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Abstract 
In the percussion music industry, drum beater manufacturing requires a skilled operator to manually 
wind the beater with acrylic yarn. Tacit skill is used to control and adapt tension during the winding 
process of beater construction, which cannot be easily articulated. Consequently the operator has been 
unable to successfully pass the skill on. In order to overcome this problem, an investigation into 
automating the drum beater winding process has been initiated. An in-depth human task analysis was 
performed to identify the skill-, rule-, and knowledge-based tasks during the winding process. In this 
paper, the two key parameters, yarn tension and patting force reported by the human task analysis 
during the manual process are further studied. The patting force has been measured and analysed for 
the low-level control unit. A tension measurement sensor has been designed and substrate has been 
simulated. This sensor will be used to measure yarn tension during the manual winding process and 
further work will be carried out to analyse the results for tension control mechanism. 
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1 INTRODUCTION 

Beater construction for percussion musical instruments is largely procedural, however within the 
winding section of construction, a combination of procedural and tacit knowledge is used. This tacit 
knowledge is seen in the use and modulation of tension while winding the yarn around the beater head 
(shown in Figure 1). Procedural knowledge can be easily communicated and written down; tacit 
knowledge on the other hand reflects accumulated experiences, ways of knowing and cannot be easily 
communicated (Woods and West, 2010). This tacit skill is relatively difficult to maintain and replicate 
by another trainee.  The current workforce is due to retire with no possibility for replacement, 
therefore an automatic solution of this winding process is needed to ensure the business is sustainable 
in the near future.  

 
Figure 1. Example of manual process in series 

From our research, the closest automated flexible yarn winding technology we can find is for cricket 
ball winding (Van Asselt, 2006). This technology cannot meet the particular quality standard due to 
the fundamental geometrical constraints. In order to replicate the flexibility of current manual process, 
the automation solution should be delivered in active compliant motion scenario using computer 
control (Lefebvre et al., 2005).  Due to the complexity of the process, no passive compliant 
mechanism will work. The controller in the system diagram (as shown in Figure 2) expects low level 
control signal for tracking the process states, however learning this reference signal is a research 
challenge. Therefore the research from human factors (HF) becomes of most value (Caird-Daley, 
Fletcher & Baker, 2013). 

 
Figure 2. Control system diagram 

1.1 Human Factors Analysis 
In order to fully understand the process and deliver the potential solutions, a HF investigation was 
performed to understand the manual work (as shown in Figure 1) using a hierarchical task analysis 
(HTA) and a task decomposition (TD) (Johnson, 2014).  HTA is a method for logical deconstruction 
of the physical and cognitive components of a task (Kirwan & Ainsworth, 1992).  In Johnson (2014), 
the winding task is systematically decomposed into a structure of overall goal, sub-goals and 
operations. A TD was then applied to the HTA to extend the data, which breaks the operations from 
the HTA down further into a number of categories relevant to the research requirement (Kirwan & 
Ainsworth, 1992). These included; the identification of the sensory cues used by the operator, their 
associated decisions, actions, performance levels (which applies Rasmussen’s (1983 and 1986) skill, 
rule, knowledge (SRK) framework), critical values, the cause of process variations, likely errors and 
error correction. A snapshot of the full TD for “wind appropriate number of vertical winds” is shown 
in Table 1.  
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Table 1. Example Task Decomposition of Beater Construction  

 

 
 
Two TD categories are of particular importance, firstly the identification of the SRK framework 
(Rasmussen, 1983, 1986) and secondly the cues. Skilled performance is a preprogramed physical 
response under minimal conscious attention, which is associated with tacit knowledge (Caird-Daley et 
al., 2013). Whereas rule based performance includes activities guided by explicit rules and procedures 
which tend to be stored either in the memory or written in Standard Operating Procedures (SOIs). 
Finally knowledge based performance involves reasoning out problems and is highly cognitive 
requiring a high degree of conscious control during task completion. Rule and knowledge performance 
are explicit and consequently are categorised as procedural knowledge, they are therefore considered 
easy to automate because all of the steps of the process are fully articulated (Caird-Daley et al., 2013). 
Skilled performance on the other hand, is difficult to automate because of the difficulty to convert 
tactic knowledge to explicit knowledge. The identification of both procedural and tacit knowledge 
helps to classify areas of the task that may hinder or prevent translation of a manual task to an 
automated one because the intricacies of the task are not fully known. The cues used to carry out tasks, 
particularly those used during skilled performance can help develop or identify a method of recording 
a task to capture the skilled activity being carried out and gain information about the decision making 
that takes place. The rest of the categories identified within the TD are used to fully understand the 
task and help in the development of the automated solution as a whole.  
A high potential for automation is found due to the high proportion of rule and knowledge based 
operations (Caird-Daley, et al., 2013). From the HTA and TD, the key instances of tacit knowledge 
identified are the tension maintained on the yarn during winding, and the patting force applied by the 
thumb to produce a near spherical shape beater.   The tension operations are tactile which is very 
difficult to measure objectively but the operator relied on tacit knowledge to maintain the right levels.  
Similar difficulties were identified in the patting operation of the task.  

1.2 Design Methodology 
The design paradigm for intelligent automation/robot mainly includes sensing, planning and acting 
phase (Murphy, 2000). However, the specific methodologies for each phase of design are not 
customisable or reusable (Suzuki et al, 2013). Researchers are proposing new methodologies by 
involving human in the design loop by understanding the manual process (Suzuki et al, 2013). They 
introduced human modelling based on the hierarchical classification of skills. The classified skills are 
social skill, planning skill, cognitive skill, motion skill and sensory-motor skill. This provided an 
efficient way of investigating different level of human skills for designing assistive systems for 
machine operators.  Also, an understanding of human’s performance is important when designing an 
automation solution in order that it can incorporate the correct routines for command and control of 
the process variables. Currently, the behaviour of industrial robots is mostly rule-based. However, this 
level of automation is relatively low if the designer wants the robot to become well behaved in a semi-
structured or unstructured working environment. The challenges in creating a formal design 
methodology stem from many reasons: complexities of structuring measurement and control system 
for process parameters of individual subsystems and the system as a whole (Mikrin et al, 2013); 
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interaction with a dynamic and unstructured environment (Chella et al, 2009); no standardised rules to 
transfer the knowledge from understanding the human operator’s performance to automation solutions 
(Suzuki et al, 2013). Therefore, a gap is identified from the literature for an overall design 
methodology for robot considering the various human skills. A proposed methodology is shown in 
Figure 3. The most important part of methodology is the knowledge processing unit where the 
knowledge stored and reused, also where cognitive planning occurs. An example of the knowledge 
processing unit block can be found in Tenorth et al (2010), which introduces a knowledge processing 
infrastructure for cognition-enabled robots. The human knowledge can be modelled as a meta-model 
and stored as an ontology. The robot will reactively plan its motion based on perception (sensors data) 
and querying its current states. As shown in the figure, the overall methodology is informed by a 
perception unit and understanding of the human knowledge. This paper, focussed on the tension 
measurement unit sensor design and patting force analysis for beater winding, aims to bridge the gap 
and contribute to the knowledge processing unit and the task level controller.  

  
Figure 3. The design methodology for automation system 

In this paper, we will develop a tension measurement unit and patting force measurement to complete 
our understanding of the manual process from human factors studies. One of the most important 
considerations in this study is ensuring the measurements are done during a continuous winding 
process. This is to minimise interruptions on the worker as the result will be very different if the 
operator is asked to stop, then measure and restart. By looking at the product in TMi (2014), three 
roller configuration (two dummy and one active) is used, however their products are too big for the 
operator to hold, and they are suitable for retrofitting on lathe rather than on the human hands. To 
avoid this problem, the sensor must by small and comfortable to be held by the operator whilst 
performing their task. This requires the selection of a suitable transducer.   
Two types of transducers are considered. Linear Variable Differential Transformer (LVDT) (Carlson 
et al., 1990) sensor is an absolute position or displacement transducer that converts the displacement 
into proportional electrical signal. It has low hysteresis and high repeatability performance. However, 
it is very difficult to find the size which can fit our need. Another choice is Strain Gauge (Hoffmann, 
1989), which is a device to measure the strain on a substrate. As the substrate deformed, the 
corresponding resistance change will be measured by the Wheatstone bridge circuit. The advantage of 
using Strain Gauge is the size of transducer can be small, details will be shown in the next section. The 
problems of trouble shooting and calibrating the transducer are not included at this design stage. 
However, the shape and the substrate’s material which increases the sensitivity is analysed and a 
simulation result is discussed later.   
The patting force is another critical measurement that needs to be performed. The main problem is the 
place where the sensor needs to be installed. The sensor we use is Force Sensing Resistor (FSR) 
(Nikonovas et al., 2004), which returns values that correlate with the pressing force. We record the 
operator for the whole winding process and analyse the data. The rest of the paper is organised as 
follow: Section 2 describes the method for measuring and analysing the patting force, including the 
experimental set-up and initial results. In Section 3 the design of the tension measurement sensor is 
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introduced and simulation results are shown. The conclusions and future work are discussed in 
Section 4. 

2 PATTING FORCE MEASUREMENT AND ANALYSIS 

The motivation to investigate the patting force is that it is necessary to maintain the spherical shape of 
the beater head, which is a unique feature for the company’s beaters. From understanding the manual 
process, it was evident that the operator uses her thumb to apply pressure to the bottom of the beater to 
maintain its shape, as shown in Figure 4. She held the beater head with two fingers. It is a continuous 
process, and it is important to perform measurement without disturbing the operator. In order to 
minimise interruptions, we use a commercially available Force Sensing Resistor (FSR) in our 
experiment. We also propose an approach to systematically analyse the data, as shown in figure 5.  
This section details the sensor calibration, then data processing and comparison of the camera 
recording to arrive at an explanation of the process observed. 

 
Figure 4. An example of patting behaviour         Figure 5. Patting force data analysis process 

2.1 Sensor calibration 
An FSR is used because it is easy to retrofit. It is essential to calibrate the sensors to indicate force 
based on a change in the material resistance when force or pressure is applied. The calibration 
experiment in this paper is shown in Figure 6. The problem is the sensing area of this pressure pad is 
only 1 cm2. A solid stainless steel cylinder of 1 cm2 and known weight plates are used to get around 
this problem as shown in Figure 6. We select 7 points for the calibration curve (a mapping from 
intensity to calibrated force level which the maximum value is 15 N) as shown in Figure 7. Here as we 
can see the relationship between force and resistance is almost linear. The repeatability can be 
achieved by normalising a number of experimental results. The actual measurement is described in the 
next subsection. 

  
Figure 6. Calibration experiment   components (scale, known weight plates, steel cylinder 

(Diameter: 1cm2), pressure pad from Flexi Force (Tekscan,2014)) 

Steel Cylinder 

Pressure Pad 

Known weight 

Scale 
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Figure 7. Calibration curve 

2.2 Data collection and processing 
In this stage, the data collection and camera recording are discussed. The first problem to overcome is 
to secure the FSR sensor around the thumb such that it is compressed during patting action without 
interrupting the operator. Therefore we inserted the FSR sensor in a thin glove, and secured the 
sensing area on the tip of thumb using a double-sided tape. This way, the leads can be led out from the 
glove and does not disturb the operator.  It is acknowledged that the glove will have an influence on 
the tactile feeling.   
The data recorded is noisy. The sampling rate is 50 Hz, therefore more than a thousand data points 
recorded. A moving average strategy with window size 10 was chosen to filter out the noise and 
achieve a smoother data set. This means no sampling point is deleted but smoother than original data.  
The window size is gained by some trial and error, choosing a bigger window size gives smoother data 
but some detail may be lost.  
The next step is to extract the trend of the filtered data. Due to the intrinsic non-linearity of the data, 
we use the neural network toolbox in MATLAB to regress the data with good generality. As it is 
shown in figure 8, we performed three experiments with a number of data points in each of those. We 
trained the each experiment until the performance index, i.e. Regression R value larger than 85% as 
shown in Table 2. The performance index is a correlation value, which reflects how well the 
regression between the target and output parameters. Parameters such as number of the cross 
validation points and shape of kernel function can also be tuned in the toolbox. The general context of 
the neural network is introduced in (Murphy, 2012).   

Table 2. Neural network parameters and performance index 

Experiment No. 
samples 

Training 
(70%) 

Validatio
n 

(15%) 

Testing 
(15%) 

No. 
Hidden 
layers 

Regression R value 

Train Validatio
n 

test 

1 3809 2667 571 571 30 0.8604 0.8607 0.8697 
2 2072 1450 311 311 30 0.8844 0.9017 0.9042 
3 1536 1076 230 230 30 0.9154 0.9120 0.9234 
 
As the data fitting result is shown by the bold curve (Figure 8), we can roughly recognise the force 
signal is following some regular pattern, a pulse width modulation signal (PWM). The next step is to 
compare with the video to validate this result. 

2.3 Video recording and comparison 
In this stage, the problem to be solved is recognising the force signal and identifying possible winding 
phases. In each episode of data set, the actual winding process was neither starting from the beginning 
nor finishing at the end. Thus we need to firstly synchronise the starting point in the data from the 
video. To simply the task, we choose the best experiment to analyse (the third one) as shown in Figure 
9. The full video is 32 s. The force level is vividly changing, but by just considering the peak force in 
each summit, the average is about 12 N. The sampling frequency is 50 Hz, i.e. 200 samples = 4 s.  
Therefore, after observing the video, the actual winding starts from 5 s and ends at 30 s.  As we can  
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Figure 8. Data fitting result from three experiments 

see, from 1000 to 1200 samples, there is a huge drop, however, that is because of some abnormal 
adaptation by the operation (loss of tactile feeling due to the glove), and therefore, we can fill that 
valley with the normal force. The reason we assume this is a PWM shape is because each beater has 
exactly 70 windings and after every 12 windings the beater is rotated. This explains the signal drop at 
each interval when the thumb is removed temporarily. From this analysis, we identified six intervals, 
and each one has 12 windings which indicate smaller drops. We further fill the signal with a plateau to 
simplify the process. From the above analysis, it is reasonable to assume a PWM signal which can 
potentially be used as a signal input for the controller. And more importantly, we can estimate the 
phase of winding because we know exactly how many windings are completed within each interval.  
This can be another source of knowledge to build the controller.  

 
Figure 9. PWM assumption in experiment 3 

3 TENSION MEASUREMENT SENSOR DESIGN 

This section will explain the sensor design procedure in detail. The first stage contains two elements as 
shown in Figure 10. The 3 roller concept as discussed in introduction is a popular configuration used 
in the industry for measuring yarn tension. The major components are the front three rollers attached 
on the flank: one active and two dummy rollers. The active roller links against the load cell which are 
fixed in the box. Our design was inspired from this configuration as shown in Figure 11, where the 
strain gauges were fitted on the beam-shape load cell. However, in order to save space, the two 
dummy rollers had been replaced by two rods with a hole on each. The initial choice of load cell was a 
rectangle beam, which is refined in the simulation stage at the latter part of this section. 
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Figure 10. Sensor design stages: Inspiration, refinement and simulation 

Another element of the concept for applying pressure was inspired from tweezers. This is because we 
need a mechanism to imitate how human fingers apply pressure on the yarn. Therefore, the operator 
instead of directly putting the fingers on the yarn, they press the end of tweezers-like mechanism with 
rubber band and brake on it as shown in Figure 11. 

 
Figure 11. Proposed sensor design (left) and how to hold the sensor (right) 

In the refinement stage, every change of design may cause other parts to change too. Therefore, this is 
an iterative process. For instance, if the space for the interior parts is smaller, the overall size of those 
parts needs to scale down. However, if a certain part for instance, the roller size, has to have 15 mm 
diameter, the outer shape design may change as well to leave more space for the roller.  In general, 
there are some rigid constraints for the shape and the size. In this case it is a 3D space. The shape 
should be smooth to fit the hand size. As the real size of the sensor is small, there are difficulties to 
find the commercial standard parts. The design was further developed for manufacture and assembly.   
After the second stage of design, the space available for the load cell is known. We assumed a 
primitive shape. In the third stage, we cut out some material in the middle of substrate as shown in 
Figure 11, and the design was simulated with Finite Element Analysis (FEA) in SolidWorks. The 
problem to solve in this stage is choosing the right material for the substrate. Before the substrate is 
chosen, it is worth knowing some context about Strain Gauge.  
The Strain Gauge is shown in Figure 12. The length is 3 mm, resistance is 350 Ω, and gauge factor is 
2.13. One can find out different configuration of installing Strain Gauge in (Hoffmann, 1989), here we 
don't need to know the force in multi-axis; therefore, a full bridge is used with normal configuration to 
compensate for the temperature and increase the range of measurement. 

 
Figure 12. Strain Gauge used in this research 
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Two common materials are considered as the substrate, namely stainless steel and aluminum. From the 
simulation result shown in Figure 13, the left two holes are assumed fixed because it will be fixed on 
the sensor body. The actual force is applied vertically in the right hole, and the contact area is about 49 
mm2. The actual deformation is visually exaggerated in the simulation, which is in the level of µm. 
The bright area is where the maximum tension or deformation happens. Therefore, we only need to 
compare the result which returns the maximum strain but also within a tolerance value (< 2%) (Micro-
Measurements, 2014). The actual force applied was 13.8 N, which was the breaking tension of the 
yarn from the previous test.  The results are shown in Table 3. 
From the result, the deformation rate, the strain in aluminum substrate is larger than the stainless steel 
but less than the tolerance (2%). Therefore, in this sensor design, aluminum was chosen as the material 
for the substrate. This sensor will be manufactured and used to measure yarn tension during the 
winding process.  

 
Figure 13. An example of the simulation result for the substrate (brighter color means more 

strain and deformation) 

 

Table 3. Simulation results of two types of materials 

Material  Yield strength 
(MN/mm2) 

Length (mm) Area (mm2) Maximum 
Strain 

∆L (µm) 

Aluminum  27.6 50 49 0.13% 65 
Alloy Steel  172.4 50 49 0.05% 25 

4 CONCLUSIONS 

In this paper, we are able to integrate human in the automation design methodology by analysing data 
and sensor design according to the HTA and TD from human factor research. The measurements and 
sensor design can potentially provide valuable and additional information which HTA doesn’t give. 
Firstly, the patting force measurement was analysed to understand the human operator’s method to 
maintain beater shape. This force signal was further simplified to some pulse width modulation 
signals. The importance of this signal is that it can be directly used for the low level controller to 
follow. This is the translation procedure mentioned early in the active compliant motion, where the 
high-level symbolic primitive (from human knowledge) is translated into low-level control primitives.  
The future work of this part of work is to use more experiments to validate the results.  Secondly, a 
hand-held tension measurement sensor was designed. This sensor will be used to collect the time 
series data from a human operator and understand the tension levels and process features/phases. This 
is also the immediate future work after this stage of research. Since the winding process requires 
operator’s tacit knowledge to execute, only after understanding the manual process that an automation 
solution can be delivered successfully. This paper, at this stage, is one forward step towards that goal. 
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