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Abstract 

With respect to time-to-market and product development Knowledge Based Engineering (KBE) 
solutions, which enable an automation of design tasks, can contribute to a significant reduction of 
development time. But to develop KBE solutions, not only engineering but also informatics 
competencies are required, which leads often to case-based solutions and in addition to costly extra 
effort, even in those cases where solutions only have to be adapted to a new context. This way, KBE 
becomes too expensive for development teams, because they are only useful in a specific context and 
expensive to be managed. 
Enabling a broader usage context for KBE solutions, e.g. for different domains or in different projects, 
increases the efficiency of KBE. This paper aims to support designers to set-up and maintain KBE 
solutions, which address diverse product development tasks at once. Against this background, this 
paper identifies a need for a framework-independent solution to formalize design knowledge and 
derives corresponding objectives to be fulfilled by this solution. Further, an extension of an existing 
modelling language to become a new framework-independent standard for KBE projects is proposed. 
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1 INTRODUCTION 

In order to stay competitive on the global market companies in countries with high labour costs need 
to optimize the product development processes. This optimization can be performed by a reduction of 
time-to-market and costs respectively, which can be achieved by a re-organisation of the development 
process itself or by accelerating the individual development steps. The latter, is addressed by software, 
such as Knowledge Based Engineering (KBE) solutions, which enable an automation of repetitive 
design tasks. Since nearly 80% of the design tasks ((Skarka, 2007)) appear to be repetitive, a 
significant reduction of development time (up to several weeks) has been achieved in nearly all 
documented KBE projects (Vermeulen, 2007). 
Unfortunately KBE solutions are developed to be used in one specific development context, such as 
generation of body wing designs of airplanes or the automated calculation of ship structural design 
(Yang et al., 2012), because of their complex set-up process. Nowadays initiating a KBE project in a 
product development team means an involvement of stakeholders. While computer scientists usually 
perform the software implementation, domain specialists can only perform the acquisition and 
capturing of knowledge (e.g. for the identification of formulas to calculate weld seam thickness). 
While big companies (e.g. in aircraft industry) usually form interdisciplinary teams of companywide 
specialists (Ammar-Khodja et al., 2008), small and medium companies often stick to non KBE 
supported development, third party support or ad-hoc teams. In any case, bringing together 
competences from different domains (engineering and informatics) to develop and deploy KBE 
solutions leads to effort and demands time. Thus, the focus usually lies on setting up a specific 
solution for a concrete task and not on a more generic application (which would demand for even more 
experts from different domains and a longer KBE development process). 
Contemporary solutions are highly limited to their own task related boundaries. The identified and 
applied engineering knowledge can only be used inside the respective model. Even adaptions or 
enhancements often can`t be done by the end users, since this would mean to go through the code 
itself. 
A product developer without sophisticated programming skills will not be able to use, set-up or 
maintain such a solution, properly. In addition, the solutions often lack transparency and 
documentation. The designers (or engineers) have to trust in the output of KBE calculations and 
generated designs and thus often avoid using KBE solutions, if a development task slightly changes.   
In this way KBE solutions (& projects) become too expensive for the development teams, because 
they are only useful in one context and expensive to be managed. Enabling a broader usage context for 
KBE solutions, e.g. for different domains or in different projects, unleashes the potential of KBE to 
reduce time-to-market, even for small and medium enterprises without specific KBE teams.  
In consequence this paper aims to support designers to set-up and maintain KBE solutions, which 
address diverse product development tasks at once. Against this background, this paper identifies a 
need for a framework-independent solution to formalize design knowledge and derives corresponding 
objectives to be fulfilled by this solution. Further, this paper proposes an extension of an existing 
modelling language to become a new framework-independent standard for KBE projects.  

2 NEED FOR FRAMEWORK INDEPENDENT FORMALIZATION OF 
KNOWLEDGE  

The above-mentioned challenges in terms of setting up KBE solutions and gaining access to the 
underlying rationale have been picked up by industrial software systems. Commercial vendors of CAx 
tools (e.g. CATIA, SolidWorks, Inventor etc.) provide add-ons to automate the design directly from 
within the CAD (or CAE tool) in order to automate the product-design process (e.g. (IBM, 2013). 
They enable the user to incorporate dependencies using formulas or rules (if Length A < x then Length 
B=Y). This became possible, because of fully parameterized CAD models. Along with the possibility 
to use construction tables or standard parts catalogues to be integrated into a CAD model, simple KBE 
solutions are supported without further need of IT experts. Based on a parameterized CAD model, 
they provide functions like formulas (to create dependencies between parameters), rules and user 
defined features (IBM, 2013). But in such CAD add-ons the KBE intelligence (e.g. a design rule) 
directly remains inside a CAD-model and is directly stored within the CAD file.  
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Also standalone KBE frameworks, such as the Adaptive Modelling Language framework (AML) 
(TechnoSoft Inc, 2003), designed to support large KBE projects, are enforcing an encapsulation of 
knowledge due to their proprietary formats and modelling languages.  
As identified in a comparative analysis of different frameworks to support KBE (a comparison 
between CATIA Knowledgeware, AML, Rulestream and Siemens NX) (Colombo et al., 2014), one of 
the main challenges is founded in the comprehensibility and granularity of the domain knowledge 
itself. Domain-specific knowledge, which is used to solve complex design problems, is usually 
incomprehensible for domain experts after it is codified in rules or in source code. For instance in a 
scenario of an automated bookshelf design, the rule that the width of a shelf can be a function of width 
of a rack may appear as part of a cryptic notation (If LR > LS then LR = lS * nS … ) (Klein et al., 
2014). 
Even if it would be possible to break up the file encapsulation, which is given by the proprietary 
structure (of e.g. CAD models, or AML projects), an utilisation of the already implemented design 
knowledge by other applications would fail, due to a lack of standardization of items, such as 
namespaces, relations or operators & rules.  
Depending on domain and profession of involved experts, skills in programming as well as knowledge 
modelling may differ. Some developers are only used to describe their procedural knowledge (e.g. at 
first we make the overall shape, then we calculate this …). Other developers are focused on product 
structures (e.g. we are responsible for optimizing this sub-part and have an interface to the rest of the 
product …), whilst other are focused on costs, etc. Hence, the capability to provide framework 
independent access to the codified knowledge for different stakeholders is an important constraint. 
In consequence, the development of a methodological approach as well as a standard for modelling 
and representation of codified knowledge can be perceived as an important objective to ensure 
sustainability and user-acceptance on the one hand and enable an exchange and reuse of engineering 
knowledge in automated design on the other hand. 

2.1 Objectives of a new approach to support Knowledge Formalization 

A framework independent access to the codified engineering knowledge should aim to address 
different objectives as given by the field of product development and in particular KBE. In order to 
achieve a representation and formalization of knowledge in this context several objectives have been 
identified:  
 Capabilities to represent the KBE related elements: By developing disjunctive 

implementations for one KBE scenario it turned out that there are distinct similarities and to 
some extend an overlapping in syntax and structure between those elements, which are provided 
by the different KBE frameworks (Klein et al., 2014). As a basic precondition for framework-
independent solution to formalize design knowledge, the solution should provide modelling 
capabilities to represent those KBE expressions (e.g. product structure, input variables, equations 
& rules, etc.). 

 Reflecting the KBE life cycle in a structured way: Even though KBE usually requires 
substantial investments and different sorts of expertise, many product developers seem to 
improvise a KBE project based upon an unstructured problem analysis (Verhagen et al., 2012). In 
addition, most solutions are still suited to a single case and neither grounded in the workflow 
organisation nor based on structural frameworks (Verhagen and Curran, 2010). A new modelling 
language easy to use and suited to the process of setting up and deploying KBE solutions shall be 
capable to address this.  

 Support collaboration among different domains: Due to missing abstractions - e.g. neglected 
design aspects for a desired solution – KBE solutions are often too limited to their original 
context and thus the reuse of knowledge in different contexts will be hindered or impossible 
(Verhagen et al., 2012). For this purpose, an easy incorporation of knowledge from different 
domains and business units should be supported in order to allow product development teams to 
be more flexible. (If the KBE intelligence directly remains inside encapsulated models or 
proprietary languages, this is of course not possible.) 

 Reflecting the process of formalization and codification: Verhagen, et al. criticize that many 
KBE-solutions store and represent codified knowledge decoupled from its original context 
(Verhagen et al., 2012). An appropriate documentation is missing and formulas or equations 
remain unexplained (Kulon et al., 2006). The cause is often founded in an unstructured 
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knowledge acquisition process. Without a documentation of the problem in terms of objectives, 
constraints, etc. the traceability of the design process becomes impossible. The envisaged 
approach should enable formalisation of knowledge, since this enables a transfer of the 
ownership of the technical knowledge from the individual experts to the organization. 

 Enabling reuse of knowledge in different contexts: Along with the insufficiency of a 
structured knowledge codification, a lack of knowledge reuse has been identified. Knowledge is 
often codified in a proprietary language; rules and algorithms are not compatible with other KBE-
frameworks and are usually not on a level that is comprehensible for the engineers or domain 
experts (Verhagen et al., 2012). The envisaged approach should improve the transparency in 
terms of understanding the rationale behind KBE solutions. It must be both human as well as 
computer readable and should be accessible for all stakeholders: domain experts, knowledge 
experts and software experts. 

 Capture design process related background knowledge: In contemporary KBE projects, the 
process related context (e.g. the relation to a specific development phase) is usually not annotated 
in the implemented code. For example a function to calculate the X of Y may differ between the 
initial design phase and the detailed design phase. Thus, it is crucial to know to which 
development phase the knowledge snippet relates. For this purpose the new approach should 
incorporate/reflect the design/development process. 

 Support visualization of concepts and their relations: Engineers “like" visualizations and 
graphics and visual support can be one key advantage to overcome communication barriers 
between different domains. Thus, the envisaged approach should provide capabilities for 
visualization of codified knowledge. 

Next to the identified functional objectives, the researchers followed the idea to rely the approach on 
well-established standards in research and industry. This way, the usability increases and potential 
users are attracted by lower effort required to get started. Further, a standardisation body may facilitate 
the sustainability of the approach in terms of evolution, exploitation and dissemination.  

3 FORMALIZATION OF DESIGN KNOWLEDGE  

With respect to the identified objectives, an analysis of existing established standards for represent-
ation of codified knowledge has been conducted as a pre-study (Colombo et al., 2014). Since the 
comparative analysis exceeds the limits of a publication, Table 1 just provides an overview of the 
examined standards within the context of the identified objectives. 

Table 1. Comparative analysis of standards for representation of codified knowledge  

Requirement 
Language 

Product 
Structure 

Rules and 
Constraints 

Suitable for 
Domain Expert 

Design 
Process 

Visual 
representation  

MathML X   X X 
xOWL   X  X 
Rule Interchange 
Format of W3C 

X partially X 


X 

ID
E

F
 IDEF0 X X    

IDEF3 X     

MML  partially partially   
BPMN X partially    

SysML      

UML X partially    

 
In the performed analysis, SysML turned out as the most appropriate standard to be extended for the 
purpose of modelling and exchanging product design knowledge. As outlined below, SysML is 
supported by the OMG and has its roots in UML. It also has become an established standard for 
systems engineering (Bone and Cloutier, 2010). One of the key advantages of this "standard family" 
lies in its inherent capability to be extendable. The needed meta-model layer is provided by default in 
the specification of UML itself. Hence, an adaption to domain specific needs can be performed 
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without contradicting the specification. In other words, because SysML is an extension of UML the 
presented approach of extending SysML also allows customizing the UML/SysML ecosystem to the 
needs of KBE. 
In the following, the idea of an extension of the established SysML standard to provide a new 
modelling language in context of KBE will be reflected by a new name as well: KbeML.  

3.1 Definition of KbeML as an extension of UML and SysML 

To visualize the relationship between the UML and SysML languages and the envisaged KbeML, a 
Venn diagram is provided in Figure 1. The sets of language constructs that comprise UML, SysML 
and KbeML are shown there as boxes marked “UML”, “SysML,” and “KbeML” respectively. The 
intersection of the two boxes, shown by the region marked “UML reused by SysML & KbeML” 
indicates the UML modelling constructs, that SysML reuses, called the UML4SysML subset (ref to 
(OMG, 2012)). 

 

Figure 1. Relation between UML, SysML and KbeML 

The region marked “Extensions to SysML (KbeML Profile)” in Figure 1 indicates the new modelling 
constructs defined for KbeML that have no counterparts in SysML or UML. 
SysML reuses a subset of UML 2 and provides additional extensions to satisfy the requirements of the 
language. SysML is defined as an extension of the OMG UML 2 Superstructure specification. It is 
intended to be supported by two evolving interoperability standards including the OMG XMI 2.1 
model interchange standard for UML 2 modelling tools and the ISO 10303 STEP AP233 data 
interchange standard for systems engineering tools (ref to (OMG, 2012)). 

 

Figure 2. From UML to SysML to a KBE extension 

The extension of SysML has been realized by establishing so-called stereotypes. Stereotypes are 
representing pre-defined information types. As outlined in Figure 2, the UML 2 meta-classes are 
connected to stereotypes with the extension connector (graphical representation is a filled triangle). 
New stereotypes can be based upon existing ones via generalization. 
 

3.2 Stereotypes proposed for the SysML extension to define KbeML 

The provided behavioural elements of SysML allow describing design processes without the need to 
be adapted. Thus, this research focusses on the definition of structural elements for the envisaged 
KbeML. These new elements are summarized in table2. The approach suggests to define all elements 
with prefix “CAD” for a better human readability. This may be misleading, the proposed specification 
is aiming to support the whole spectrum of KBE (such as other CAx tools).  
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Table 2. New KbeML Elements defined as an extension of SysML Metaclasses 

Vizualization  Description Formal 
Definition 

 

 
 

CADModel provides a mechanism for representing a spatial 
model as being typically defined by model files in CAD. A 
CADModel is associated to the package element of SysML. 
In SysML/UML packages partition the model elements into 
logical groupings that minimize circular dependencies among 
them (OMG, 2012). A CADModel may contain the elements 
CADComponents, CADAssemblies, etc. and in addition a 
block diagram for visualising the product structure by using 
those elements. 

 
 

 

 

 

CADAssembly provides a mechanism for representing a 
product assembly as typically defined by components in 
CAD. The CADAssembly, which is defined as a stereotype of 
a block intends to represent the structural perspective of a 
product geometry. According to the proposed approach a 
CADAssembly can consist of CADComponents and/or 
CADAssemblies. 

 

 

 

 

CADComponent provides a mechanism for representing a 
component as being typically defined by its shape and 
geometry in CAD. The CADComponent, which is defined as 
a stereotype of a block intends to represent the structural 
perspective of a product geometry. CADComponents can be 
represented in Block Definition Diagrams, e.g. to visualize 
the structural dependency to CADAssemblies or SysML 
blocks. 

 

 

 

 
 

 

A CADParameter represents always a geometry related 
parameter, which means that this type of parameter can be 
processed by a CAD application. A CADParameter is 
instantiated by a CADComponent, CADAssembly, 
CADEquation, or CADRule (always as stereotype of 
property), but can also be used by other elements for non-
CAD related modelling or calculations. It is visualized as a 
property in a component or as a box in a parametric diagram. 

 

 

 

CADEquation provides a mechanism for representing 
dependencies between CAD related parameters. A 
CADEquation, which is based upon a constraint block can be 
used to specify a network of constraints that represent 
mathematical expressions such as {height=2*width}, which 
constrain the geometrical properties of a CAD object.  

 

 

 

CADRule provides a mechanism for representing more 
complex dependencies between CAD related parameters such 
as geometrical dependencies based upon conditions (e.g. 
height > 10). Formally, a CADRule is a set of instructions, 
which conditionally executes a group of statements 
depending on the values of some CADParameters. 

 

 

4 DEMO CASE - AUTOMATED DESIGN OF A BOOKSHELF 

In the previous section, the proposed extension to SysML has been presented. In order to evaluate the 
applicability of the specified KbeML elements for typical development tasks, an automated bookshelf 
design has been chosen as a demo case. In the demo case the automated design of a bookshelf is 
driven by a set of geometry related input parameters, such as thickness of the shelves and an geometry 
related output parameter (shelf length) and in addition based on two equations to formalize the 
deflection of a shelf under load (ref. to Figure 3).  
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Next to the applicability of the proposed modelling language, the demo case aims to indicate the 
capacity of KbeML to re-use mechanical knowledge (about deflection) a new development context. 
The formalized engineering knowledge is encapsulated in (constraint-) blocks, which can be assigned 
to other components in a new context, simply by a parameter mapping. 

 

Figure 3. Scenario - Automated design of a bookshelf 

4.1 KbeML - Formalization of product structure 

In the following, an extract of a framework independent KBE model of an automated design of the 
bookshelf is provided to indicate the practicability of the KbeML approach. Next to the representation 
of the product structure, the codified rule to calculate the maximum length of the shelves is modelled 
using the KbeML elements. 

 

Figure 4.  Representation of bookshelf model with KbeML 

As outlined in Figure 4 the bookshelf product is represented by a stereotype CADAssembly. Further, 
the product consists of two sub-assemblies called BookshelfFrame and BookshelfInternals, which are 
also defined as CADAssembly. The sub-assembly BookshelfFrame consists of the components 
BookshelfTop, BookshelfBottom and BookshelfSidewalls, all of type CADComponent. All mentioned 
composites of the bookshelf are based on the SysML element block. A composite association (black 
diamond) is used to indicate that the sub-assemblies belong to an assembly etc. 
By usage of properties for CADComponent and CADAssemblies, the belonging parameters are 
defined; e.g. the component Shelf is described by the CADparameters: ShelfWidth, ShelfHeight and 
ShelfLength. While the first both parameters are described by concrete values the ShelfLength is 
marked with TBD (abbreviation for To Be Defined), which indicates that this parameter has to be 
calculated. 

4.2 KbeML Formalization of Equations and Rules related to KBE. 

In order to achieve a calculation of a specific parameter the concrete parts are linked to an equation 
formalized in a general manner. For this purpose in a first step a block diagram of the CADComponent 
Shelf has been modelled (refer to Figure 5). Within this block diagram the specific CADComponent as 
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well as the CADEquations are represented in parallel. The concrete component is represented in 
magenta, while the description of the equations is represented in cyan, in order to support a visual 
distinction between "KBE knowledge" and a concrete part. Hence, the purpose of this diagram is 
solely to indicate, which generic equations are used for the concrete component. The relation itself is 
defined by a reference property. (In Figure 5 you will find in the CADComponent a line defining the 
constraint: Allowed_Shelflength: CADCalculation_length_based_on_deflection.) 

 

Figure 5. Block diagram of CADComponent Shelf 

In addition, a link between the concrete parameters to the generic parameters of the equation is 
required to represent the KBE knowledge. For this purpose SysML parametric diagrams can be used 
allowing to map properties of a constraint block to properties of a block. In context of KbeML this 
means to map the concrete parameters of a CADComponent, such as BookshelfBottom to the generic 
parameter of the instance (called Allowed_Shelflength) of the generic KBE equation (CADCalculation 
_length_based_on_deflection). This way, Shelf parameters (CADParameters and additional 
Information such as E-Modulus of wood) will be used as input parameters to calculate the missing 
parameter Shelflength. Associations outline the mapping in Figure 6.  

 

Figure 6.  Parametric diagram of CADComponent Shelf 

The equation Allowed_Shelflength is composed by an equation, which uses the Moment_of_Inertia 
(MoI) as an input parameter. The EquationTerm itself is defined as a value and composed by the 
following elements: CADParameters (e.g. deflection_ratio) and one CADOutputParameter (e.g length) 
(ref. to Figure 7). In addition, CADOperators (e.g.*) and numbers (e.g. 384) can be used (ref. to Figure 
7). A CADOutputParameter is defined as a specific CADParameter and represents a parameter of a 
CAD system, which depends on other parameters. 

 

Figure 7.  Formula of Deflection represented in KbeML CADEquationTerm  
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In principle the equation for calculating a deflection is valid in several development contexts. For the 
calculation of deflection for a steal beam the same rules and equations can be used as for the shelves 
(assuming fixed support on both edges). Hence, basic mechanical knowledge can be represented in 
SysML/KbeML libraries to be re-used in different KBE projects later on.  
In case of the shelf the cross-section is typically a rectangle, but if one decides for a bookshelf with 
trapezia shaped shelves the MoI can be simply picked from a MoI library and replaced in the 
Parametric diagram of CADComponent Shelf (Figure 6) without changing the CADEquationTerm 
(Figure 7).  
 
According to proposed KbeML the Bookshelf deflection is now completely defined. At this stage 
several options appear to the end-user, indicating the degree of freedom of a knowledge representation 
codified in a neutral format:  
 Calculation of shelf length, exploiting the capabilities of commercial modelling environments 

such as EnterpriseArchitect, which allow to create executable ConstraintBlocks (as well as 
CADEquations). Thus, an integrated solver is able to “calculate” the CADOutputParameters. 

 Using a mapping software to link third party solver providing the value of the calculated length: 
In principle solvers can range from complex (e.g. Open Modellica) to simple applications (e.g. 
Excel).   

5 EVALUATION IN CONTEXT OF THE DEMO CASE (EXTRACT) 

Even if the above-mentioned demo case of the bookshelf is not challenging for designers in a sense 
that it could not be solved simply by creation of design variants (for different loads). A major 
difference to framework-based KBE (and variants) appears - the usage of "generic" equations.  
While this notation appears to be a bit cumbersome at a first glance, a separation of equations and 
rules from components and assemblies provides major advantages in terms of reusing knowledge. For 
instance, the equation for the moment of inertia is only based upon an transversal section of an 
element, the CADEquation can be re-used for automated design of different components (e.g. a beam 
in a steel frame), simply by mapping each time CADComponent parameters to CADEquation 
parameters. 
However, while using the proposed KbeML and capturing the design and engineering knowledge for 
demo cases such as the automated bookshelf design, several limitations and improvement points have 
been identified so far. The definition of CADEquation terms may serve as just one example. Currently 
there is no controlling instance incorporated that only existing CADEquation parameters are used in 
the value (which defines the CADEquationTerm). While those limitations are not directly 
contradicting the approach (may be OCL Rules can be used to provide a more sophisticated modelling 
environment)(Alt, 2012), one major challenge appeared while representing rules, which control the 
product tree itself. This is for instance the case if the existence design variants will be managed by a 
rule (e.g. exchange of the CADComponent SideWalls with SideWallsWithDoorMountings if a 
bookshelf with doors shall be a possible variant). Since SysML itself lacks of a standardized 
possibilities to represent and manage design variants, a literature analysis has been conducted to 
identify different "workarounds" as being proposed by other researchers (e.g. Maga and Jazdi, 2011). 
An adaption of KbeML is under preparation, proposing (amongst others) additional KbeML Elements 
in alignment to table 2, namely CADVariant, CADVariationPoint. 
However, even though the example is too simple to fully represent the potential complexity of all 
practical KBE solutions, it proves that it is possible to codify KBE related design knowledge 
independently from a KBE framework and allow a re-use in a new context.  

6 CONCLUSION AND OUTLOOK 

The cumbersome setup and implementation phase to deploy a KBE project can be perceived as a 
bottleneck for an efficient usage and broad acceptance of KBE in product development. In addition, 
the existing solutions often lack of transparency and documentation. Furthermore, adaptions cannot be 
performed by end users. In this sense, the effort for setting up KBE solutions and managing the 
rationale behind is contradicting the applicability of KBE solutions targeting usually only specific 
design tasks and lacking a possibility to be reused in different contexts. 
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Against this background, the development of a methodological approach as well as a standard for 
modelling and representation of codified knowledge is proposed to ensure sustainability and user-
acceptance on the one hand and enable an exchange and reuse of engineering knowledge in automated 
design on the other hand. In reference to this identified gap, the conducted research focussed upon the 
identification of objectives to be fulfilled by such a new standard.  
A comparative analysis of different standards & modelling languages for management of formalized 
knowledge turned out, that SysML provides an appropriate basis for a new modelling language to 
fulfil the identified needs in context of KBE. The established Standard has been enhanced and adapted 
using the UML/SysML extensions (according to UML2 Superstructure specification (OMG, 2012). 
The proposed extension to capture and exchange formalized knowledge in context of KBE can be 
perceived as the main result of the presented findings. The elements being specified in section 3 are 
approaching to be a preliminary work for a contribution to a standardisation directly addressing the 
needs of KBE. If stakeholders show interest, the drafted KbeML extension will perform a starting 
point corresponding working groups of the OMG. 
An automated design of a bookshelf has been picked up for an initial validation of the proposed 
KbeML modelling language. The representation of the design related knowledge using KbeML 
indicates that it is possible to use a generic codification for at least this example. Hence, the scenario 
proves that it is possible to codify KBE related design knowledge independently from a proprietary 
framework. 
Since SysML/KbeML are based upon an open format (XMi standard), exchange of the captured 
knowledge between different frameworks shall become possible (Huang et al., 2007). As a next step, 
the research focuses upon knowledge exchange between a KbeML model and a CAx application. For 
this purpose a mapping software is currently under development. This application allows to handover 
CADparameters and CADEquations to a commercial CAD application in order to control the design 
directly from within the model.  
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