
ICED15

HETEROGENEOUS SIMULATED ANNEALING TEAMS:
AN OPTIMIZING SEARCH ALGORITHM INSPIRED BY
ENGINEERING DESIGN TEAMS
McComb, Christopher; Cagan, Jonathan; Kotovsky, Kenneth
Carnegie Mellon University, United States of America

Abstract

Although insights uncovered by design cognition are often utilized to develop the methods used by
human designers, using such insights to inform computational methodologies also has the potential to
improve the performance of design algorithms. This paper uses insights from research on design
cognition and design teams to inform a better simulated annealing search algorithm. Simulated
annealing has already been established as a model of individual problem solving. This paper
introduces the Heterogeneous Simulated Annealing Team (HSAT) algorithm, a multi-agent simulated
annealing algorithm. Each agent controls an adaptive annealing schedule, allowing the team develop
heterogeneous search strategies. Such diversity is a natural part of engineering design, and boosts
performance in other multi-agent algorithms. Further, interaction between agents in HSAT is
structured to mimic interaction between members of a design team. Performance is compared to
several other simulated annealing algorithms, a random search algorithm, and a gradient-based
algorithm. Compared to other algorithms, the team-based HSAT algorithm returns better average
results with lower variance.

Keywords: Optimization, Numerical Methods, Computational Design Synthesis, Teamwork

Contact:
Prof. Jonathan Cagan
Carnegie Mellon University
Mechanical Engineering
United States of America
cagan@cmu.edu

INTERNATIONAL CONFERENCE ON ENGINEERING DESIGN, ICED15
27-30 JULY 2015, POLITECNICO DI MILANO, ITALY

Please cite this paper as:
 Surnames, Initials: Title of paper. In: Proceedings of the 20th International Conference on Engineering Design

(ICED15), Vol. nn: Title of Volume, Milan, Italy, 27.-30.07.2015

1

ICED15

1 INTRODUCTION

Focused research has uncovered mechanisms of design cognition and revealed insights that can be
used to inform the methods used by human designers (Finger and Dixon, 1989; Cross, 2004; Cagan et
al., 2013). Using these principles of design cognition to inform computational methodologies has the
potential to improve the performance of design algorithms. This paper draws on work that modeled the
performance of individual problem-solvers via the simulated annealing (SA) algorithm (Cagan and
Kotovsky, 1997). However, rather than use simulated annealing as a model of human problem-
solving, the current work explores the possibility of using insights from design research to offer
improvements to existing optimization algorithms. Specifically, this work draws upon the behavior
and composition of engineering design teams as a useful analog for suggesting improvements to the
class of simulated annealing optimization algorithms.
A number of studies have sought to draw connections between human designers and computational
optimization and design tools. For instance, neural networks have been used in conjunction with
genetic algorithms in an attempt to allow computers to consider stylistic aspects of design, much like
human designers would (Tseng et al., 2012). Some agent-based design algorithms even attempt to
approximate the differing design approaches and knowledge that are beneficial in human design teams
(Campbell et al., 1999). In another example, insights from empirical studies of analogy use were used
to design a computational system that was intended to assist human designers (Goel et al., 2012).
Work by Egan et al. (2014) demonstrated the potential benefit of using computational agents to rapidly
test and refine search strategies that can then be provided to human designers, closing the synergistic
loop between computer and designer.
This work centers around SA, a heuristic optimization algorithm that begins with stochastic
exploration, and progressively transitions towards deterministic search (Kirkpatrick et al., 1983).
Individual problem-solvers display a very similar transition, allowing SA to effectively model the
human solving process (Cagan and Kotovsky, 1997). Therefore, SA methodology is a rational starting
point for the development of a team-inspired optimizing search algorithm. The SA algorithm is
inspired by the physical annealing process, in which materials are heated and cooled in a controlled
manner to minimize residual stresses. When the material is hot, the movement of atoms is random in
nature; atoms may even move occasionally in a direction that increases potential energy. As the
material is cooled, atomic movements become more deterministic, and atoms begin to move almost
entirely in directions that decrease potential energy. In the analogous optimization algorithm, the goal
is to minimize the value of the objective function, rather than potential energy. An initial solution is
chosen at random, and a new solution is proposed in every subsequent iteration. If the new solution
has a better objective function value than the previous solution, it is accepted. If not, the new solution
may still be accepted with some probability. The probability of accepting a worse solution is typically
decreased after every iteration, enabling the algorithm to progressively transition from initial
stochastic search to final deterministic search.
An important consideration in any SA algorithm is the annealing schedule. The annealing schedule
dictates the simulated temperature, which in turn dictates the probability of accepting a worse solution.
The temperature may also influence the generation of new solution candidates in some SA algorithms.
The most rudimentary annealing schedules are monotonically decreasing functions of iteration
number. Theoretically, the probability that the algorithm will find the global optimum approaches
unity as the annealing schedule is stretched over an increasing number of iterations (Granville et al.,
1994). However, computational resources are finite, which makes the use of extremely long annealing
schedules impractical. Therefore, the implementation of adaptive annealing schedules has been of
particular interest to simulated annealing practitioners. For instance, a schedule proposed by Azizi and
Zolfaghari (2004) follows a conventional geometric annealing schedule, but increases the temperature
for every consecutive uphill move that is made. The intuition is that this will help the algorithm to
escape local minima. This adaptive schedule was found to perform better than conventional annealing
schedules on a job-scheduling task. Triki et al. (2005) demonstrated that many common adaptive
temperature schedules follow very similar forms, and identified a single term within the temperature
update rule that differentiated between schedules. While other schedules defined this term using a
function of objective function variance, or number of accepted solutions, Triki et al. (2005) proposed a
new schedule that simply replaced the term with a constant. This schedule performed better than
another adaptive schedule by Huang et al. (1986) on a variety of benchmarking tasks. Adaptive

2

ICED15

schedules can be made even more responsive to the problem space by implementing re-annealing
(boosting the temperature rapidly when a local minimum has been found) and quenching (quickly
decreasing the temperature when a local minimum is likely).
A number of algorithms have been proposed that run several SA algorithms as parallel sub-routines,
and combine solutions at regular intervals using computational genetic operators (Hiroyasu et al.,
2002; Ohlidal and Schwarz, 2004). More recent work has developed Multi-agent Simulated Annealing
(MSA) algorithms, which employ software agents to operate on multiple solutions. Within this
context, a software agent, usually referred to simply as an agent, is a computational sub-routine that
operates on potential solutions with some degree of autonomy. The MSA algorithms utilize principles
of differential evolution (Zhong et al., 2012a) and particle swarm optimization (Zhong et al., 2012b) to
accomplish interaction between agents. However, the agents used in these algorithms do not possess
any sort of individual strategy or preference for exploring solutions. The ownership of personal
characteristics is a common factor in many agent-based algorithms (Franklin and Graesser, 1997). It
can also lead to heterogeneity and diversity of agents, which has been demonstrated to improve
performance in agent-based optimization models (Landry and Cagan, 2011). Creating diversity
between agents in an SA-based algorithm may improve performance.
Although a team is composed of individual problem-solvers, there is often additional benefit that is
derived from interaction between the individuals (Wood et al., 2012). This arises from the ability of a
team to initially diverge to explore a variety of options, but then converge, focusing the attention of
the team members on a shrinking set of alternatives (Fu et al., 2010). Even members of high-
performing teams tend to pursue slightly different solution concepts while solving well-defined
problems (McComb et al., 2014), indicating that members of a team don’t always greedily pursue the
solutions with highest quality. Therefore, though team members may factor design quality into
decisions, they freely pursue designs that may currently display lower quality. Further, it is known that
expert designers tend to use a mixture of depth- and breadth-first solution strategies (Ball and
Ormerod, 1995). Therefore, in a design team it becomes important for designers to have the ability to
asynchronously employ the search strategies that they individually deem best, leading to the
emergence of heterogeneous strategies within a team.
This work introduces the Heterogeneous Simulated Annealing Team (HSAT) algorithm. This
algorithm provides each agent with an independently controlled, adaptive annealing schedule,
allowing agents to develop heterogeneous search strategies. The potential benefit of heterogeneity has
been demonstrated in other heuristic optimization algorithms, and can also be justified through
analogical comparison to human design teams. Further, interaction between agents in HSAT is
designed to mimic characteristics of interaction in human design teams. The HSAT algorithm is
compared to a non-adaptive SA algorithm, an adaptive SA algorithm, a non-adaptive multi-agent SA
algorithm, random search, and a gradient-based algorithm. Performance of these algorithms is
compared on two benchmarking functions.

2 SIMULATED ANNEALING ALGORITHMS

The HSAT algorithm builds upon the conventional SA algorithm, which will be introduced first. Then,
the HSAT algorithm will be explained in detail.

2.1 Conventional Simulated Annealing Algorithm

A conceptual flowchart of the conventional SA algorithm is provided in Figure 1. With the
initialization of the algorithm, an initial solution candidate is generated (either at random or using a
some sort of heuristic). The algorithm then iterates to improve the solution. Within each iteration, a
new solution candidate is generated. It is then accepted or rejected according to its objective function
value and the temperature of the annealing schedule. The temperature is then updated, and the
algorithm continues to the next iteration if convergence criteria have not been met.

3

ICED15

Figure 1. Generalized flowchart for conventional SA.

In this work, initial solutions are selected uniformly at random within a continuous space that is
defined by some upper and lower bounds. The values of the bounds are specific to the problem being
solved. A new candidate solution, 	 , is created by drawing a solution at random from the Cauchy
distribution and adding the resulting vector to the current solution, . This is accomplished by
computing

tan uniform /2, /2, , (1)

where is the current temperature. The function uniform draws a point at random from the
continuous -dimensional space with an upper bound of /2 and a lower bound of 	 /2 in each
direction. The Cauchy distribution is preferable to the Gaussian distribution because it has thicker
tails, and thus encourages more extensive search (Ingber, 1996). Once a new solution is generated, the
objective function is evaluated. If the solution is better than the previous solution, is it accepted
(←). If the new solution is not better than the previous solution, is it still accepted with
some probability p, which is defined as

exp , (2)

where is the objective function. If the new solution is not accepted, the previous solution is
carried into the next iteration (←). Two annealing schedules are used in this work: the
classical Cauchy schedule, and the adaptive schedule proposed by Triki et al. (2005). For the Cauchy
schedule the temperature is updated as

⋅
 , (3)

where is the initial temperature, is the index of the current iteration, and is a parameter that
allows the schedule to be extended or compressed. The second schedule (referred to as the Triki
schedule for the remainder of this paper) updates temperature as

1
⋅

, (4)

where is a parameter that controls how quickly adaptation occurs, and is the variance of
objective function value of the most recent accepted solutions. The variable will be referred to as
the memory length.

2.2 Heterogeneous Simulated Annealing Team Algorithm

HSAT is a multi-agent simulated annealing algorithm that draws upon two aspects of human design
teams. Every agent in the HSAT algorithm is given an independently adaptive annealing schedule,
which allows the agent team to develop heterogeneous and asynchronous search strategies. This is
similar to the judicious application of mixed search strategies that is demonstrated by expert human
designers (Ball and Ormerod, 1995). Heterogeneity of agents has also been shown to be beneficial in
other algorithms (Landry and Cagan, 2011). Interaction between agents in HSAT is implemented in a
way that probabilistically encourages agents to pursue better designs, while allowing them to pursue
worse designs. This enables agents within a team to pursue slightly different solutions, similar to high-
performing human teams studied by McComb et al. (2014). This method of interaction also results in a
progressive transition from initial divergence (when agents are making stochastic decisions) to final

FALSE

TRUE

Select initial
solution

Generate
solution

candidate

Update
temperature

Probabilistically
accept

candidate

Converged?

Exit

4

ICED15

convergence (when agents are employing deterministic search). High final convergence (indicative of
agreement on a solution) is correlated to final solution quality in human teams (Dong et al., 2004; Fu
et al., 2010). A general flowchart is provided in Figure 2 to summarize the HSAT algorithm.

Figure 2. Flowchart for the HSAT algorithm.

When agents are instantiated, each is provided with a candidate solution that is selected uniformly at
random. The objective function value of each solution is then shared between agents in the team.
Using this information, each agent then selects one of the team’s current solutions to begin the
iteration from. The objective function value for every agent’s current solution is shared through the
vector ,

, , … , . (5)

Note that subscripts indicate iteration number, while superscripts indicate different agents. A new
vector is then defined as the relative function value of each current solution compared against the
worst current solution:

 	 max . (6)

This equation is only valid for minimization problems, and would need to be modified slightly for
maximization. The remaining operations in the iteration are then handled by each agent independently.
Each agent selects a starting solution with probability proportional to its relative objective function
value, using the equation

mult
∑

, (7)

where the function mult returns a draw from a multinomial distribution. This can be thought of as a
roll of a loaded die. This procedure provides a means of approximating the interaction of human
design teams. Agents in HSAT are probabilistically encouraged to pursue better solutions, but there is
still some probability that they will explore worse solutions. The solution selected through this

process, , is then used by the agent to begin the next iteration. The equation for calculating the new
solution candidate for agent then becomes:

Converged?
FALSE TRUE

…

Share current solutions

Instantiate agents

Select starting
solution

Generate solution
candidate

Update temperature

Agent 1

Probabilistically
accept candidate

Select starting
solution

Generate solution
candidate

Update temperature

Probabilistically
accept candidate

Select starting
solution

Generate solution
candidate

Update temperature

Probabilistically
accept candidate

Agent 2 Agent 3

Exit

5

ICED15

tan uniform /2, /2, . (8)

In other words, the agent begins at the previous solution , and then applies a Cauchy modification to
it, similarly to the conventional SA algorithm. If the new solution candidate, , is better than the
agent’s previous solution, , the solution candidate is accepted. If it is not better, the agent still
accepts the solution with acceptance probability computed using Equation 2. Finally, the temperature
is updated using the Triki annealing schedule (Equation 4). It should be noted that the temperature is
updated independently by each agent, allowing agents to develop heterogeneous strategies.

3 COMPARISON METHODOLOGY

3.1 Compared Algorithms

The algorithm presented in this work differs from the conventional simulated annealing algorithm in
two ways: multiple independent agents, and interaction that is informed probabilistically by relative
solution quality. Both of these features are observed in high performing human teams. In order to fully
understand the impact of these features, HSAT is compared to three other SA-based algorithms as
summarized in Table 1.

Table 1. Summary of SA-based algorithms.

Because SA algorithms progressively transition from stochastic to deterministic search, we use a
purely stochastic algorithm (random search) and a purely deterministic algorithm (gradient-based) for
comparison. The random search algorithm samples randomly within the bounds of the search space at
each iteration and returns the best solution encountered. The gradient-based algorithm is the Broyden–
Fletcher–Goldfarb–Shanno interior-point algorithm. In the remainder of the paper, this algorithm will
be referred to as the gradient algorithm. Rather than directly computing the Hessian, this algorithm
estimates it using successive gradient information. A more detailed description of the gradient
algorithm can be found in Papalambros & Wilde (2000).
Every algorithm (both SA, and non-SA) is permitted 30,000 calls to the objective function. The
gradient algorithm is restarted with a new, random location every time it converges on a local
minimum, until the allotted number of function evaluations is reached.

3.2 Benchmarking Functions

Algorithm performance is assessed with respect to two continuous functions. These functions are the
Ackley function (Bäck, 1996) and the Griewank function (Griewank, 1981). In this work the fully
generalized versions of the functions are used, as shown in Equations 9 and 10. The variable
indicates the number of dimensions in the search space.

Ackley: 	 20 exp 0.2
∑

exp
∑

	20 exp 1 (9)

Griewank: ∑ ∏ cos
√

1 (10)

Both the Ackley and Griewank functions have their global minimum of ∗ 0 at ∗

0, 0, 0, … , 0 . For the numerical experiments conducted as part of this work, every equation was
implemented with 30 dimensions. For both functions, every dimension was constrained so that 10

10. A 2-dimensional representation of each function is provided in Figure 3.

 Classical annealing schedule (Cauchy) Adaptive annealing schedule (Triki)

Single Agent

Non-Adaptive SA:
Single-agent simulated annealing
algorithm using Cauchy annealing

schedule

Adaptive SA:
Single-agent simulated annealing
algorithm using Triki annealing

schedule

Multi-Agent
Non-adaptive MSA:

Interaction as in HSAT, but with a
classical annealing schedule.

HSAT:
Multi-agent simulated annealing

using a separate adaptive annealing
schedule for each agent

6

ICED15

(a) Ackley function. (b) Griewank function.

Figure 3. Benchmarking functions.

Both functions present distinct challenges. The Ackley function displays many local minima, but the
global minimum lies within a shallow depression that is not accessible from most of the space unless
the algorithm can cross numerous small ridges. Further, the global behaviour of the function
(disregarding local minima) is non-convex. The Griewank function also displays many local minima,
and many are close in objective function value to that of the global minimum (Cho et al., 2008).
Relative to the Ackley function, the local minima in the Griewank function are fairly deep, further
increasing complexity because the convexity of the quadratic component is obscured. Due to the
multi-modal natures of the search spaces of these functions, it is unlikely that an algorithm will
efficiently find the global minimum using only gradient information.

3.3 Meta-Optimization of Parameters

The SA-based algorithms compared in this work all differ significantly, either in terms of annealing
schedule, number of agents, or both. Consequently, each algorithm has a unique set of parameters that
control its execution, including aspects like annealing schedule and the generation of new solutions.
Assuming that using the same parameter for every algorithm (for instance, initial temperature) would
ensure good performance for all is naïve. In fact, it may be the case that parameter values that are near-
optimal for one algorithm may be detrimental to the performance of another. For this reason, a meta-
optimization was performance to select the best parameters for each SA-based algorithm. This
procedure employed a pattern search to improve the average final solution value of each algorithm by
incrementally tuning parameters. Since the average performance must be evaluated over a large
number of runs, the basic pattern search algorithm was chosen to decrease computational cost. The
parameters defining the annealing schedule were optimized for every algorithm, and for multi-agent
algorithms the number of agents was also optimized. The initial step size of the pattern search
algorithm was defined as 40% of the initial value of each parameter. If no improvement was found
after modifying each parameter in turn, the step size was halved, and the procedure repeated. If no
improvement was observed for 5 consecutive iterations, the algorithm terminated (after approximately
20 total iterations).

4 RESULTS AND DISCUSSION

Table 2 summarizes the parameters resulting from the pattern search meta-optimization procedure.
This procedure was applied to every SA-based algorithm independently on both of the benchmarking
functions.

7

ICED15

Table 2. Parameters used for SA-based algorithms

Algorithm Function
Number

of Agents,

Initial
Temp.,

Cauchy
Param.,

Triki
Param.,

Memory
length,

Non-Adaptive

SA
Ackley 1 0.421 0.037 N/A N/A

Griewank 1 0.428 0.026 N/A N/A

Adaptive SA
Ackley 1 0.047 N/A 5.01×10-9 11

Griewank 1 0.003 N/A 2.00×10-9 7
Non-Adaptive

MSA
Ackley 5 0.900 0.321 N/A N/A

Griewank 6 2.400 0.200 N/A N/A

HSAT
Ackley 11 0.013 N/A 6.48×10-6 27

Griewank 15 0.059 N/A 5.94×10-6 24

Every function was solved 100 times using each of the algorithms. A cumulative distribution function
was then constructed for the final solutions, as shown in Figures 4(a) and 4(c). The cumulative
distribution function shows the probability that a random variable (in this case, objective function
value) will have a value equal to or less than a given value on the x-axis. The best solution returned by
the algorithm was also tracked during optimization, as shown in Figures 4(b) and 4(d). Since
algorithm parameters were tuned to improve performance for the given iteration limit, the average
value of the best solution continues to improve throughout the allotted runtime (albeit slowly in some
cases). Consequently, most algorithms achieve numerical convergence relatively late.

(a) Ackley function, cumulative
distribution of final solutions.

(b) Ackley function, best solution over
normalized run-time.

(c) Griewank function, cumulative
distribution of final solutions.

(d) Griewank function, best solution over
normalized run-time.

Figure 4. Comparison of optimization results (error bars show ±1 S.E.).

8

ICED15

For the Ackley function, all SA-based algorithms outperform the gradient-based algorithm and the
random search algorithm. However, there is a significant amount of differentiation between SA-based
algorithms. The team-inspired HSAT algorithm returns the best final result, by nearly an order of
magnitude. The HSAT algorithm also provides the most consistent results, as evidenced by the error
bars in Figure 4(b). An examination of Figure 4(a) reveals the nature of the higher consistency. The
other three SA-based algorithms occasionally produce final solutions that are local minima with
objective function values on the order of 1.0, but the HSAT algorithm is capable of avoiding the local
minima of the Ackley function. The algorithms that utilize adaptive annealing schedules (HSAT and
Adaptive SA) are able to obtain the lowest objective function values. However, the addition of
multiple, collaborating agents in the HSAT algorithm is necessary to also avoid local minima, thus
ensuring high average performance. Similar results for the Griewank function are shown in Figures
4(c) and 4(d). In terms of mean performance, the HSAT algorithm out-performs all other algorithms
(both SA and non-SA). In contrast to the results on the Ackley function, the highest-performing
algorithms on the Griewank function are those that employ multiple agents. In approximately 80% of
runs, the gradient-based algorithm performs only as well as random search. However, when a good
initial starting location is chosen the For broader simple bounds, or for higher dimensionalities, the
probability of randomly selecting a good starting point will decrease, making SA-based methods (and
especially HSAT) more attractive.
The results on these benchmarking functions allow us to gain insight into the effect of the two features
implemented in HSAT (independently-controlled adaptive annealing schedules, and probabilistic
agent interaction). The Ackley function has numerous shallow local minima, but the global behaviour
is readily apparent. The algorithms that employ adaptive annealing schedules (HSAT and adaptive
SA) perform best, because they are capable of better responding to the global behaviour of the
function. In contrast, the global behaviour of the Griewank function is obscured by the deep local
minima. The algorithms that use multiple agents (HSAT and non-adaptive multi-agent SA) perform
best, because they are capable of thoroughly searching a number of those local minima. Combining
these features in HSAT ensures good performance on both functions.

5 CONCLUSIONS

This paper introduced the Heterogeneous Simulated Annealing Team (HSAT) algorithm, a multi-agent
simulated annealing algorithm based upon two important properties that are also exhibited by human
design teams. Every agent in the HSAT algorithm is given an independently adaptive annealing
schedule, which allows the agent team to develop heterogeneous and asynchronous search strategies,
resulting in behaviour similar to that of expert designers. Interaction between agents in HSAT is
implemented in a way that probabilistically encourages agents to pursue better designs, while also
allowing them to pursue worse designs. This mimics quality-informed interaction and allows for a
pattern of divergence-to-convergence, both of which are observed in human teams.
The performance of the team-based HSAT algorithm was compared to other SA-based algorithms, a
random search algorithm, and a gradient-based algorithm on two continuous functions. On both of the
functions utilized in this work, HSAT demonstrated the best mean performance. The reason for this
performance advantage appeared to depend on the function. For the Ackley function, high
performance was likely a result of the adaptive annealing schedule. The high performance on the
Griewank function appeared to be a result of multi-agent collaboration. This indicates that HSAT is
not only capable of delivering high performance, but that this performance may also be robust across a
variety of function topographies. Future work will adapt HSAT to discrete domain problems, and
explore its applicability for the automation of complex design problems.

ACKNOWLEDGMENTS

This material is based upon work supported by the National Science Foundation Graduate Research
Fellowship under Grant No. DGE125252 and the United States Air Force Office of Scientific
Research through grant FA9550-12-1-0374.

REFERENCES

Azizi, N. and Zolfaghari, S., (2004) Adaptive temperature control for simulated annealing: a comparative study.
Computers & Operations Research, Vol. 31, No. 14, pp. 2439–2451.

9

ICED15

Bäck, T., 1996. Evolutionary Algorithms in Theory and Practice: Evolution Strategies, Evolutionary
Programming, Genetic Algorithms, Oxford University Press.

Ball, L.J. and Ormerod, T.C., (1995) Structured and opportunistic processing in design: a critical discussion.
International Journal of Human-Computer Studies, Vol. 43, No. 1, pp. 131–151.

Cagan, J., Dinar, M., Shah, J., Leifer, L., Linsey, L., Smith, S., and Vargas-Hernandez, N., (2013). Empirical
Studies of Design Thinking: Past, Present, Future. ASME Design Theory and Methodology Conference,
Portland OR, DETC2013–13302.

Cagan, J. and Kotovsky, K. (1997) Simulated Annealing and the generation of the objective function: a model of
learning during problem solving. Computational Intelligence, Vol. 13, No. 4, pp. 534–581.

Campbell, M.I., Cagan, J., and Kotovsky, K. (1999) A-Design : An Agent-Based Approach to Conceptual
Design in a Dynamic Environment. Research in Engineering Design, Vol. 11, No. 3, pp. 172–192.

Cho, H., Olivera, F., and Guikema, S.D. (2008) A derivation of the number of minima of the Griewank function.
Applied Mathematics and Computation, Vol. 204, No. 2, pp.694–701.

Cross, N., 2004. Expertise in design: an overview. Design Studies, Vol. 25, No. 5, pp.427–441.
Dong, A., Hill, A.W., and Agogino, A.M. (2004) A Document Analysis Method for Characterizing Design Team

Performance. Journal of Mechanical Design, 126(3), pp.378–385.
Egan, P.F., Cagan, J., Schunn, C., and LeDuc, P.R. (2014) Cognitive-based search strategies for complex bio-

nanotechnology design derived through symbiotic human and agent-based approaches. ASME Design
Theory and Methodology Conference, Buffalo NY, DETC2014–34714.

Finger, S. and Dixon, J.R. (1989) A Review of Research in Mechanical Engineering Design. Part 1: Descriptive,
Prescriptive, and Computer-Based Models of Design Processes. Research in Engineering Design, Vol. 1,
No. 1, pp.51–67.

Franklin, S. and Graesser, A. (1997) Is it an Agent, or just a Program?: A Taxonomy for Autonomous Agents. In
Intelligent Agents III Agent Theories, Architectures, and Languages. pp. 21–35.

Fu, K., Cagan, J., and Kotovsky, K. (2010) Design Team Convergence: The Influence of Example Solution
Quality. Journal of Mechanical Design, Vol. 132, No. 11, p. 111005.

Goel, A.K., Vattam, S., Wiltgen, B., and Helms, M. (2012) Cognitive, collaborative, conceptual and creative —
Four characteristics of the next generation of knowledge-based CAD systems: A study in biologically
inspired design. Computer-Aided Design, Vol. 44, No. 10, pp. 879–900.

Granville, V., Krivanek, M., and Rasson, J.-P., (1994) Simulated Annealing: A Proof of Convergence. IEEE
Transactions on pattern Analysis and Machine Intelligence, Vol. 16, No. 6, pp. 652–656.

Griewank, A.O., (1981) Generalized Descent for Global Optimization. Journal of Optimization Theory and
Applications, Vol. 34, No. 1, pp. 11–39.

Hiroyasu, T., Miki, M., Ogura, S., Aoi, K., Yoshida, T., Okamoto, Y., and Dongarra, J. (2002) Energy
Minimization of Protein Tertiary Structure by Parallel Simulated Annealing using Genetic Crossover SA
and GA Parallel SA using Genetic. 2002 Genetic and Evolutionary Computation Conference. pp. 49–51.

Huang, M.D., Romeo, F., and Sangiovanni-Vincentelli, A.L., (1986) An efficient general cooling schedule for
simulated annealing. IEEE International Conference on Computer-Aided Design. pp. 381–384.

Ingber, L. (1996) Adaptive simulated annealing (ASA): lessons learned. Controls and Cybernetics, Vol. 25, No.
1, pp. 33–54.

Kirkpatrick, S., Gelatt, C.D., and Vecchi, M.P. (1983) Optimization by simulated annealing. Science, Vol. 220,
No. 4598, pp. 671–680.

Landry, L.H. and Cagan, J. (2011) Protocol-Based Multi-Agent Systems: Examining the Effect of Diversity,
Dynamism, and Cooperation in Heuristic Optimization Approaches. Journal of Mechanical Design, Vol.
133, No. 2, p. 021001.

McComb, C., Cagan, J., and Kotovsky, K. (2014) Rolling with the punches: An examination of team
performance in a design task subject to drastic changes. Design Studies.
http://dx.doi.org/10.1016/j.destud.2014.10.001

Ohlidal, M. and Schwarz, J. (2004) Hybrid parallel simulated annealing using genetic operations. 10th
International Conference on Soft Computing. pp. 89–94.

Papalambros, P.Y. and Wilde, D.J. (2000) Principles of Optimal Design, Cambridge University Press.
Triki, E., Collette, Y., and Siarry, P. (2005) A theoretical study on the behavior of simulated annealing leading to

a new cooling schedule. European Journal of Operational Research, Vol. 166, No. 1, pp. 77–92.
Tseng, I., Cagan, J., and Kotovsky, K. (2012) Concurrent Optimization of Computationally Learned Stylistic

Form and Functional Goals. Journal of Mechanical Design, Vol. 134, No. 11, p. 111006.
Wood, M., Chen, P., Fu, K., Cagan, J., and Kotovsky, K. (2012) The Role of Design Team Interaction Structure

on Individual and Shared Mental Models. In Design Computing and Cognition ’12. pp. 206–226.
Zhong, Y., Wang, L., Wang, C., and Zhang, H. (2012a) Multi-agent simulated annealing algorithm based on

differential evolution. International Journal of Bio-Inspired Computation, Vol. 4, No. 4, pp. 217–228.
Zhong, Y., Ning, J., and Zhang, H. (2012b) Multi-agent simulated annealing algorithm based on particle swarm

optimisation algorithm. International Journal of Computer Applications in Technology, Vol. 43, No. 4, pp.
335–342.

10

