tečec Ribarić, Z. & Sviličić, T. (2012). Traceability Case Study on Rail
Vehicle Control Unit Development Project, Proceedings of DESIGN 2012, the 12th
International Design Conference, Dubrovnik, pp. 1567-1578.

[SMS11] Štorga, M., Marjanović, D. & Savšek, T. (2011). Reference model for traceability
records implementation in engineering design environment. Proceedings of the ICED
11 International Conference on Engineering Design, Copenhagen, Vol. 6, pp. 173-
182.

[M07] Maurer, M. S. (2007). Structural Awareness in Complex Product Design. Doctoral
Dissertation. Product Development, Technical University of Munich, Munich,
Germany.

Contact:
Neven Pavković
University of Zagreb, Faculty of Mechanical Engineering & Naval Architecture
Ivana Lucica 5
10000 Zagreb
CROATIA
Phone: +385 1 6168 545
Fax: +385 1 6168 284
e-mail: neven.pavkovic@fsb.hr
URL: http://www.cadlab.fsb.h

