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Abstract 
This paper presents an experimental design framework for quantifying Indoor Environmental Quality 
in sustainable buildings, by estimating causal relations between design attributes, and both the stated 
and revealed post occupancy user preferences. In this research, a combination of statistical data and 
qualitative assumptions are used to formulate a structural equation model (SEM) to determine a 
subsequent latent construct between variables. The SEM is comprised of fixed attributes, observed 
variables, and latent variables, and is designed to evaluate postulated significant correlations between 
each. Results show that quantifying relationships among user preferences and built environment 
attributes will allow designers to consider and incorporate characteristics in early design that support 
these correlations. 
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1 INTRODUCTION 

Sustainable building mandates such as the U.S. Green Building Council’s (USGBC) Leadership in 
Energy and Environmental and Design (LEED) are becoming increasingly prevalent as strategies for 
resource conservation in commercial buildings (U.S. Green Building Council 2011).  With 
commercial buildings consuming 19% of total energy demand in the United States, sustainable design 
practices are a creditable consideration for energy reduction (United States Energy Information 
Administration 2010).  Many commercial institutions, such as universities, have declared all future 
new construction buildings will meet minimum LEED standards in an effort to reduce energy use and 
limit their overall environmental footprint.  While this may be a viable energy conservation strategy 
for academic institutions with sufficient funding, additional costs above traditional commercial 
buildings are a primary barrier for many sustainable building design projects (Tatari and Kucukvar 
2011). 
One approach to mitigate the additional costs associated with sustainable building design is to consider 
post occupancy user interactions within the built environment.  The literature has shown that 
individuals can respond positively to various characteristics of their indoor environment, citing 
qualitative preferences for lighting, temperature, and workspace geometry (Jensen et al. 2009, Boyce 
et al. 2003).  In industrial manufacturing environments, these preferences have been linked to 
motivation, job satisfaction, and technical competence (Day et al. 2012).  The USGBC has recognized 
the value of designing for these preferences by awarding 17 points (out of 100 possible) to a metric 
described as Indoor Environmental Quality (IEQ), toward their LEED certification (U.S. Green 
Building Council 2009).  Currently, LEED’s IEQ mandate includes 15 metrics, however, they are 
primarily focused on material selection and environmental control strategies. 
 The approach presented in this paper focuses on understanding the impacts of sustainable building 
design on an individual’s stated and revealed preferences for the built environment, and how each of 
these preferences affect post occupancy behavior.  Brownstone et al. (2000) observed the importance 
of capturing both of these metrics as consumers’ stated preferences don’t always align with their actual 
choices.  By understanding the sustainable building design characteristics that drive user preferences, 
and the effect these designs have on their behavior, designers can incorporate building characteristics 
that support these correlations. 

2 BACKGROUND 

As building standards such as LEED become more complex, designers must explore a greater breadth 
of feasible solutions for meeting these requirements.  Building users are playing a more prominent role 
in modern building design as literature has shown measurable effects on individuals’ well-being, 
productivity, and creativity as a result of their indoor environment (Kamarulzaman et al. 2011, Dul 
and Ceylan 2011, Yi 2011).  During the schematic design of the Oregon Sustainability Center for 
example, user preferences and building interactions were considered for quantification of energy 
consumption (Piacenza et al. 2011, Oregon Sustainability Center 2011).  
The literature regarding the effect of indoor environment on a user’s behavior has shown various 
methods attempting to quantify this relationship.  Positive behavioral changes such as decreased 
absenteeism, and increased employee efficiency and productivity have been recognized.  Jensen et al. 
(2009) examine a Bayesian Network approach comparing various effects of thermal environment on 
the performance of office workers.  In addition to temperature, effects of natural lighting in the 
workplace have also been linked to various performance metrics such as well-being, ability to 
perform, motivation, job satisfaction, and technical competence.  Research by Juslén (2007) has 
quantified a productivity unit increase based on workplace metrics associated with lighting 
relationships including visual performance, visual comfort, visual ambience, and job satisfaction.  
This research aims to explore both stated and revealed user preferences for design attributes 
commonly used in LEED buildings.  These methods have been refined over several decades by 
statisticians, and have recently been refined to include specific methods for preference modeling 
(Louviere et al. 2000, Street and Burgess 2007).  Chen et al. (2012) have outlined a method to observe 
the effect of differing values of a factor, or user-based attributes, on a response variable.  
For example, multiple design alternatives can be presented to a customer or product user, and a 
corresponding rating response can be chosen, ultimately resulting in a single design preference. 
Individual factor levels and combinations (or interactions) are then identified which will define a 
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design alternative.  Hoyle et al. (2008) provide a case study of this method, using human appraisal data 
for automobile seating ergonomics using both Blocked and Split-Plot statistical analysis to capture 
significant attributes of customer design preferences (Jones and Nachtsheim 2009).  
Since LEED buildings are based on energy efficiency design mandates, typical design qualities 
include passive energy savings features such as large window-to-wall ratio, passive air ventilation, and 
an open floor plan.  These architectural attributes consequently end up satisfying constraints for 
energy efficiency, but do not actively contribute to improving the workspace preferences that 
LEED’s IEQ metric attempts to capture.  However, research by Fisk (2000) corroborates LEED design 
strategies, suggesting that energy efficiency and IEQ are not mutually exclusive, since many 
sustainable buildings address both considerations.       
Existing literature shows a long history of positive effects of lighting on individuals in different 
workplace environments (Abdou 1997, Edwards and Torcelleni 2002).  Romm and Browning (1994) 
have presented several case studies where increased lighting in an existing workspace resulted in 
lower absenteeism, lower productions errors, and higher productivity.  Research by Day et al. (2012) 
relate the attributes of building lighting design, in terms of natural lighting, to user satisfaction, health, 
and occupancy.  Hua et al. (2011) examine post-occupancy response to lighting conditions in a LEED 
Gold certified laboratory building.  This research combined illuminance measurements on work plane 
surfaces with rating surveys of long-term occupants, to determine overall user satisfaction of the 
building. 

3 CONTRIBUTIONS 

This paper presents a novel approach to sustainable building design that identifies key relationships 
between user preferences and building design characteristics (e.g. LEED mandates).  A framework is 
presented for quantifying IEQ in sustainable buildings by estimating the causal relations between 
design attributes and both the stated and revealed user preferences for these designs.  The metrics in 
this framework are based on post-occupancy user preferences for the indoor environment of 
sustainable buildings (e.g., LEED certified).  Structural equation modeling (SEM) is used to evaluate 
postulated significant correlations between fixed attributes, observed variables, and latent variables.  
Within this model, latent variables uncovered in the statistical analysis represent emergent preferences 
resultant of a building’s indoor environment.  This approach will enable designers to explore trade offs 
between IEQ and other performance metrics (e.g., energy use, cost, environmental impact) when 
creating optimal building designs. 

4 METHODS FOR QUANTIFYING USER PREFERENCES 

4.1 Structural Equation Modeling and Latent Variables 
In this paper, a structural equation modeling (SEM) approach is explored as a viable strategy for 
understanding the effects of sustainable building mandates on building users.  This approach estimates 
causal relations by combining different types of performance metrics including empirical 
measurements, categorical survey evaluations, and causal assumptions.  SEM strategies are primarily 
used in sociology and medicine where a combination of several observed variables are needed to 
assess the nature of a latent variable construct (Song and Lee 2012).  The term latent variable refers to 
a variable that cannot be observed directly, but is a function of other related variables that are more 
easily quantified.  Wheaton et al. (1977) originally formulated this approach based on a need to 
determine an underlying “true score” variable that measured two or more points in time.  A primary 
function of SEM is the ability to correlate a combination of fixed attributes, observed variables, and 
latent variables (Fox 2006).  This approach is slowly gaining momentum in the design community, 
specifically when trying to identify driving customer preferences for product design.  Hoyle et al. 
(2008) use utility theory to extract design preferences from individuals by analyzing product attributes, 
sociodemographic factors, and customer survey responses.  The importance of customer feedback is 
described in previous work by Everitt (1984), Loehlin (1998), identifying the ability to capture an 
individual’s attitude toward a specific design through the use of a psychometric survey.  Chen et al. 
(2012) have further developed this work, outlining a method identifying user preference indicators, 
based on specific product attributes.  
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4.2 Structural Equation Model Development 
A model was constructed using fundamental SEM principles originally outlined by Wheaton et al. 
(1977).  In this paper, the SEM principles are applied to quantify IEQ, a subjective building design 
performance metric.  This approach is unique, specifically due to its applications for sustainable 
building design.  In this research, key latent performance metrics are formulated by identifying 
relationships between sustainable building design attributes, individual preferences for these designs, 
and subsequent interactions between the two.  First, an initial path diagram was constructed displaying 
the conceptual ideas behind the actual situation (Figure 1).  This diagram includes four primary 
components relative to the model including categorical variables (taken from a psychometric 
survey), empirical data (collected within a LEED certified building), explanatory observed variables 
(building attributes such as window to wall ratio or LEED certification - i.e., fixed covariates), and 
latent variables.  

 
Figure 1. Hypothetical path diagram displaying conceptual model relationships 

The one-way arrows between each variable represent a postulated significant correlation between one 
variable and another.  The first component captures the latent building characteristics as identified 
from the stated preference survey data.  These characteristics represent user’s opinions about post 
occupancy building attributes.  The second component incorporates the empirical revealed preference 
data, which aims to validate the individual’s stated preferences.  This is done by experimentally 
identifying which elements of sustainable building design drive occupancy.  The third component is 
the addition of the explanatory observed variables, or fixed covariates. These variables provide 
additional information about the model landscape, reducing the estimation uncertainty for the latent 
variables (Song and Lee 2012).  Finally, latent variable relationships are added to the model for both 
the categorical survey data, as well as the empirical data.  For the stated preference survey, these are 
defined from the factor analysis as outlined in Table 1.  For the empirical data, latent variables are 
incorporated based on results from the ANOVA analysis.  This variable represents correlations 
between building occupancy and the associated independent variables.  It is predicted that these latent 
variables from each data set can then be used to identify a higher-level latent variable that is directly 
influenced by each.  The measurement equation for the predicted path diagram is defined by Equation 
1: 
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where 𝑠𝑠1…4 are the factored results of the categorical survey questions, 𝑒𝑒1,2 are empirically sampled 
variables, 𝑐𝑐1,2 are fixed covariates influencing both of these variables.  In addition, 𝑐𝑐3,4 are fixed 
covariates influencing the latent variables 𝐿𝐿𝐿𝐿1, 𝐿𝐿𝐿𝐿2, 𝐿𝐿𝐿𝐿3 directly, 𝑎𝑎11−62 are regression coefficients, β1 
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and β2 are the factor scores relating 𝐿𝐿𝐿𝐿3 to 𝐿𝐿𝐿𝐿1 and 𝐿𝐿𝐿𝐿2, 𝜆𝜆11−83 relate the latent variables to each of 
the observed variables, and 𝜖𝜖1…8 are the error terms.  

4.3 Psychometric Stated Preference Survey 
Based on relationships identified from the hypothetical path diagram, a psychometric survey was 
developed to elicit a preference for various sustainable building design attributes by frequent users.  
This survey is based on a seven point Likert scale, commonly used for quantitatively evaluating social 
attitudes (Guy and Morvell 1977).  The Likert scale is a bipolar scale, containing a neutral preference 
option, indicating the respondent does not have an opinion on (or is unfamiliar with) the content of the 
questions (DeVellis 2003). 
The overall goal of this survey is to determine which architectural attributes of LEED certified 
buildings are preferred by frequent users.  The buildings were chosen based on several characteristics 
such as departmental usage, age, presence of public workspace, and geometry.  The primary common 
feature among the buildings is a public atrium, sharing similar stylistic construction features including 
use of natural lighting and high ceilings.  To obtain a point of reference on which buildings are being 
evaluated, respondents are asked to identify which building they are the most familiar with at the 
beginning of the survey. 
This survey was distributed to university students during a course in which they were enrolled, and the 
questions were tailored around an individual’s potential preference for certain building attributes.  
These attributes included features such as lighting, temperature, presence of windows, amenities, and 
workspace features.  The questions were further divided to investigate an individual’s specific attitude 
toward how they interact within the common workspace of the building, and which attributes 
contribute to this usage.  The first question asks how often the respondent uses the building they 
selected, and is the only question not using the seven point Likert scale.  This gives the researchers a 
baseline for occupant frequency.  The survey contains 21 questions, and was administered to 213 
students to obtain a quality data set (DeVellis 2003).  Extra credit course points were not issued to 
students agreeing the participate (Church 1993).  The finalized questions submitted to the Institutional 
Review Board (2012) can be obtained by contacting the corresponding author.  
To interpret the results of the preference survey, a factor analysis was performed.  The purpose of 
factor analysis is to describe the covariance relationships among many random variables in terms of a 
few underlying, but unobservable, random quantities called factors (Johnson and Wichern 2002).  The 
factor analysis model is shown in Equation 2: 

𝑋𝑋1 − 𝜇𝜇1 = 𝑙𝑙11𝐹𝐹1 + 𝑙𝑙12𝐹𝐹2+. . . 𝑙𝑙1𝑚𝑚𝐹𝐹𝑚𝑚 + 𝜀𝜀1                                                                  

𝑋𝑋2 − 𝜇𝜇2 = 𝑙𝑙21𝐹𝐹1 + 𝑙𝑙22𝐹𝐹2+. . . 𝑙𝑙2𝑚𝑚𝐹𝐹𝑚𝑚 + 𝜀𝜀2                                                                 (2) 

𝑋𝑋𝑝𝑝 − 𝜇𝜇𝑝𝑝 = 𝑙𝑙𝑝𝑝1𝐹𝐹1 + 𝑙𝑙𝑝𝑝2𝐹𝐹2+. . . 𝑙𝑙𝑝𝑝𝑝𝑝𝐹𝐹𝑚𝑚 + 𝜀𝜀𝑝𝑝  

where: 
Xi = latent factor (i.e., unobservable latent random variable) 
µi = mean of latent factor   
l ij = loading of the ith variable on the jth factor 
Fj = jth common factor 
ε = ith specific factor (error) 
 
While there are different methods of factor analysis estimation, the Maximum Likelihood Method for 
parameter estimation is used since the log-likelihood is additive as opposed to multiplicative (Johnson 
and Wichern 2002).  This method assumes factors F and specific factors ε are normally distributed.     
To determine an accurate number of latent variables, the factored correlation matrix is examined, and 
the convention of selecting factors based on eigenvalues greater than one is used (Loehlin 1998).  In 
order to assist with the interpretation of factor loading, a factor rotation is performed to position the 
orthogonal axis where variables load highly (Everitt 1984).  This oblique rotation is nonrigid, leading 
to a new axis that passes through the most prominent loading clusters (Johnson and Wichern 2002).  
The Varimax rotation, developed by Kaiser (1958), is used based on its ease of loading interpretation 
(Lewis-Beck et al. 2003). 
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4.4 Experimental Design for Revealed Preference 
As a way to observe an individual’s actual, or revealed preferences for sustainable building indoor 
environments, an experiment was designed to correlate workspace occupancy as a function of 
available lighting, or illuminance.  This hypothesis is based on the assumption that a user will choose 
to occupy a publicly accessible workspace based on specific design attributes, such as increased 
lighting levels due to large window-to-wall ratios (WWR), often present in LEED architectures 
(Tzempelikos and Athienitis 2007).  While workspace occupancy cannot directly infer causation 
between a building design and a user’s preference for this design, it can be used as an indicator to 
learn more about the relationship.   
To measure illuminance, a light meter equipped with a data logger was placed at work plane level, in 
the atrium seating area.   To measure occupancy, a time-lapse digital camera was placed at one end of 
the atrium, with the ability to capture an image of all users occupying the workspace.  Both the light 
meter and the camera concurrently collected measurements every 15 minutes from 6:00am to 6:00pm, 
Monday through Friday.  The total number of occupants present in the images collected were recorded 
with the corresponding time of day and illuminance measurements. 
Data measurements are taken in different buildings, and randomization restrictions are incorporated in 
the analysis.  Since the goal of this experiment is not to compare buildings against one another, 
blocking is utilized to address effects on individual building occupancy.  In addition, the experiment is 
conducted during the academic school year, so there is a concern that student schedules could drive 
occupancy changes.  To mitigate these issues, a nested split-plot design is used to analyze the data.  
This concept is helpful when there are two levels of randomization restrictions within a block 
(Montgomery 1991).  In this design, the experiment is identically performed, Monday through Friday, 
in each of the buildings.  The time-lapse camera captured occupancy, and the illuminance levels are 
recorded simultaneously during the same time period.  The resulting data is then organized in groups 
of six categorical time ranges.  Based on initial illuminance testing in each of the buildings, lighting 
values range from 20 – 4000 lux, depending on local weather conditions.  Time ranges are grouped as 
6:00 am – 8:00 am, 8:00 am – 10:00 am, 10:00 am – 12:00 pm, 12:00 pm – 2:00 pm, 2:00 pm – 4:00 
pm, and 4:00 pm – 6:00 pm. 
To analyze the data, the statistical program StatGraphics is used (StatPoint Technologies Inc. 2012).  
The primary relationship of interest is occupancy as a function of illuminance, however confounding 
factors from each building, day of the week, and time of day are also examined.   

5 LEED CERTIFIED BUILDING CASE STUDY  

To illustrate an application of the methodology described above, a LEED certified building case study 
is presented.  The initial data acquisition and subsequent analysis is included for both the stated and 
revealed user preferences. 

5.1 Stated User Preferences 
Incorporating the analysis from the psychometric survey is the next step for creating the SEM.  The 
survey results were manually entered in STATA, where factor analysis estimation was performed.  
Based on the eigenvalues of the factored correlation matrix, three factors were determined to be 
significant.  Table 1 displays the variable indicator descriptions, resulting factors (latent variables), 
and corresponding factor loadings (> 0.3). 
Beginning with Factor 1, the positively loaded variables are associated with frequency of use, 
studying preference, socializing preference, availability of amenities, work speed, use for homework, 
perceived popularity, and “green” construction.  From this data it can be suggested that this factor 
reflects a latent variable of Personal Building Preference, where an individual prefers attributes 
associated with a familiar workspace where they can work productively, while still interacting socially 
and having access to amenities.   
Factor 2 contains all positive loadings including lighting quality, temperature quality, seating quality, 
architecture quality, use of windows and color preference.  This latent variable can be described as 
Building Design.  Factor loadings infer general positive building preferences for specific architectural 
features, indicating the user recognizes their importance.  The loadings also indicate users prefer 
comfortable seating, presence of natural light, and a comfortable temperature. 
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Factor 3 was positively loaded for preferences pertaining to importance of lighting, importance of 
temperature, traditional workspace (desk instead of couch), quiet environment, fresh air importance, 
and color preference.  This factor can be associated with Building Usability.  For this factor, stated 
user preferences described a practical workspace with specific requirements.  These individuals 
indicate a preference to work in a practical, productive environment, free from distractions. 
These three factors are imported into the SEM, representing empirical input variables for the model.  

Table 1. Factor loadings for stated user preferences 

Indicator 
Description 

Factor 1 Factor 2 Factor 3 
Personal Building Building Building 

Preference Design Usability 
Frequency of Use  0.5364     
Studying Preference   0.8009      
Socialize Preference  0.5012     
Lighting Quality    0.6976   
Temperature Quality    0.4129   
Seating Quality    0.3892   
Architecture Quality    0.4064   
Availability of Amenities  0.3565     
Use of Windows   0.4868    
Work Speed  0.6642     
Use for Homework  0.7771     
Perceived Popularity  0.5573     
Importance of Lighting     0.5689  
How Others Use Space       
Environment Familiarity       
Importance of Temperature      0.3562 
Traditional Workplace      0.4689 
Quiet Environment      0.3783 
Fresh Air Importance      0.3411 
"Green" Construction  0.3167     
Color Preference   0.3978  0.3125  

5.2 Empirical Evidence for Revealed User Preferences  
The last step in creating the SEM is the incorporation of the empirical data.  For research consistency, 
both the psychometric survey and data collection referenced the same buildings.  Occupancy was 
captured using time-lapse images, and extracting by counting the current number of occupants during 
a designated time frame.  Figures 2a and 2b respectively display images from Buildings 1 and 2. 

  
Figure 2a, b. LEED certified Building 1 and 2 workspace 

First, a cursory linear regression analysis of the raw occupancy and illuminance data was performed to 
gain an understanding of the relationship between these two variables.  Based on these results, a 
logarithmic transformation was applied to the illuminance values, and a square root transformation 
was performed to occupancy values to stabilize the variance (Montgomery 1991).  Figure 3 displays 
the results of the linear regression analysis of these elements, for both Building 1 and 2.  The ranges of 
occupancy values are different because the total occupancy for Building 1 is greater than Building 2. 
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Next, a generalized linear model was created in StatGraphics to determine the statistical significance 
between illuminance and occupancy.  This model incorporates the categorical effects of time range 
and day of week to address randomization restrictions.  To capture potential external effects due to 
scheduling, interactions between each variable were also considered during the analysis.  Based on the 
results shown in Table 2, statistically significant effects (based on a p-value ≤ 0.05) on occupancy 
are time range, the building, and illuminance.  Significant interactions include every two and three 
factor interactions between each variable with the exception of the interaction between illuminance 
and building.  This reinforces the hypothesis that occupancy is truly a function of sustainable building 
design characteristics, and not a specific building itself. 

 
Figure 3. Square-root of occupancy versus log transformed illuminance (lux) 

Based on this analysis, user occupancy in each LEED certified building varies significantly as a 
function of lighting level.  This relationship occurs in both buildings, independently of potential 
confounding factors such as student class schedules or day of the week.  From these results, design 
variables for illuminance and time of day are incorporated into the SEM. 

Table 2. ANOVA results for revealed preferences 

Source Sum of 
Squares DF Mean 

Square F-Ratio P-Value 

Time Range 7238.37 5 1447.6700 41.6100 0.0000 
Day of Week 161.988 4 40.4969 1.1600 0.3252 
Building 3218.81 1 3218.8100 92.5100 0.0000 
Illuminance 169.938 1 169.9380 4.8800 0.0271 
Time Range*Day of Week 1220.92 20 61.0459 1.7500 0.0212 
Time Range*Building 1548.63 5 309.7270 8.9000 0.0000 
Time Range*Illuminance 2817.29 5 563.4590 16.1900 0.0000 
Day of Week*Building 354.939 4 88.7347 2.5500 0.0378 
Day of Week*Illuminance 388.742 4 97.1855 2.7900 0.0252 
Illuminance*Building 129.708 1 129.7080 3.7300 0.0535 
Time Range*Day of Week*Building 2027.81 20 101.3900 2.9100 0.0000 
Time Range*Day of 
Week*Illuminance 1644.99 20 82.2494 2.3600 0.0007 

Day of Week*Building*Illuminance 741.099 4 185.2750 5.3200 0.0003 
Time Range*Building*Illuminance 1095.01 5 219.0010 6.2900 0.0000 
Residual 35071.8 1008 34.7935   Total (corrected) 233777 1107    

6 STRUCTURAL EQUATION MODEL RESULTS 

Based on the results of each independent data analysis from the psychometric survey and the empirical 
data, a SEM was constructed within the R computing environment (Team 2011).  After many 
iterations stemming from the initial path diagram hypothesis, the resulting diagram is shown in Figure 
4.  In this model, the three factors resulting from the categorical variable (survey) analysis are 
represented as indicators corresponding directly to a top-level latent variable which can be represented 
explicitly as Indoor Environmental Quality (IEQ).  In addition, IEQ is also predicted by an 
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independent latent variable characterized as User Behavior.  The most appropriate metric to validate 
this case is the Root Mean Squared Error Approximation (RMSEA) index, which is significantly 
below the acceptance value of 0.10 (Hooper et al. 2008).  This measure indicates how accurately the 
model describes the correlations within the data using optimal model parameters.  Both Goodness-of-
Fit and Adjusted Goodness-of-Fit indices are well above the acceptance level of 0.90, describing the 
model’s ability to recreate observed variances between observations.  The Non-Normed-Fit index, 
which has an acceptable value above 0.90, suggests that further refinements could be used to improve 
model fit, specifically the inclusion of additional latent variable indicators (Hooper et al. 2008).   

 
Figure 4. Evaluated Structural Equation Model 

Table 3. Structural Equation Model Fit Comparison 

SEM Performance Experimental Acceptance 
Metric Value Value 

Goodness-of-Fit 0.99236 > 0.90 
Adjusted Goodness-of-Fit 0.98568 > 0.90 
RMSEA 0.02688 < 0.10 
Non-Normed Fit 0.92672 > 0.90 

 

7 CONCLUSIONS AND FUTURE WORK  

It is demonstrated in this case study that illuminance affects post occupancy building usage, however 
additional work is needed to validate the use of IEQ as a performance metric.  For example, IEQ could 
now be incorporated into a building optimization objective function, and could be traded off with other 
environmental considerations (e.g., heat loss, energy use). 
A key benefit of this approach is flexibility, allowing it to be applied to design problems across 
multiple disciplines where user and product interaction, and subsequent behavior are influenced 
heavily by the design characteristics.  For example, a designer could use this methodology in the 
automotive domain to estimate the relationships between various vehicle attributes (e.g., body color, 
fuel economy) and historical purchasing trends of different customer demographics (e.g., age, 
socioeconomic). 
While the approach developed for this paper shows merit, additional research is needed to increase 
accuracy.  In the LEED building case study presented, additional empirical measurements could be 
included such as indoor temperature, humidity, and air quality.  In addition, the input data size should 
be increased by including measurements from additional LEED buildings to verify consistency.  
Finally, LEED buildings and users outside of a university campus could be analyzed to address any 
biases present in an academic institution. 
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