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Abstract 

Tolerancing is important in the mechanical design process because it affects product quality and 
manufacturing cost. Various tolerancing methods have been studied while considering quality and cost 
of a product. However, tolerance for design element is rounded to one scalar value, even though 
designers decide the value statistically considering machining error. Therefore, a next generation 
tolerancing method is required. Fortunately, a useful tool called statistical tolerance index is available. 
This tool limits design drawing process capability indices on design drawing, so that a manufacture 
process may satisfy this limitation. To decide the limitation suitably, a stack-up problem of statistical 
tolerance indices is formulated like a problem of conventional tolerance analysis. The stack-up 
problem can be represented by Minkowski-sum on a hyper-plane of the mean and the standard 
deviation square. Therefore, the problem can be numerically solved using the convex envelope 
algorithm and Monte Carlo simulation. We first begin the study by analysing the problem using Monte 
Carlo simulation. 
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1 INTRODUCTION 

Actual dimensions of machined parts do not match a nominal dimension specified at design stage 
because of machining error. A mechanical product consists of the machined parts, and the product 
performance depends on a functional dimension, which results from stack-up of the parts. Because 
performance and quality of products are variable, dimension of each part is managed by a tolerance at 
design stage. If the tolerance value is tight, performance variation will reduce but manufacturing cost 
increase. Therefore, tolerancing is an important task in a detailed design process, which is one of 
downstream process in mechanical design process. Tolerancing method is generally classified in 
worst-case and statistical methods (1988, Chase). The worst-case method is traditional and easy to 
calculate, in which stack-up of the parts variations is modeled as a sum of limit of each part variation. 
Although the method perfectly guarantees an interchangeability of the parts, the specified tolerances 
tend to be tight. On the other hand, the statistical method can relax the tolerances considering 
statistical distributions of the parts dimensions. The method is based on statistic rule, so that it is 
compatible with mass production. There are various studies of the statistical methods.  
 
 For example, Skowronski and Turner (1997) examined Monte-Carlo variance reduction techniques, 
importance sampling and correlation. They also proposed a method for using them in statistical 
tolerance synthesis. Gao and Huang (2003) proposed an optimal tolerance balancing method for a 
nonlinear model. The method was based on process capability and validated through tests. Maurice et 
al. (2005) proposed weighted inertia tolerance to obtain the best possible compromise between 
statistical and worst-case tolerancing methods. The tolerance principle involved calculating the 
allowable range of the mean square deviation in relationship to the target. Zhang et al. (1998) 
proposed PCI (process capability index) -based tolerance as a predetermined statistical tolerance zone. 
This tolerancing method can be used as an interface between design specification and statistical 
process control. In quality engineering, Li (2000) studied the relationship between unbalanced 
tolerance design and quality loss function. The study concluded that the optimal setting of the process 
mean that minimizes the expected quality loss was obtained with respect to the asymmetrical ratio. 
Choi et al. (1999) applied a complex search method to ensure an optimal allocation when tolerance 
limits were used and when Taguchi's quadratic loss function was defined. The aim of those studies 
was to calculate reasonable tolerances. 
 
Although designers use the statistical method considering a condition of product performance and 
manufacturing cost, the conditions are rounded to the conventional tolerances as a scalar value. If 
more details information are added to the tolerances on design drawing, intention of the designer can 
be reflected into actual products. Consequently, an additional value is given to the design drawing and 
the products. Fortunately, a useful tolerance specification, which we called statistical tolerance index 
(STI), has been standardized in ASME Y14.5. The STI, in which process capability index is limited, is 
a specification for mass production. When the STI is specified in design drawings, manufacturing  
processes must satisfy the limitation of the STI under statistical process control. Although the STI 
might cause an additional manufacturing cost, that is not demerit if an advantage of the STI is superior 
to the disadvantage.  
 
There are two main problems before applying the STI to actual design process because a product 
generally consists of several parts. Those are similar to tolerance stack-up and tolerance allocation in 
conventional tolerancing. Before allocating the STI into parts dimensions reasonably, STI stack-up 
problem should be researched and clarified. From the result of previous studies, the problem was 
known to be complex and difficult even if a product consists of two parts. Srinivasan et al. (1997) 
proved that a solution of the problem was generally represented by the Minkowski-sum on the hyper-
plane of mean and square of standard deviation. They showed an algebraic solution for the problem 
under condition that only Cpk and Cc were specified. Based on their study, Otsuka (2012) derived 
more general algebraic solution for the problem and clarified the applicability condition of the 
solution. However, the solution is still not practical for actual product design because it requires many 
assumptions. Although an algebraic solution for the problem is useful in STI allocation problem, we 
predict that it is difficult to derive more general solution without removing the assumptions.  
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Therefore, a numerical method should be developed to obtain an alternative solution. Because the 
operators of the Minkowski-sum and the convex envelope are mathematically commutative, the STI 
stack-up problem can be approximately solved using the convex envelope algorithm and Monte Carlo 
simulation. First of all, a numerical method using Monte Carlo simulation for the STI stack-up 
problem is proposed in this paper. In case study, the proposed method is evaluated for a virtual 
assembly model consisting of four parts with linear stack-up.  
 

2 STATISTICAL TOLERANCE INDEX  

STI is one of specification using a process capability index (PCI) as an additional indicator for a 
manufacturing process with a conventional tolerance. STIs can be specified adding uppercase 'ST' into 
hexagon. Figure 1(a) shows a design drawing that conventional tolerances are specified. Figure 1(b) 
shows a design drawing that the conventional tolerances and STIs are specified. The specified values 
of dimensions, tolerances and STIs in Figure 1 are examples. STI is applicable to both dimension and 
geometrical tolerances, so that STI can limit the distribution parameters of dimensional or geometrical 
errors of machined parts lot-by-lot. The STI is a useful tool to control performance and quality of mass 
produced products. However, STI is still not common in a current design process because of its 
complexity.  

 

(a) with conventional tolerance                       (b) with statistical tolerance indices      

Figure 1. Examples of mechanical design drawing  

2.1 Process capability index  

In mass production, machining processes must be controlled lot-by-lot due to machining errors. To 
evaluate the machining process quantitatively, PCIs have been used for a long time, which are non-
dimensional parameters defined as follows (1999, Srinivasan). 
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Where L, U, µ, σ and τ are lower limit of size, upper limit of size, tolerance, process mean, process 
standard deviation and target dimension, respectively. T is tolerance defined by a difference of U and 
L. In order to apply PCIs to an unilateral tolerance, the additional indices Cpl and Cpu or Ccl and Ccu 
can be used instead of Cpk or Cc. When PCIs are limited within certain specified values such as Cpp, 
Cpkk, Cplkl, Cpuku, Ccc, Cclcl, Ccucu and Cpmm where p, k, kl, ku, c, cl, cu and m are 
design parameters, the process must be controlled to keep its capability within each parameter range. 
As the PCIs are defined by process mean and/or standard deviation, the process assumed to be 
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controlled under statistical process control. When several STIs are specified simultaneously on a 
dimension, the allowable range of the mean and the standard deviation are hard to understand. To 
understand the range easily, a population parameter zone is introduced.  

2.2 Population parameter zone and statistical tolerance index 

The population parameter zone (PPZ) represents an allowable range on σμ  plane when STIs are 
specified. Figure 2 (a)-(d) shows examples of PPZ when a certain STI is specified. Figure 2 (e)-(h) 
shows examples of PPZ when multiple STIs are specified.  
 

 

    (a) Cp                            (b) Cpk                              (c) Cc                          (d) Cpm 

 

(e) Cpk, Cpk and Cc           (f) Cpl and Ccl            (g) Cp, Cpu and Ccl        (h) Ccu and Cpm 

Figure 2. Overview of restriction of STI on population parameter zone  

 
The horizontal axis is mean value, and the vertical axis is standard deviation value. The painted area is 
allowable range of the mean and the standard deviation, and the solid boundary of the range is an 
allowable limit. When STIs are specified for each part dimension, the dimension has each PPZ 
respectively. In the design process, designers need to decide suitable values and kinds of STI for each 
part dimension based on required function, performance and cost of a final product. The decision 
process is equivalent to a tolerance allocation. STI stack-up problem must be solved before discussing 
STI allocation problem, because the allocation problem is an inverse problem of the stack-up problem. 

3 STACK-UP ANALYSIS OF STATISTICAL TOLERANCE INDEX 

3.1 Previous work 

Functionality and performance of a final product usually depend on a functional dimension of 
assembly consisting of several parts. In the design process of the final product, constraints of the 
functional dimension are first decided based on customer and supplier needs. Subsequently, designers 
allocate the constraints to parts tolerances and specify it on design drawing as shown in Figure 1. The 
allocation process is carried out based on a solution of a tolerance stack-up problem.  
 
There are many studies of the stack-up problem for the conventional tolerance using worst-case and 
statistical methods. On the other hand, there are few researches about STI stack-up problem. 
Srinivasan et al. (1997) proved that a solution of the problem was represented by the Minkowski-sum 

on 2σμ  plane. They also showed an algebraic solution for the STI stack-up problem when Cpk and 
Cc are specified and when the values of k and c for each part are same. However, it is not practical use 
because of a lack of degree of design freedom. Furthermore, calculation details of the Minkowski-sum 
were not shown in the report. In this paper, a numerical method using Monte Carlo simulation is 
proposed for the STI stack-up. A merit of the proposed method is applicability for more general 
situations of STI stack-up. 
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3.2 Model of STI stack-up problem 

A functional dimension depends on parts dimensions ix . In general, a functional dimension X 
consisting of n parts can be written as following,  

),...,,( 21 nxxxhX                                                                                                                         (5) 

where i is the parts identifier, and h can be linear or nonlinear. Figure 3 shows an assembly model 
used in this study. The assembly consists of four parts, in which h is assumed be linear. The functional 
dimension of the assembly is given as follows.  
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If the parts dimensions are independent each other such as the model, the mean and the standard 
deviation of the functional dimension of mass produced assemblies, Xμ  and Xσ , can be calculated 
based on statistical rules as follows. 
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Note that, an assumption of a normal distribution is not required because the equations (7) and (8) hold 
regardless of distributions of the parts dimensions.  
 
When STIs are specified on each part dimension with conventional tolerance, the PPZs can be 
generated on the ii σμ   planes, respectively. Accordingly, PPZ of the functional dimension is 

spontaneously projected on the XX σμ   plane. The PPZ on the XX σμ   plane is a solution of the STI 
stack-up problem. A boundary of the PPZ is an important element because it is a limit of the mean and 
standard deviation. Calculation of the boundary is achieved by discretizing Xμ and gathering solutions 

of maximum optimization problems for each Xμ , in which an objective function and constraints are 
equation (8) and STIs, respectively. An algebraic equation of the solution has established under some 
conditions.  

   

Figure 3. Illustrations of assembly model and Stack-up problem 
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3.3 Algebraic solution under conditions 

In our previous study (Otsuka, 2012), a solution of STI stack-up problem is algebraically expressed 
under some conditions, in which the STI specifications are specified using only Cpk and Cc, and the 
following conditions must be held.  

44332211 kTkTkTkT                                                                                                       (9) 
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If the functional dimension is linear, such as equation (6), parts identifiers are exchangeable without 
loss of generality. In other word, the identifiers in equation (6) do not need to match the ones of 
equations (9) and (10). If both conditions are satisfied, the solution of STI stack-up problem is given 
by a set of curves as follows. 
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Domains for each j is given by 
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where n is the number of parts (in this study, n=4). XL is the mean value given by as follow. 
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The equation (11) is defined only within the left side of PPZ because the solution is confirmed to be 
linear symmetry for 2/)( XXX LUμ  . Additionally, the stack-up solution has also been solved 
algebraically when only Cpm is specified on parts (Otsuka, 2011). In this paper, the details of the 
results are omitted for lack of space.  
 
If a solution of the STI stack-up problem is given as an algebraic equation, it can be easily used in an 
STI allocation problem as constraints. Otsuka et al. (2014) have proposed the STI allocation method 
using genetic algorithms to design appropriate STIs parameters for a virtual product model consisting 
of five parts under the assumption that only Cpk and Cc are specified. However, if several kinds of 
STI are specified for each part simultaneously or if unilateral tolerance such as geometrical tolerance 
is specified, it is difficult to derive such the algebraic equation, and the solution will be more complex 
form. Therefore, an alternative method is needed to obtain the solution.  

3.4 Proposed method using monte carlo simulation 

To solve general STI stack-up problems, a method using Monte Carlo simulation is proposed. From 
the view point of part, a boundary on PPZ of a part is the worst-case mean and standard deviation. 
Therefore, the boundaries of parts should be focused to obtain the worst-case solution of assembly. 
Note that, the word "worst-case" means a worst situation about mean and standard deviation. Figure 4 
shows the algorithm of the proposed method. In the first procedure, uniform random number about 
mean of each part is generated within range limited by Cc, Ccl and/or Ccu. Minimum standard 
deviation of each PPZ is calculated based on the random number and other specified STIs, such as Cp, 
Cpk and Cpm. Then, mean and standard deviation of assembly are calculated by Eqs. (7) and (8) using 
the random number and the minimum standard deviation, respectively. A point cloud is obtained by 
repeating those processes. The PPZ boundary of assembly can be estimated based on the point cloud. 
 
The proposed method can be applicable if the equation (5) is clearly known such as equation (6) and if 
the parts dimensions are independent each other. Because Monte Carlo simulation is probabilistic 
method, an approximation error exists. Although the accuracy of the solution might depend on trial 
number of Monte Carlo simulation, we do not discuss the number of the simulation in this study. Note 
that, an assumption of a normal distribution for the part dimension is not required in this method. 
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Figure 4. Flowchart of analysis method using Monte Carlo simulation 
 

4 CASE STUDY  

4.1 Confirmation of the proposed method 

First, we tested the proposed algorithm with a certain situation of which the theoretical solution is 
given by equation (11). A trial number of Monte carlo simulation was set at 1,000,000 to obtain a 
detailed result. Dimensions and tolerances of a virtual product model are given in Table 1, in which 
units of the parameters are the millimetres. The tentative STI parameters, which satisfy Eqs. (9) and 
(10), are given in Table 2. The functional dimension X of the assembly is assumed to be the linear 
stack-up model given by equation (6). Figure 5 shows the boundaries of the PPZs of parts dimensions 
and point cloud calculated by the proposed method. 
 

Table 1. Basic parameters of assembly model 

Parts identifier 1 2 3 4  Assembly  
Dimension : x 12.00 6.00 10.00 8.00  X = 36.00 
Tolerance : T 0.10 0.04 0.08 0.06  0.28 

 

Table 2. STI parameters for algorithm test 

Parts identifier 1 2 3 4 

Designed value of k  1.30 1.75 1.40 1.60 

Designed value of c 0.88 0.80 0.87 0.85 

L U

1. Generate uniform random number with respect to mean

2. Calculate all S.D. values base on boundary equations of  STIs

1

2
2

2

3. Select minimum S.D. values as 

4. Point ( , ) is definitely on boundary  

*

*

* *

( , ) * *

5. Repeat the procedure for all parts to get Point ( , ) 

6. Calculate and based on statistical rule

* *

7. Plot ( , ) on the  plane* *

* *
Part 2

Part 3 Part 4 ( , )* *

8. Return to 1. and iterate as many as possible

Assembly
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Figure 5. Comparison of theoretical solution and computed solution (Solid curves are 
theoretical boundary written by equation (9) ) 

 
The curves in the graph on the right-side end are the theoretical solutions given by equation (11). The 
figure shows that all the computed points are plotted within the theoretical boundaries. This confirms 
that the proposed method correctly provided a numerical solution for the STI stack-up problem. In the 
next subsection, the method is applied to the same linear stack-up model when more STIs are specified 
complicatedly.  
 

4.2 Application example for various cases 

The proposed method is conducted for other cases, in which STI stack-up cannot be solved 
theoretically. In this paper, representative four cases are reported as shown in Figure 6.  
 

 

 

 

  

Figure 6. Case studies 
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Note that, the numerical solution in case study cannot be certificated because the theoretical solution 
does not exist at present. From the results of the case study, it confirmed that the proposed method 
provided a numerical solution for a general STI stack-up problem even when arbitrary kinds of PCI 
and its parameters are specified. Figure 6 also shows that the numerical solutions tend to be more 
complex when the target dimension is not tolerance center value. Because Monte Carlo simulation is a 
probabilistic method, sensitivity of the parameters, p, k, kl, ku, c, cl, cu, m and τ, with respect to the 
numerical solution should be evaluated.  
 

5 CONCLUSION 

In this study, a numerical method was proposed for STI stack-up problem. The method is based on the 
Monte Carlo simulation and statistics rule. In case study, the proposed method was applied to a virtual 
assembly model consisting of four parts with linear stack-up. First, the method was validated by 
applying it to a simple STI stack-up problem of which theoretical solution was known. Subsequently, 
the method was applied to some general cases, in which various STIs were specified on each part. 
Finally, the method provided a numerical solutions for the general STI stack-up problems.  
 
For further study, accuracy analysis of the numerical solution obtained by the proposed method is 
planned because Monte Carlo simulation provides only a probabilistic solution. The proposed method 
will be also checked whether it is applicable when the function h is nonlinear. In the nonlinear model, 
the mean and the standard deviation of the functional dimension must be newly formalized based on 
statistics rules. Furthermore, the convex envelope method will be applied to the point cloud calculated 
by the proposed method, so that an approximate solution for general STI stack-up problem is obtained 
as set of line segments. After those studies, STI allocation method will be researched so that designers 
can specify appropriate kinds of STIs and its values on parts.  
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