
ICED15

AN INTELLIGENT DESIGN ENVIRONMENT FOR
CHANGEABILITY MANAGEMENT - APPLICATION TO
MANUFACTURING SYSTEMS
Benkamoun, Nadège; Kouiss, Khalid; Huyet, Anne-Lise
Université Blaise Pascal, France

Abstract
Design for system changeability and reusability has been sought by engineers from several disciplines.
It has lead to the emergence of numerous strategies and paradigms. Especially in conceptual design
phase, when knowledge about requirements, design problem and system specifications is incomplete,
the future for effective changeability is already at stake.
This work presents knowledge related to changeability strategies as well as enablers, namely
modularity, interfacability, changeability and reusability ontologies. It is illustrated by examples of
manufacturing system design. The established formalism leads to a formal organization of the required
functionalities for changeability management; the paper presents an intelligent design environment for
changeability management. Its collaborative architecture is based on two concurrent and continuous
processes: designing changeability and leveraging on it during the whole system (re)design lifecycle.
Dedicated agents cooperate together, so they offer an intelligent and distributed design environment.
As a result, designers are assisted to adopt a systemic design approach to analyse, design, evaluate and
maintain changeability.

Keywords: Systems engineering (SE), Design management, Design engineering, Collaborative design

Contact:
Nadège Benkamoun
Université Blaise Pascal, Clermont-Ferrand
Institut Pascal - MMS
France
nbenkamoun@ifma.fr

INTERNATIONAL CONFERENCE ON ENGINEERING DESIGN, ICED15
27-30 JULY 2015, POLITECNICO DI MILANO, ITALY

Please cite this paper as:
 Surnames, Initials: Title of paper. In: Proceedings of the 20th International Conference on Engineering Design

(ICED15), Vol. nn: Title of Volume, Milan, Italy, 27.-30.07.2015

1

ICED15

1 INTRODUCTION

The evolution of large-scale complex systems over long lifetime has pushed designers to study
changeability as a life-cycle system property (De Weck et al., 2011). Changeability can be defined as
the degree to which a system is able to adapt to changing circumstances. As far as industrial systems
are concerned, highly changing and fluctuating production contexts have lead manufacturing systems
communities to follow the same path. The paradigm of Reconfigurable Manufacturing System (RMS)
was defined in the 90's (Koren et al., 1999) as a manufacturing system whose structure is able to react
and adapt to change by physically changing its components through adding, removing or modifying
machine modules. Its focused flexibility on demand through re-configuration phases was distinguished
from the Flexible Manufacturing System (FMS) paradigm, where generalized flexibility is built-in a
priori (ElMaraghy, 2009).
Beyond all the discussions about the different changeability types and enablers, changeability in
design has rarely been treated in a systemic way for manufacturing systems. Indeed, manufacturing
system design is often addressed under specific design sub-problems - resource requirements, resource
layout, material flow, buffer capacity etc. (Chryssolouris, 2005) - themselves often surrounded by
specific assumptions or restrictions. But before design sub-problem formulations, design projects have
first to deal with high-level description requirements leading to solution principles for the whole
system. This preliminary phase - called conceptual design - is characterized by incomplete and
imprecise knowledge about system environment and specifications. However this phase is very
challenging as it is during conceptual design that the impact of decisions is the highest (Wang et al.,
2002). Therefore changeability management should be studied during the preliminary design phase in
order to take full advantage of it.
This articles falls into systemic engineering design approach category in adopting an integrative
holistic view of large-scale and complex systems. Our work aims at 1- formalizing and organizing
knowledge for changeability management during system (re)design activities and 2- proposing an
intelligent design environment to assist designers with changeability management - namely the
architecture of a knowledge-based system - according to its defined functionalities.
Section 2 introduces principles and knowledge for designing system changeability. Then, Section 3
presents the architecture of an intelligent design environment for changeability management. Its
collaborative organization is justified, the interacting agents are described, and their functionalities and
supporting knowledge are detailed.

2 SUPPORTING KNOWLEDGE FOR SYSTEM CHANGEABILITY

Designing a system which is able to cope with changing contexts and requirements, pre-requires
formalizing and structuring knowledge about changeability strategies. Architectural characteristics and
principles to make the system adaptable and changeable through new system configurations, variants
or instances are reviewed. For the rest of the paper, we define domains of definition for studying
system’s elements changeability.

2.1 Architectural strategies for changeable systems

2.1.1 Product variety strategies
Variation and diversity of customer needs in product design has caused the emergence of variety
management strategies (ElMaraghy et al., 2013). For product or system design, leveraging on
commonalities has been crucial to survive economically in a context marked with change and variety.
Architecture design strategies for reuse have been developed (e.g. product family, product platform,
modularity and commonality in product architecture) (Jiao et al., 2007) but also strategic processes
for reuse as product line engineering or product family engineering. Considering a manufacturing
system as a product with its varying production context requirements, product variety management
principles are directly applicable to manufacturing systems.

2

ICED15

2.1.2 Modularity as a change enabler
Modularity is considered as a great enabler for reuse strategy among different disciplines. A modular
architecture enables changeability by easily adding, substituting, and removing predefined modules. In
system engineering, it is often considered as a major system property and even a prerequisite for
changeability; in software engineering reusable and evolvable solutions are made possible with
segmenting the code into objects and services. In product design engineering, modular and flexible
product platform are very trendy. And in manufacturing engineering, modularity and interfaceability
consist of the two main characteristics of a RMS.

2.1.3 Modularity design principles
In all of these disciplines, module design follows two main principles. First, in order to be inter-
changeable, intra-module cohesion should be high and inter-modules coupling should be low. Second,
as modularity induces increasing development cost for standardizing interfaces, the degree of
granularity has to be balanced between required system variants distinctiveness (i.e. modularity) and
planned commonality (i.e integrability). In other words, designers have to differentiate between
necessary flexible assets and integrated system structure. For that, levels of reusability and adaptability
have to be defined. A formalization of these two principles will be presented as some required
functionalities for a design environment presented in Section 3.

2.2 System modules representation

2.2.1 Physical and rationale domains
System modules can cover multiple viewpoints. For instance, modules can be defined in the physical
domain, from high level description (e.g. robot, transportation system, Automated Guided Vehicles-
AGV, jigs, machine profile) to detailed level (path trajectory, trolley dimensions, handling robot
capabilities, conveyor speed, PLC program). But in reality, level distinctions are application-
dependent or domain-dependent. In any case, a physical module is always first defined according to
the requirements it is related to. Describing a module according to the functionalities, the requirements
or largely, the intention it answers is more meaningful than an operational or physical description.
Design rationale approaches share the same motivation. Instead of only specifying assets by their
operational specifications, design rationale intends to describe the intention behind the choices all
along the design process. Especially for a changeability perspective, reusability is not only about
physical modules capabilities (e.g. physical interchangeability) but also the range of requirements and
functionalities the system can cope with. Therefore, we defined system modules in two domains: the
physical domain and the rationale domain.

2.2.2 Modules types: blocks and requirements
Consistently with the systemic viewpoint of this paper, a representation formalism of conceptual
designed elements needs to be understood and made available by multi-disciplinary designers. This
representation formalism for design rationale has to be domain-independent. Domain-independent
representation approaches to record and reuse design rationale have been reviewed by (Regli et al.,
2000). As an example of systemic design rationale for manufacturing system engineering, Cochran et
al. (2001) have developed the Manufacturing System Design Decomposition (MSDD) based on the
axiomatic design approach (Suh, 1998). It integrates relative design disciplines (i.e. information
systems, manufacturing strategy, supply chain, human work system design, facility design process,
equipment design and product design) and trace the manufacturing system design process in terms of
relations between design objectives (i.e. Functional Requirements) and solutions (i.e. Design
Parameters). In systems engineering approaches, requirement engineering and requirement
management tools also aim to trace requirements as implicit design decisions. The modelling language
SysML includes a requirement diagram and relationship formalisms between requirements and
allocated blocks (Friendenthal et al., 2011).
Falling into these approaches, we differentiate two module types: requirements in the rationale
problem domain and structural blocks in the physical solution domain. A requirement is defined as a
statement that specifies a need, a condition, capability that should be achieved in the system. A
structural block is a modular unit of structure that physically defines the system.

3

ICED15

2.2.3 Relationship formalism
Structural modules and requirement modules are highly-related to each other. Analysing coupling in
physical domain, in rationale domain but also between both domains is necessary. A new formalism
for typing the different kind of relationship is presented in Figure 1. Requirements are represented in
square and structural blocks in circles. It establishes relationship types between requirements (i.e.
business, functional, non-functional, behavioural, interface or constraint type requirements) and
realizing blocks (i.e. physical, logical, or hybrid type). Some are inspired from the SysML
relationships formalism, but this one brings much more details about their meanings. First, a
requirement can arise according two relationship scenarios: 1- it <refines> another requirement, it
brings more details and updates the old requirement version; 2- it <derives> from a requirement (e.g.
functional decomposition) or from a structural block, meaning that a technical choice has influenced
its formulation. A structural block can relate to a requirement in three ways: 1- it <satisfies> a
requirement, meaning that the requirement source has directly caused the existence of the block in the
system; 2- it is <specified by> a requirement that acts as a specification, it constitutes instructions for
the later development phase; 3- it <allocates> to a requirement, which means that the requirement has
a dependency link as it influences, or concerns an existing block. Last, structural blocks can also have
physical links as inheritance, composition or association. It can be used in rationally deriving
associated requirement to the related blocks. An illustration of rationale and physical relationships
between requirement modules and structural modules is given in Figure 2.

Figure 1. Project elements relationships in rationale and physical domains

AGV wire-
guided

The
communication

technology on the
AGV should be wifi

allocate

The AGV shall
transmit/receive

wifi

refine

transmitter
receiver

A driver should
be interfaceable

specify

refine

satisfy

composed of

A program shall
manage

network flow

derive

Transportation
function

Transportation
system

Communication
technology should

be wireless
derive

satisfy

refine

derive

Figure 2. Illustration of relationships between requirements and structural blocks

4

ICED15

This formalism is a preliminary work to enable future analysis of project consistence, dependencies,
and thus later analysis of modularity in rationale domain. Design projects are often too complex for
system engineers to even think about module possibilities for reuse, especially when knowledge has
not been formalized or organized. Changeability and reuse in system architecture would be possible
only if the designer is assisted with a supporting tool for changeability design and management.
Therefore, the proposition extends the research area of Design Theory and Methodology (DMT)
initiated by (ElMaraghy et al., 1989) to support intelligent systems; an intelligent design environment
contribution with methodological principles kernel is presented to overcome the apparent complexity
and guide designers through changeability design and management projects.

3 ARCHITECTURE OF AN INTELLIGENT DESIGN ENVIRONMENT FOR
CHANGEABILITY MANAGEMENT

Organizing and formalizing expert knowledge into intelligent systems is essential for assisting
designers to cope with complex and changeable problems. The intelligent design environment
proposed in Figure 3 was meant to act like a design assistant; thus, designers keep a central role by
interacting and initiating the different system functionalities. The architecture of the intelligent design
environment is presented under a collaborative architecture viewpoint. It enables distributed design
environments for the various actors. Each agent is represented with its main functionality and its
supporting knowledge.

3.1 A collaborative design environment
Changeability management has to be viewed under two complementary viewpoints: design for
changeability (i.e. creation of modules and corresponding interfaces) and leveraging on changeability
capabilities (i.e. taking benefits of the developed and invested modules and interfaces). To establish
changeability as a lifecycle system property, changeability management has to be concurrent and even
collaborative with the design project of the system. As design is a distributed and asynchronous
problem, the system is based on a collaborative architecture. The design environment in Figure 3
entails these three concurrent processes, represented as three macro-agents (MA1, MA2, MA3)
collaborating together. A second level of collaboration takes place between the agents within MA1 and
MA2. Collaborative modules –or agents – work together to solve problems thanks to their
communication skills and their own capabilities for solving problems (Shen et al., 2003).

3.1.1 Blackboards architecture
The collaborative design environment is organized as a blackboard architecture (Shen et al., 2003).
The main blackboard is a data repository for information about system modularity and interfaceability
capabilities. It is related to a second blackboard that includes knowledge about system architecture in
rationale and physical domains. Surrounding them, knowledge sources (KSs), namely the three macro-
agents, are permitted to communicate and interact with them while they operate. This architecture is
relevant for continuous design process and continuous analysis of system elements modularity and
interfaceability.

3.1.2 Artificial intelligence potential support
Intensive research has been undertaken to apply artificial intelligence (AI) to design. Without focusing
too much on this topic, we can list some supporting AI techniques that would fit into the proposed
architecture in Figure 3. Communication protocols (e.g. the Knowledge Query and Management
Language – KQML), negotiation protocols (e.g. the contract-net protocol), retrieval knowledge
mechanisms for efficient blackboard storage management, semi-automation of problem-solving
methods and inference mechanisms for knowledge-based systems (Studer et al., 1998) are some
examples. In industrial domain, the increasing complexity of products to manufacture, and thus of
manufacturing systems, has led to more and more applications of distributed intelligence artificial to
decisions problems (Kouiss et al., 2002). Bakhtari and Bartsch-Spörl (1994) have identified AI
technology potential functionalities for design requirements as negotiation assisting in conflict and
version management, assessing design quality, support with relevant information, or help for
innovation.

5

ICED15

BlackBoard

Platform
interfaces

System architecture design

Design for changeability

Platform design
• Platform

interfaceability type
and levels

• Reuse strategies

Changeability need analysis
• Changeability drivers
• Changeability strategy

types
• Tradeoff analysis

between commonality
and modularity

Modules to
reuse

Modularity design
• Module changeability

type and levels
• Reuse strategies
• Module cohesion

evaluation (MDM)

Leveraging on changeability

Similarity analysis
• Existing platform

interface and module
possibilities

• Reuse and
development cost
estimation

Architecture impact
analysis

• Interfaceability
evaluation within
physical and rationale
architectures (MDM)

MA1

MA2

MA3

A1a

A1b A1c

A2a A2b

BlackBoard

System
architecture

Figure 3. Architecture of the intelligent design environment for changeability management

3.2 Design for changeability – MA1
The first macro-agent (MA1) aims to support design for changeability. Changeability need analysis
(A1a) first initiates the design process. As modularity interferes with platform interfaceability, module
(A1b) and platform interface (A1c) design processes are tackled concurrently.

3.2.1 Changeability need analysis (A1a)
Before any changeability management process, changeability must be designed at the outset. A
mindset that predicts design scenarios about plausible unfolding futures (Rhodes and Ross, 2009) is
required to evaluate the range and type for the required changeability. To support forethought about
changeability, a design environment has to support the specification of changeability requirements by
associated ontologies. Classifying changeability requirements according to identification of change
initiator and specification of the related changeability strategy would encourage designers to think in
an anticipatory way. For that, two requirement stereotypes have been formalized:

6

ICED15

Figure 4. Changeability strategies

• Stereotype for changeability drivers. With this stereotype, the designer is encouraged to relate
requirements to strategic change drivers. Changeability requirements can be anticipated by
analysing the plausible change drivers. In manufacturing system design, change drivers can refer
to product change (new product variant, new product family, new volumes), process change
(manufacturing or logistic process), technology or standard change, environment change (new
layout, new plant) or any strategic motivation for change.

• Stereotype for changeability strategy. In order to deal with new functionality or new volume,
Figure 4 illustrates different changeability strategies that can be implemented. We first
differentiate system changeability strategies that absorb a new change without requiring a new
implementation (i.e. built-in modules), from the ones that require to implement physical change
(i.e. module changeability). Within built-in module strategies, we differentiate modules dedicated
to specific functionalities, from the ones that entail several functionalities - type swiss army
knife. Module changeability strategies are differentiated according to their time scale for change:
flexibility as planned change type "plug and produce" (i.e. short-term convertibility) or
reconfigurability as hypothetical future change for system convertibility or extensibility.

Figure 5. Module and interface types according to changeability strategies

7

ICED15

3.2.2 Modularity and platform design (A1b and A1c)
Module changeability and platform interfaceability. The identified changeability strategies result in
interface and module requirements for the system platform. Deciding between implementing dedicated
modules (type “plug and play”) and abstracting module types depends on the considered time scale,
the completeness of future knowledge, the changeability strategy, or investment strategies. The
different identified scenarios for changeability strategies (Figure 4) are now considered under module
and interface needs (Figure 5).
• In case of no system change, modules dedicated to two functionalities will also require dedicated

interfaces (e.g. a machine for drilling and a machine for turning).
• In the short-term change-overability scenario, the dedicated modules will require an interface

dedicated to the range of modules it can be plugged to (e.g. a machine tool with a tool holder for
different size of tools).

• Long-term changes call for abstraction of modules, as knowledge concerning the “shape” of the
future module is incomplete and fuzzy. Therefore, interfaces are either dedicated to a module
class – the interface being a constraint for the future module (e.g. machines shall communicate
with Profibus standard) – or generic to a class of interfaces (e.g. platform requires a generic
transportation functionality as input).

Reuse Strategy. Investing in module or interface development is justified by their required level of
changeability, but also by their level of reusability. In product design, a product family (or product
line) is defined as a group of products that share the same platform, namely the same group of assets.
The main interest of product platform for design is the reuse of common assets to new product variants
of the same family. However, other works support reuse strategy for any expert knowledge with a
mere modules repository or a Knowledge Based System (KBS). For instance, Chalé Gongora et al.
(2015) have proposed a new reuse strategy called "system and subsystems catalogue of building
blocks" in which reuse does not only take place with product family assets, but also with project
assets. Figure 6 offers a classification of system elements according to their level of reusability; it
roughly distinguishes the fixed system core platform from potentially changeable modules.
• Fixed core platform: common core elements within any system variant of a system family.
• Platform modules: modules that have to be instantiated (or parameterized) in any system variant.
• Platform optional modules: available modules that can be used in any system variant without

being common to all variants.
• Project specific modules: specific to a custom solution, but pointed out as being reusable in any

project.

Figure 6. Classification of system elements according to their level of reusability

8

ICED15

Module cohesion evaluation. To decide on an appropriate granularity level for modularity, intra-
module cohesion should be maximal and inter-modules coupling should be minimal. For this purpose,
tools to represent architectures and elements dependencies are necessary. Design structure matrix
(DSM) is a tool that offers a representation of system dependencies between entities. Weights for
different levels of dependencies can also be attributed. Multidomain matrix (MDM) is an extension of
DSM modelling where elements dependencies are visualized simultaneously in different domain.
Eppinger and Browning (2012) present various applications of DSM and MDM in three big domains:
product, process and organization domains. We recall from Section 2 that modules can either be
rationale requirements, or physical structural elements. Therefore modularity and interfaceability
analysis should be carried out in the rationale and the physical domains. For this purpose, an MDM
(Figure 7) is used to analyse system element interactions in rationale and physical domains.
Knowledge to represent these interactions can come from two sources: from design project
relationships as it has been presented in Figure 2, but also from expert knowledge about interaction
likelihoods.

Rationale
domain

Physical
domain

Ra
tio

na
le

do

m
ai

n
Ph

ys
ic

al

do
m

ai
n

Figure 7. MDM for rationale and physical domains

3.3 Leveraging on changeability – MA2
The role of the second macro-agent (MA2) is to leverage on the existing system changeability
capabilities. Knowledge bases with available interfaces and modules come from the central
blackboard. They result of the changeability design process (MA1). Similarity between system
requirements and potential reuse possibilities should be analysed and evaluated (A2a). Concurrently,
reuse of existing modules and interfaces should also be studied under the change propagation
consequences within the whole system architecture (A2b). MDM representation would also support
this change propagation analysis.

Similarity analysis. Based on the classification of system modules in Figure 6, analysis of similarity
shall follow the algorithm in Table1. Four types of actions (in bold) depend on the similarity of system
requirements with existing system elements. From the less costly to the most costly scenario: 1-
implement a platform module, 2-instantiate a module from the platform module class, 3-design a
module class according fixed core platform constraints, 4-instantiate a module from the project
module class. We focused on module reusability, but it should also induce decisions on interfaces
reusability (c.f. Figure 5). Let us note that the similarity metric should be specific to the application.

Table 1. Similarity analysis algorithm

Input 1: system requirement
Input 2: fixed core platform; platform modules; platform optional modules; project modules
Output: design decision for maximizing reusability

If system requirement and fixed core platform are consistent
If system requirement is enough similar to at least one platform module

If one of the platform module is already instantiated Then implement platform module
Else instantiate a module from the platform module class

Else design a module class according fixed core platform constraints
Else If system requirement is enough similar to at least one project module
 Then instantiate a module from the project module class

9

ICED15

4 CONCLUSION

The presented intelligent design environment enables changeability design from the outset. Designers
are assisted by a collaborative design environment that integrates the different design viewpoints they
have to go through. Its collaborative architecture highlights three concurrent processes; the underlying
belief is that system architecture design process has to continuously collaborate with design for
changeability (i.e. modularity and platform design) and with leveraging on changeability processes.
Required knowledge for changeability (e.g. elements reusability levels, modularity and interfaceability
strategies, changeability strategies and similarity analysis for leveraging on changeability) has been
formalized and integrated to support the different system functionalities.
However, besides a contribution on integrating changeability principles within a unified framework,
system changeability is for the first time not only seen under a physical viewpoint. System modules
are defined in the rationale domain as requirements and in the physical domain as structural blocks.
Moreover, high potential for integrating AI approaches is offered by this paper. Semi-automation of
knowledge retrieval for cohesion analysis, modularity or interfaceability design becomes possible.
Application of negotiation mechanisms would also enhance collaboration support between the
different stakeholders and designers. Finally, expanding knowledge bases with expert ontology from
specific domain needs would greatly increase the applicability potential of this design environment.

REFERENCES
Bakhtari, S. and Bartsch-Spörl, B. (1994), “Bridging the gap between AI technology and design requirements”,

Artificial Intelligence in Design’94, Vol. 38 No. 1993, pp. 753–768.
Chalé Gongora, H.G., Ferrogalini, M. and Moreau, C. (2015), “How to Boost Product Line Engineering with

MBSE”, Complex Systems Design & Management, Springer International Publishing Switzerland 2015,
pp. 239–268.

Chryssolouris, G. (2005), “The design of Manufacturing Systems”, Manufacturing systems: theory and practice,
Springer, pp. 329 – 461.

Cochran, D.S., Arinez, J.F., Duda, J.W. and Linck, J. (2001), “A decomposition approach for manufacturing
system design”, Journal of Manufacturing Systems, Vol. 20 No. 6, pp. 371–389.

ElMaraghy, H.A., Schuh, G., ElMaraghy, W., Piller, F., Schönsleben, P., Tseng, M. and Bernard, A. (2013),
“Product variety management”, CIRP Annals - Manufacturing Technology, Vol. 62 No. 2, pp. 629–652.

ElMaraghy, H.A. (2009), Changeable and reconfigurable manufacturing systems, London : Springer.
ElMaraghy, W., Seering, W. and Ullman, D. (1989), “Design Theory and Methodology”, ASME First

International Design Theory and Methodology Conference.
Eppinger, S.D. and Browning, T.R. (2012), Design structure matrix methods and applications, (Press, M.,Ed.).
Friendenthal, S., Steiner, R. and Moore, A. (2011), A practical guide to SysML: the systems modeling language, Elsevier.
Jiao, J., W. Simpson, T. and Siddique, Z. (2007), “Product family design and platform-based product

development: a state-of-the-art review”, Journal of Intelligent Manufacturing, Vol. 18, pp. 5–29.
Koren, Y., Heisel, U. and Jovane, F. (1999), “Reconfigurable manufacturing systems”, CIRP Annals-

Manufacturing Technology, Vol. 2 No. 48, pp. 527 – 540.
Kouiss, K., Gouarderes, E. and Massote, P. (2002), “Organisations distribuées des systèmes de pilotage”,

Fondements du pilotage des systèmes de production, Hermès Science Publications, pp. 80–117.
Regli, W., Hu, X., Atwood, M. and Sun, W. (2000), “A survey of design rationale systems: approaches,

representation, capture and retrieval”, Engineering with computers, Vol. 16 No. 3-4, pp. 209–235.
Rhodes, D. and Ross, A. (2009), “Anticipatory capacity: Leveraging model-based approaches to design systems

for dynamic futures”, Model-Based Systems Engineering, 2009. MBSE’09, pp. 46–51.
Shen, W., Norrie, D. and Barthès, J. (2003), Multi-agent systems for concurrent intelligent design and

manufacturing, CRC press.
Studer, R., Benjamins, V. and Fensel, D. (1998), “Knowledge engineering: principles and methods”, Data &

knowledge engineering, Vol. 25, pp. 161–197.
Suh, N. (1998), “Axiomatic design theory for systems”, Research in engineering design, pp. 189–209.
Wang, L., Shen, W., Xie, H., Neelamkavil, J. and Pardasani, A. (2002), “Collaborative conceptual design - state

of the art and future trends”, Computer-Aided Design, Vol. 34 No. 13, pp. 981 – 996.
De Weck, O.L., Roos, D. and Magee, C.L. (2011), “Life-cycle Properties of Engineering Systems”, Engineering

systems: meeting human needs in a complex technological world, MIT Press, pp. 65 – 96.

ACKNOWLEDGMENTS
This work has been sponsored by the French government research program “Investissements d'avenir” through the IMobS3 Laboratory of
Excellence (ANR-10-LABX-16-01), by the European Union through the program Regional competitiveness and employment 2007-2013
(ERDF – Auvergne region) and by the Auvergne region.

10

	An intelligent design environment for changeability management - application to manufacturing systems
	Abstract

	1 Introduction
	2 Supporting knowledge for system changeability
	2.1 Architectural strategies for changeable systems
	2.1.1 Product variety strategies
	2.1.2 Modularity as a change enabler
	2.1.3 Modularity design principles

	2.2 System modules representation
	2.2.1 Physical and rationale domains
	2.2.2 Modules types: blocks and requirements
	2.2.3 Relationship formalism

	3 Architecture OF an intelligent design environment for changeability management
	3.1 A collaborative design environment
	3.1.1 Blackboards architecture
	3.1.2 Artificial intelligence potential support

	3.2 Design for changeability – MA1
	3.2.1 Changeability need analysis (A1a)
	3.2.2 Modularity and platform design (A1b and A1c)

	3.3 Leveraging on changeability – MA2

	4 Conclusion
	References
	Acknowledgments

