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Abstract 
Currently available finite element software is consequently getting more and more user-friendly, and 
simulation knowledge must be expanded to a growing pool of new and less-experienced users; for 
example designers. These users need to be assisted when performing simulation tasks. A promising 
way is to check the FE results for plausibility, but therefore, it is essential to know what kind of parts 
should be simulated and checked for plausibility. This paper presents a concept for the automatic 
recognition of standard parts within the FE software, using a predefined Artificial Neural Network 
(ANN). An existing approach is extended to deal with the issues of arbitrarily oriented parts in CAD 
(computer-aided design) assemblies of differing size in 3D space. Hence a Principal Component 
Analysis (PCA), and a spherical detector surface for FE nodes in spherical coordinates is used to gain 
input parameters for an ANN. In the paper, the concept and an application for certain standard 
components are demonstrated. 
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1 INTRODUCTION 

The finite element method is, alongside computer-aided design (CAD), one of the most efficient 
methods for optimizing the quality of engineering tasks (Klein, 2010). Furthermore the currently 
available finite element (FE) software is getting more and more user-friendly, which can lead to the 
idea that proper FE simulations can be done by everyone. According to a recent survey (Boucher, 
2013), companies struggle to expand simulation knowledge to a growing pool of users. In particular 
new users, such as designers, are doing more and more FE simulations but do not have the knowledge 
of experienced computation engineers. Therefore these users need to be assisted when performing 
simulation tasks. A promising way is to check the results of FE simulations from less experienced 
users for plausibility. In contrast to validation, plausible results are considered to be apparently, likely 
valid. For FE plausibility checks it is essential to know what kinds of parts need to be simulated, and 
how the results of these simulations can be compared with available data; i.e. from previous 
simulations of similar parts. Obviously, a plausibility check for a M6 through-screw is completely 
different from the check of a dowel pin with a 20 mm diameter. 
This paper presents a concept for the automatic recognition of parts by analysis of the corresponding 
FE mesh, using a predefined Artificial Neural Network (ANN). ANNs are used because part-
recognition is highly sophisticated, and several issues arise when parts need to be identified. 
Moreover, ANNs are a well-known approach for creating simple and fast approximations (Jin et al., 
2001). The concept in this paper has to deal with the following requirements. At first, parts must be 
detected as quickly as possible, and with very high accuracy within the FE program only on basis of 
the FE-mesh. Secondly, the parts must be detected only on basis of their geometry: no further semantic 
information, such as the name of the part, is considered. As neutral CAD formats are usually used for 
geometry transfer between CAD and FE software semantic information and the modelling history of 
the part is unavailable within the FEA. Thirdly, parts with any rotation, translation, size and shape 
within a CAD assembly must be detected with the approach.  
Current object recognition is done mainly using imagery, and is often for military applications. An 
example is the detection of radar signatures, and the recognition of specific objects in these images 
(Roth, 1990). The approach in this paper is very different. As the parts will be recognized within the 
FE program, the nodal information can be easily used to detect parts. The described process can be 
divided roughly into two different tasks: the training and the usage of the ANN (see Figure 1).  

 
Figure 1. The tasks for part recognition with ANN 

The first task is the training of the ANN, which is done by an expert that is familiar with the details of 
mathematical meta-models, such as ANN. The expert also decides which parts will be trained, and 
handles the whole process of the creation of the network. Furthermore, the expert implements the 
trained network in easy-to-use software tools. The product developer, on the other hand, uses the 
trained network within the FE software for automatically detecting parts. The developer does not 
necessarily need any knowledge in the field of meta-modelling and only needs to understand how to 
use the tools given by the expert. In section 2, the state of the art of Artificial Neural Networks (ANN) 
and Principal Component Analysis (PCA) is explained briefly. This is essential for the explanation of 
the actual concept for part recognition with an ANN in section 3. The main focus of this paper is on 
the first task: the training of the ANN by the expert. The preparation of the data and the training is 
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explained in seven steps. In section 4 the usage of the ANN (task # 2) by the product developer is 
mentioned briefly. 

2 STATE OF THE ART 

2.1 Artificial Neural Networks (ANN) 
ANNs imitate the information processing capabilities of nervous systems. Dendrites, synapses, cell 
bodies and axons are the minimum structures that need to be adopted from the biological model by the 
artificial neurons. Therefore, artificial neurons consist of input channels, a cell body and an output 
channel. The connection between neurons is associated with weights (Rojas, 1996).  
According to Masters (1993), ANNs can be applied in several fields, such as classification, auto-
association, time-series prediction, function approximation, and regression.   

2.1.1 Basic multilayer architecture of ANN  
A multilayer network consists of a set of neurons in two or more layers. The first layer is always the 
input layer with a fixed number of input neurons and is used to transfer the input parameters from the 
input layer to the other hidden layers with their neurons. The number of input parameters is identical 
to the number of neurons in the first layer of the network. Likewise, the number of output parameters 
is the same as the number of neurons in the output layer. The amount of neurons in the hidden layer, as 
well as the number of these hidden layers, needs to be chosen individually. An ANN with four input 
and two output parameters, as well as three neurons on one hidden layer, can be seen in Figure 2. 
ANNs can be seen as weighted directed graphs, where the output of a neuron is connected to the input 
of another neuron with corresponding weights. According to the connection pattern (architecture of the 
ANN), the networks can be grouped into two categories: feed-forward networks with no loops in the 
graph; and feedback networks, in which loops can occur. (Jain and Mao, 1996) 

 
Figure 2. Artificial neural network with input layer, one hidden layer and output layer 

According to Masters (1993), it is nearly impossible to specify an effective architecture, given the 
specifications of a problem. The architecture has to be determined iteratively. Nevertheless, several 
rules of thumb exist for the number of hidden neurons for a specific problem. For example, the size of 
the hidden layer should be somewhere between the input layer size and the output layer size (Masters, 
1993). The number of hidden nodes is a very important parameter of a neural network. If the number 
of neurons is too small, the generated network is not sufficiently accurate and underfits the model. If 
the number of neurons is too large, the network tends to overfit the data, which causes poor 
generalization on data not used for training (Fletcher et al., 1998). According to Huang and Babri 
(1998), it is well-known that standard single-hidden layer feed-forward networks, with at most N 
hidden neurons, can learn N distinct samples with zero error. Xu and Chen (2008) present a novel 
approach for determining the optimal number of hidden layer neurons for feed-forward neural 
networks, and their application in Data-Mining.  

2.1.2 Training and usage of ANN 
Before an ANN can be operated, the weights must be calculated. This is called the “training” of a 
neural network. According to Masters (1993) and Rojas (1996), three different ways of training can be 
distinguished: 
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• Supervised learning: Each training sample consists of completely specified inputs and 
corresponding output parameters which are used to calculate the weights. Thereby, the desired 
output of the network can be compared with the calculated values of the network. Consequently, 
an error can be calculated and the weights are corrected according to the magnitude of the error.   

• Unsupervised learning: Several input samples are used to calculate the weights, but no 
corresponding output parameters are provided to the network. A typical assumption is that each 
input arises from one of several classes, and that the output of the network is an identifier for the 
class to which the input sample belongs. 

• Reinforcement learning: This method can be seen as a combination of both supervised and 
unsupervised learning. On one hand, the output of the network is not specified, but on the other 
hand, the network is told whether the calculated output is a good or bad approximation of the 
intended value. 

After the training, the network can be used (i.e. for function approximation). For this purpose, the 
input parameters are transferred to the ANN via the input layer. Then the network calculates the 
corresponding output for the given input parameters (usage of the ANN). The process of training and 
use of an ANN can be seen in Figure 3. (Spruegel and Wartzack, 2014a) 

 
Figure 3. Training and usage of artificial neural network (ANN) 

2.2 Principal Component Analysis (PCA) 
Principal Component Analysis is the best known and widely used dimension-reducing technique 
(Jolliffe, 2011). Generally, almost any data matrix can be simplified by PCA (Wold et al., 1987). In 
this paper, the calculation of the principal axes is important. These axes can be calculated from 
arbitrary data, also from the Cartesian coordinates of nodes in 3D space, as shown in Figure 4. The 
principal axes of the considered parts can be aligned with the coordinate axes of the 3D space (in 
Figure 4 these axes are marked by dimension 1 and dimension 2). As the principal axes do not specify 
any direction of the parts in space, the parts can align in different positions. The difference is a rotation 
of 180 degrees around the center of gravity of the point cloud for each dimensional axis. These 
different positions are marked in Figure 4 with different colors. 

 
Figure 4. Shift and rotation of parts with the use of their principal axes 

3 PART-RECOGNITION TASK # 1: TRAINING BY EXPERT 

The concept in this paper is an extension to the already published concepts in Spruegel and Wartzack 
(2014a, 2014b). Shortcomings, such as the need for the consideration of many different rotation 
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angles, are overcome by the use of PCA. Furthermore, a coordinate system transformation from 
Cartesian to spherical coordinates, and the use of a spherical detector surface, eliminates issues with 
the detection of parts of different sizes. The whole process with seven steps can be seen in Figure 5, 
and each step is explained in this section. The main advantages of the presented concept is the 
automatic detection of parts, as well as the short time that is needed to scan a whole assembly for 
specific parts, such as standard components with no semantic information whatsoever. At first, data 
for the training of the ANN must be generated, and the individual steps have to be done once for every 
part that needs to be recognized with the ANN. 

 
Figure 5. Seven steps for training an ANN to perform part recognition based on FE node 

coordinates 
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3.1 Part-Recognition: Step # 1  
The geometry information of a CAD part is transferred to the FE software, and meshed with a fixed 
element type and element size. The meshing with 10-node-tetrahedral solid FE elements is well suited 
for meshing parts of an individual shape automatically. Meshing with an element size of 0.75 mm and 
a strict meshing algorithm is well suited for the part-detection of standard components, such as bolts, 
screws or circlips. Within the FE software, the coordinates of each node can be extracted in Cartesian 
coordinates, in relation to the global coordinate system. 

3.2 Part-Recognition: Step # 2 
In CAD assemblies parts can be oriented arbitrarily in 3D space. Therefore, a PCA is used to rotate 
and shift the parts into a Cartesian coordinate system at the axis origin, with x = y = z = 0. This is 
achieved by shifting the center of gravity of the coordinate points into the point of origin. Afterwards, 
the part is rotated, so that the parts’ principal axes align with the axes of the coordinate system at the 
origin. As the principal axes contain no information on the direction, the rotation is not distinct. 
Hence, for each axis there are two different positions and the corresponding mirrored positions, and 
for all axes twelve possible positions need to be considered. The two mirrored positions per axis can 
be seen as reflected parts along a plane, spanned by the two remaining axes (shown in Figure 7 for a 
demonstrator part). After this step, the infinite number of arbitrary orientations in 3D space has been 
reduced to twelve possible orientations for any considered part. 

3.3 Part-Recognition: Step # 3 and # 4 
In the third step, the Cartesian coordinates are transferred to spherical coordinates. Still, the considered 
parts are very different in size, and with equal meshing (edge length 0.75 mm) there is a significant 
difference in the number of nodes for every part. Therefore, a detector surface with the same number 
of detector pixels is introduced in step # 4. The pixels are only defined by two angles: the 
inclination/polar angle; and the azimuth/azimuthal angle. A typical angle range could be 10°, which 
leads to 36 x 36 ( = 1,296) pixels. The fixed number of pixels is essential, as the input of an ANN 
always needs a fixed number of input parameters. Since the pixels are only defined by the two angles, 
the radial distance and therefore the size of the considered parts can be eliminated from the 
consideration. 

3.4 Part-Recognition Steps # 5 and # 6 
In the fifth step, the part’s nodes are projected onto the detector surface, originating from the spherical 
coordinate system. Then the number of projected nodes on each pixel is summed up and saved in a 
matrix of size 36 x 36. Afterwards, the matrix is reshaped in step # 6, to form a column vector. This 
vector is used to form the column vector input for the ANN, including also the number of nodes from 
step # 1, and the principal component coefficients from the PCA in step # 2.  

3.5 Part-Recognition Step # 7 
In step # 7 the ANN is trained. Thus, the previous steps must be performed for each part that will be 
recognized later. As the principal axes do not specify the direction, parts need to be mirrored and 
rotated along the three axes. At most, twelve different orientations per part have to be considered. 
After that, an output value is defined for the different parts. The further twelve orientations of each 
part have the same output value. 
To sum it up, the ANN is trained with an input matrix of 1,306 rows (1,296 from detection matrix; 9 
from principal coefficients; 1 from the number of nodes in FE mesh), and the number of columns 
depends on the number of parts multiplied by twelve (for the possible orientations after the PCA). As 
mentioned above, the number of hidden neurons is set approximately to the number of training 
samples, because this will result in a good ANN with low errors. The ANN will be trained with two 
hidden layers. The training algorithm for the network will be trainscg, which is integrated in the 
MATLAB® Neural Network Toolbox™. Trainscg is a scaled conjugate gradient backpropagation 
algorithm, which can handle a large number of neurons, on one hand, and requires only small 
hardware resources, on the other hand. After the training of the network, the performance must be 
evaluated. An evaluation of mathematical meta-models can be done using the network to predict 
output parameters for known samples. Consequently, the results of the ANN and the actual values can 
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be compared (Walter et al., 2013). A promising way to evaluate meta-models is the Coefficient of 
Prognosis (CoP), which was introduced by Most and Will (2008). Hereby y is the true output value, 
whereas 𝑦𝑦� is the calculated output of the meta-model. The corresponding mean value is μ, σ is the 
standard deviation of the whole dataset, and N is the number of samples. 

𝐶𝐶𝐶𝐶𝐶𝐶 = �𝐸𝐸[𝑌𝑌∙𝑌𝑌]�
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2
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∑ (𝑦𝑦𝑘𝑘−𝜇𝜇𝑦𝑦)∙(𝑦𝑦�𝑘𝑘−𝜇𝜇𝑦𝑦�)𝑁𝑁
𝑘𝑘=1

(𝑁𝑁−1)∙𝜎𝜎𝑦𝑦∙𝜎𝜎𝑦𝑦�
�
2
  (1) 

The CoP value of a mathematical meta-model should be above 98 %, to achieve very good results 
(Walter and Wartzack, 2012).  

4 PART RECOGNITION TASK # 2: APPLICATION BY PRODUCT 
DEVELOPER 

As mentioned earlier, part-recognition is essential for the identification of a specific overarching 
simulation issue. After training, the ANN can be used for part-recognition by the product developer 
within the FE-software. For this purpose, the previously mentioned steps # 1 to # 6 are performed for 
the parts that will be recognized. In step # 7 the input vector is handled over to the ANN, and an output 
value is calculated. This value is compared to the specified output values of the trained parts, and the 
new part can either be recognized or is classified as a new part that has not been taken into 
consideration so far.  
The concept of recognition must be integrated into the FE software, and has to be easy in use for less- 
experienced simulation personnel, such as design engineers. For the product developer it is not 
important how the concept or how the ANN can identify parts from a given FE mesh; these details 
only need to be dealt with by the expert. 

5 APPLICATION OF THE PART-RECOGNITION CONCEPT 

5.1 Training of the Neural Network 
A total of 94 standard components (shown in Figure 6) are used for the primary realization, including 
parts from twelve different DIN and ISO standards with diverse parameter values (i.e. from ISO 4762 
– M6 x 20 to ISO 4762 – M10 x 35). Each part has a distinct output value, which depends on the 
standard, the nominal dimension, and the size of the part. The thousands position of the output value is 
defined by the standard (i.e. 6,xxx for ISO 1207); the hundreds position depends on the nominal 
dimension (i.e. x,1xx for the size M6); and the tens position is defined by the length of the screw (i.e. 
x,x10 for a screw with length 20 mm). Therefore, the ISO 1207 – M6x20 screw gets the output 
number 6,110, whereas the ISO 1207 – M8x25 screw gets the number 6,220, and so on. The minimum 
difference of the distinct output value from different parts is at least ten. 

 
Figure 6. Different standard components for the application of the part recognition concept 

At first, the parts are meshed within the FE software ANSYS®, and the node coordinates are handed 
over to MATLAB®. Subsequently, a PCA is performed, and each FE node is shifted into principal 
space. Simultaneously, the principal component coefficients are calculated, and the number of nodes is 
evaluated. After the transformation from Cartesian to spherical coordinates, the detectorsphere is used 
to evaluate the number of nodes per detector pixel. Thereafter, the input vector for the ANN is created 
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by transforming both the principal component matrix (size 9 x 9) and the detector matrix (size 
36 x 36), along with the number of FE mesh nodes, into one single row vector (size 1 x 1,306).  
The described procedure is done twelve times for each part, to take into consideration the different 
alignments of the principal components along the Cartesian Coordinate Axis. Therefore, the nodes in 
the principal space after the PCA are rotated and mirrored along the different axes. In Figure 7, the 
twelve different orientations can be seen. For visualization purposes, each part’s center of gravity 
deliberately does not align with the origin of the axes. 
 

 
Figure 7. Visualization of possible orientations after PCA (part’s center of gravity deliberately 

not aligned with origin) 

The architecture of the ANN (shown in Figure 8) consists of 1,306 neurons in the input layer, 2 hidden 
layers with 550 neurons each, and an output layer with one single neuron. Within the hidden layer, 
tan-sigmoid transfer functions are used, and in the output layer a linear transfer function is used. Due 
to performance issues, resulting from the large number of weights that must be calculated, a Scaled 
Conjugate Gradient Algorithm is used for training. The memory requirements of the trainscg 
algorithm are relatively small, and yet it is much faster than standard gradient descent algorithms 
(Beale et al., 2014).  

 
Figure 8. Architecture of the used ANN with two hidden layers with 550 neurons each 

5.2 Evaluation of the trained Neural Network 
After training, the ANN must be evaluated, and the corresponding output to the input data (used for 
the training) can be calculated. The network must be able to predict the output with extremely high 
precision, as the output was already known to the network, and was used for the calculation of the 
ANN weights during training. As expected, the Coefficient of Prognosis value is 100 %, which means 
that the network is predicting the correct values. In Figure 9, the difference between the expected/exact 
and the predicted output is plotted for all 94 parts. A maximum deviation of ~2e-8 can be observed for 
part number 3. This part is a circlip (DIN 471 – 20 x 1.2), and is shown as an example in the same 
figure, with the intended output value of 1,130, and the calculated output value from the ANN of 
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1,130.000000019972. It is obvious that this is a very small deviation, and that the part can be predicted 
with high accuracy, as the nearest intended output value would be 1,120 (calculated output 
1,119.9999999993808) for DIN 471 – 15 x 1. With a simple rounding, this results in a 100% accuracy 
of the part-recognition approach with an ANN. 

 
Figure 9. Deviation of ANN output for each of the 94 parts 

5.3 Application of the trained Neural Network 
The application of the ANN is done by the product developer. Therefore, the method described in this 
paper is applied on parts in a CAD assembly within the FE software. At first, all parts in the assembly 
are meshed with the defined tetrahedral elements of size 0.75 mm, and the node coordinates are 
transferred to the functions that are provided by the expert. The part-recognition itself is performed in 
less than one second per part, and parts that were not considered by the expert can also be identified, 
as the network calculates an output that obviously does not belong to any predefined part. This is very 
important as in an assembly may contain many different parts that are designed individually, and are 
only used once for a specific product.    

6 LIMITATIONS 

The presented approach in this paper works very well for previously trained parts, even with slight 
geometry variations thanks to the use of an ANN. As the geometry variations between the previously 
trained parts and the part − that is to be recognized − are increasing, the recognition of the ANN is 
getting less and less precise. This can be overcome by the initial training of the ANN with ideal 
geometry and parts with slight modifications. In contrast to the application of the ANN the training of 
the Neural Network is very hardware-consuming and an expert is needed for the training and 
preparation of the training data. 

7 CONCLUSION 

The presented approach on part-recognition in this paper fulfils the predefined requirements. Parts can 
be detected rapidly, and with very high accuracy within the FE software. Only an FE mesh is needed 
as input for the presented method in this paper for part recognition with ANN. Furthermore, unknown 
parts can be easily recognized as unknown, as the predicted output of the ANN does not belong to any 
predefined part during the generation of the ANN by an expert. The detection only is done on basis of 
the geometry of the part: no further semantic information, such as, for example, the name or the 
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designation according to a specific standard, is needed to do the recognition. Last but not least, parts 
with any rotation and translation in 3D space, and of any size, are covered by the presented approach, 
due to the use of Principal Component Analysis, and the coordinate system transformation from 
Cartesian to spherical coordinates. It is also very important to use a spherical detector surface, as the 
size of the parts must be irrelevant, and the differing number of nodes per part can be transferred to a 
fixed number of input neurons from an ANN.  
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