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Abstract 
Simulation has become indispensable in engineering design. That is the reason why the 
authors developed a framework for simulation-based design of mechatronic systems where 
system simulation is intended to be used already very early in the design process. Besides the 
benefits in early phases, there are several issues caused by unknown or vague system 
parameters required for simulation. Such uncertainties lead either to models which cannot be 
simulated or to deficient simulation results.  
In this paper the different reasons for and the origins of uncertainties as well as the related 
deficiencies of simulations will be analyzed and discussed. Furthermore the state of the art is 
analyzed regarding existing methods and techniques for the improvement of reliability and 
results of simulation. 
In order to improve the usability and reliability of simulation in early phases the analyzed 
techniques are integrated into the simulation-based framework and validated on a mechatronic 
design example. 
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1 Introduction 
Simulation has become an indispensable part in engineering design for evaluation purposes. 
Although there are numerous sophisticated techniques available [1] a consistent integration of 
simulation into a simulation-based design framework is still missing [2]. Due to this lack the 
authors developed a framework [2-4] for the development of mechatronic systems which 
integrates simulation as the core activity for design evaluation. A simplified version of the 
underlying process model is depicted in Figure 1 – a more detailed description can be found 
in [3] and [4]. This generic version consists of three main phases which correspond to those of 
VDI 2206 [5] and VDI 2221 [6]. The integration of simulation is done through two parallel 
activity streams: design activities and analysis activities. Those are highly interlinked and 
build numerous analysis-synthesis-cycles as depicted in Figure 1. The management of the 
interactions of the two activity streams is done through several Analysis Milestones (AMS) 
which for example contain information about the property that is to be analyzed, the analysis 
technique which is used and the responsibility for the analysis. This paper is focused on the 
conceptual system design phase and the corresponding simulation phase. In these early stages 
simulation is done on system level with a lower level of detail instead of using very detailed, 
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domain-specific simulations [7]. Those simulations are used on the one hand to determine the 
behavior of the system and check if this meets the requirements. In this way it is possible to 
compare different system concepts and choose the best one [8]. On the other hand simulation 
can be used to refine – or even define – requirements. This means that based on initial 
requirements a simulation can be run and based on the results the validity of the requirements 
can be analyzed. 
 

 
Figure 1 Simplified version of the simulation-based process model 

 
Early stages of design are characterized by a low degree of defined characteristics [9] which 
makes it more difficult to parameterize and run simulations. Partially this problem is evaded 
by using models with lower level of detail which require fewer characteristics to be defined – 
at the expense of lower accuracy of the simulation results. Nevertheless, also these models 
need parameters to be executable which are often not fully known or still very vague – for 
example only intervals for the parameters are known – because knowledge about the system 
which is being developed is still rather low. Hence in order to receive reasonable and reliable 
results, guidance is needed to support in dealing with such uncertainties. 
In the following sections different kinds of uncertainties as well as their origins in the 
development process will be discussed. Furthermore the state of the art of methods for dealing 
with uncertainty is analyzed. Based on those findings, the simulation-based framework for 
mechatronic design will be complemented with guidance for the handling of uncertainties in 
the early conceptual system design stages and the corresponding simulation phases. 
 
2 Types of uncertainty and their origins 
Uncertainties can have several origins. In literature mainly two kinds of uncertainty are 
distinguished based on their origins: aleatory and epistemic uncertainties [10]. The first one is 
also referred to as irreducible, inherent and stochastic uncertainty or as variability [11]. 
Consequently aleatory uncertainty originates from randomness [12]. The mathematical 
representation for this kind of uncertainty is usually a probability distribution [11]. In the case 
of simulation of mechatronic systems this can be for example a stochastic variation of input 
parameters due to production tolerances or the signal noise of a sensor. According to the 
definition of Oberkampf et al. [11], aleatory uncertainties describe the inherent variation 
associated with the physical system or the environment under consideration. Those will not be 
of particular interest in this paper. Their handling is well established through traditional 
probability theory [13]. 
Epistemic uncertainty is also referred to as reducible, subjective or cognitive uncertainty [11]. 
According to the definition of Oberkampf et al. [11], this kind of uncertainty is a potential 
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inaccuracy in any phase or activity of the modeling process that is due to lack of knowledge 
or incomplete information. Incomplete information can be caused by vagueness, 
nonspecificity, or dissonance [14]. Corresponding to [13], the models which are used for 
simulation in the context of this paper are considered as deterministic. Hence the handling of 
aleatory uncertainties is of minor interest but rather epistemic uncertainties are focused on in 
this paper since they describe the uncertainties due to a lack of knowledge about the system 
and its parameters in early conceptual phases which affect system simulation. 
Kiureghian and Ditlevsen [15] define sources of uncertainty in modeling ranging from 
uncertainty of the input variables to uncertainty in the selection or definition of probalistic and 
physical submodels to uncertainty due to computational errors or numerical approximations. 
According to the different sources of uncertainty, Oberkampf et al. [13] further distinguish for 
the modeling of physical systems between parametric uncertainty – corresponding to 
uncertainty of input parameters – and model form uncertainty – corresponding to the other 
uncertainties. The first one can be either aleatoric or epistemic while the last one is always 
epistemic [13]. 
Besides uncertainty, errors are also important in modeling and simulation. Error is defined as 
a “recognizable deficiency in any phase or activity of modeling and simulation that is not due 
to lack of knowledge” [14]. Furthermore Oberkampf et al. [14] distinguish between 
acknowledge errors – for example conscious simplifications of models – and unacknowledged 
errors – for example due to human mistakes during modeling. Particularly acknowledge errors 
occur in early system simulation stages because simplified models are used to improve 
simulation runtime and to improve model parameterization because of model parameters 
which are not know yet. 
 
3 Methods for dealing with uncertainty 
In this section the state of the art is briefly analyzed regarding methods and techniques which 
are used in order to handle uncertainties in engineering design, particularly in combination 
with modeling and simulation. At first the problems of simulation in early phases are 
discussed. As already stated before, the early stages – which in the context of this paper 
means “Conceptual system design” and “System-level simulation” as depicted in Figure 1 – 
are characterized by many unknown or vague system parameters which will only become 
clear with increasing knowledge during the design process [16]. One approach for dealing 
with this problem is the use of simplified models. This means that the physical behavior is not 
modeled in detail in order to reduce the number of required input parameters and to reduce the 
runtime of simulations. In general such simplifications are accepted in early phases where 
simulation is mainly used to compare concepts [7]. Hence according to the definition in the 
previous section, such simplifications are acknowledged errors. Apart from simplified models 
the issue in early stages is that input parameters for models are not totally clear, but rather an 
interval in which they will fit in is known or can be estimated. Another possibility is that 
simulation is used to generate input parameters based on desired output parameters of 
simulation. Since simulations cannot be simply inverted, a first set of input parameters has to 
be estimated and those parameters have to be iteratively refined. Doing this in an unstructured 
way can be very time-consuming. Those issues can be categorized as epistemic uncertainty 
according to the definition in the previous section. In the following, several methods and 
techniques are analyzed which can support in dealing with unacknowledged errors and 
epistemic uncertainties. In Figure 2 the different methods for uncertainty handling, which are 
discussed in the following, are assigned to the different applications and issues of simulation. 
 



828

 
Figure 2 Overview of methods and their application 

 
3.1 Design of experiments (DOE) 
Design of experiments is a statistics-based method which is used to analyze the relations 
between the input and the output of a system under consideration with a minimum of 
experiments. Although this method was originally developed for physical experiments, it can 
also be used for simulation. In traditional approaches input parameters are alternated “one 
factor at a time”. This means that for every factor that is changed a new experiment has to be 
run. Consequently a large effort is associated with this method and furthermore interrelations 
of parameters cannot be examined. These issues can be addressed by the use of design of 
experiments, which refers to the process of planning, designing and analyzing experiments so 
that valid and objective conclusions can be drawn effectively and efficiently [17]. 
In general full or fractional factorial designs at two- or three-levels are used in DOE [17]. Full 
factorial means that all input parameters of the simulation model are varied whereas in 
fractional factorial design, parameters of lower relevance or interest are kept constant. Two-
level design means that the range of a parameter is only considered by the two boundary 
values. In a three-level design an additional value in the middle of the range is used. The 
benefit of a full factorial design is that all parameter combinations are tested which allows 
drawing conclusions regarding interactions and mutual influences of parameters. However, 
for a model with k input parameters a two-level design would require 2k experiments. 
Depending on the complexity of a model and the related simulation runtime this can be very 
time consuming. But generally this is still easier for simulation compared to physical tests. 
Such experimental designs and the simulations can also be easily automated. In order to 
reduce the effort of a full factorial design, fractional factorial designs can be used. In this case 
higher-order interactions are neglected [17] which requires the engineer to decide if this 
acknowledged error is acceptable for the current task. 
For more information regarding design of experiments, see the large amount of contributions 
in literature, for example [17]. 
 
3.2 Extreme condition approach 
The extreme condition approach is used to determine the range of the output of a simulation 
based on a given range of input parameters [18]. This approach is very effective regarding 
time and resources spent for simulation. However it does only provide the possible minimum 
and maximum values of a simulation result. Information regarding the distribution of the 
results cannot be determined. It is similar to two-level design in design of experiments.  
 



829

3.3 Probability methods 
Besides the extreme condition approach, statistical methods are common in order to analyze 
uncertainty. Among those methods Monte Carlo simulation is often used. It considers a 
statistical distribution of the input parameters of a simulation model. This means that those 
input parameters do not have a fixed value but are rather described by a statistical distribution, 
for example a Gaussian distribution. Based on this assumption a simulation is run with 
randomly taken values from the distribution for each parameter which are called samples. 
Accordingly such techniques are called sampling-based methods. In order to obtain a 
probability distribution for the simulation results, this procedure is repeated several times with 
different, randomly taken input values, ideally until a converged value for the standard 
deviation of the result-distribution can be estimated [19]. Certainly a Monte Carlo simulation 
can result in an enormous effort regarding time and resources, depending on the distributions 
of the input parameters and the complexity of the simulation model itself. In this case, the 
number of required simulations can be reduced through the use of different sampling 
methods. Among those, particularly Latin Hypercube Sampling (LHS) is often used for 
complex simulations [20]. For more information regarding Monte Carlo simulation and 
sampling methods including the mathematical formulation, literature offers a huge amount of 
contributions, for example [19] for Monte Carlo simulation and [20], [21] for sampling 
methods. 
 
3.4 Generalized information theory 
The probability-based techniques discussed in the previous section have several drawbacks. 
For example the definition of an appropriate probability distribution for the input parameters 
is often very difficult. Additionally the number of required experiments is rather high and thus 
time consuming. Hence besides the probability-based techniques, there are also methods 
which are based on generalized information theory (GIT) [13]. Examples for those are 
possibility theory, evidence theory and fuzzy set theory. Fuzzy sets for example offer the 
possibility to take into account the gradual or flexible nature of specifications or are able to 
represent incomplete information [22]. This means that if the boundaries of an interval of 
input parameters is not clearly known, this uncertainty is expressed by a characteristic 
function taking values in the interval from 0 to 1 [22]. For further information, see for 
example [23], [24]. 
 
3.5 Uncertainty propagation 
The methods described above are intentionally used for single models. However, particularly 
in mechatronic design where several domains have to interact [25] and in early stages where 
simulation is done on system level, system models consist of several submodels. These can be 
either part of an enclosed system model which is run in a single software environment – for 
example a system model in Modelica – or each submodel is simulated on its own and the 
results of the simulation are used as an input for the next submodel. Each of those submodels 
can be affected by uncertainty. At the end of the simulation model chain this leads to an 
accumulated effect of the individual uncertainties of the submodels [18]. According to [18], 
the uncertainty of the vector of input parameters x is taken into account by a certain kind of 
distribution. The output vector y of model 1 – which corresponds to the simulation result – 
can then be expressed by: 

y = F1(x1����İ1(x1) (1) 
7KH�LQWHUQDO�XQFHUWDLQW\�İ�[��LV�XVHG�WR�H[SUHVV�WKH�uncertainty which is caused by and within 
the model itself. Consequently, the output vector z of model 2 is expressed by: 

z = F2(x2��\����İ2(x2, y) (2) 
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This procedure can also be applied for every simulation model chain consisting of more than 
two models. The approach also applies to both the extreme condition approach and the 
statistical approaches. 
 
3.6 Sensitivity analysis and parameter screening 
Sensitivity analysis refers to the determination of the contribution of individual uncertain 
analysis inputs to the uncertainty in analysis results [20]. In this way the individual 
parameters are screened regarding their importance on the simulation output. Based on an 
importance ranking, the number of required simulations can be reduced since only the most 
important parameters have to be varied across their entire range. The less important 
parameters only have to be simulated with few values or can even be fixed. In this way the 
number of simulation runs can be drastically reduced. 
Sensitivity analysis and parameter screening are mainly based on the techniques described 
earlier in this section. For example design of experiments is used with fractional factorial 
design to determine the individual influences of the input parameters with a minimum of 
experiments. Among these designs, Plackett-Burman designs are widely used for parameter 
screening [17]. The results can be depicted in Pareto diagrams or effect plots. However it 
should be taken into consideration that influences between parameters can hardly be identified 
with those designs. Apart from DOE-based methods, sampling-based or statistical methods 
can also be used for sensitivity analysis. Typically sampling methods like Latin Hypercube 
sampling are chosen because they require less experiments then for example traditional Monte 
Carlo simulation. The results can then be analyzed through several techniques like scatterplots 
or regression analysis [20]. For more information regarding sensitivity analysis with 
sampling-based methods, see for example [26]. 
 
4 Integration of uncertainty handling into a simulation-based design 

framework 
In this section the methods described in the previous section are being integrated into the 
described framework for simulation-based design. The individual steps which are described in 
the following are exemplified on the simulation-based development of an active suspension 
system for bicycles. This system – a typical example of a mechatronic system – is used as a 
validation project for the overall development framework. More information about this 
system and its simulation-based development are provided in [27]. 
Particularly early phases, as already mentioned, are characterized by a high degree of 
uncertainty. This is caused by unclear requirements, unclear design concepts or unclear 
characteristics which serve as input parameters for the simulation model. This section is 
structured according to the application of methods as depicted in Figure 2. The first 
application scenario corresponds to the right arm of Figure 2 which is used to gain 
information about the system behavior, represented through the output of the simulation. The 
case that all input parameters for the model are known is very hardly probable and hence not 
further considered. More likely is the opposite case that input parameters are unknown or only 
parameter ranges are known. This is a typical issue for original design where there is limited 
knowledge about the system to be developed. For variant or adaptive design, information and 
experience have been gathered from the predecessor and hence system parameters are more 
clearly or can be better estimated resulting for example in a smaller range for parameters. 
In the case that the input parameters can be narrowed down to a certain range, the extreme 
condition approach can be used to determine the range of the system output. For example if 
the input voltage for the actuator can be limited to a certain range based on the used battery 
technology, the minimum and maximum reaction speed and force can be determined. This 
procedure can also be iteratively applied to define the required input range more precisely 
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based on a desired system behavior. This method is particularly useful for the definition or 
refinement of requirements in a very early stage. If there are many input parameters which 
affect each other and an optimal combination of these parameters is targeted, the extreme 
condition approach is not expedient. Here the use of design of experiments might be useful. It 
offers a structured procedure for the management of the simulation process and furthermore 
the mutual influences of parameters can be estimated. Depending on the desired accuracy and 
the complexity of the model – that means number of input parameters, required time and 
resources for simulation – the design of the experiments has to be determined. For example if 
a simulation is very time consuming, the number of required simulation runs should be tried 
to be reduced. In this case two-level and fractional factorial designs are beneficial. But the 
related simplifications have to be individually ponded by the analyst or engineer. 
If the range of input parameters cannot be clearly determined, the use of probabilistic 
approaches such as Monte Carlo simulation can be used. For this, the engineer has to estimate 
– based on experience or technical intuition – a distribution for the input parameter, for 
example a Gaussian distribution where the mean is the estimated optimal parameter and the 
standard deviation the estimated range of plausible values. Of course this procedure contains 
many sources of errors, but through iterative refinement of the distributions an optimal set of 
parameters can be approximated. In order to reduce the number of required simulations, 
particularly for complex models, the previously mentioned sampling-based methods like 
Latin Hypercube sampling may be useful. In particular if there is no experience for the system 
under consideration, it can be difficult to find an appropriate distribution for the input 
parameters. In this case general information techniques, such as Fuzzy set theory, may be 
easier to handle. Fuzzy sets might be easier to define since their definition, which is based on 
the membership of a parameter value, is not that strict as the mathematical definition of a 
distribution. In the validation example, e.g. the surface profile has been simplified through a 
sine wave. Since the amplitude has not been exactly known and also underlies statistical 
variations, it has been expressed through a Gaussian distribution with estimated mean value 
and standard deviation as depicted in Figure 3. In this way the distribution of the resulting 
actuator forces have been determined which can be used to search for suitable actuators. 

 
Figure 3 Monte Carlo simulation for actuator force 

 
Typically mechatronic systems are composed of many interacting subsystems which are 
generally under the responsibility of different domains or departments. For a complex 
mechatronic system this leads to large simulation model chains, as exemplified in Figure 4 for 
system-level simulation of the active suspension. Even for such a rather simple example there 
are many circular references between the submodels, inevitably leading to an iterative 
procedure to consider all uncertainties. Assuming that all of these submodels have uncertain 
input parameters, uncertainty propagation becomes highly important but also complex. For 
system-level simulation within a single tool, like the Modelica-based tool used here, the 
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individual submodels are connected to an overall system model. Hence uncertainty 
propagation is more or less done by the simulation environment itself – except for internal 
uncertainties but which are not considered here as earlier mentioned. In this case the problem 
lies rather in the required number of simulation runs to cover all possible input parameters. 
However, by using DOE and appropriate input scripts for the simulation tool, the simulation 
runs can be structured and automated. But if co-simulation with individual software tools is 
applied instead of using a single tool, uncertainty propagation has to be done by the engineer 
or analyst himself. This case is not considered in the present example. 
 

 
Figure 4 Simulation model chain with uncertain input parameters for the active suspension 

 
Apart from the typical application of simulation in order to gain information about the system 
output, it can also be important and useful to gather information about the required inputs 
based on more or less defined properties as depicted in the left arm in Figure 2. One way to do 
this is an iterative approach of continuously refining the interval for the input parameters 
through a comparison of the simulation results with a desired system behavior. In this way the 
simulation can also be used to refine requirements. Another possibility is sensitivity analysis. 
As already discussed, mechatronic system models in general consist of several submodels, 
each of them with a set of input parameters. At the same time several concepts are simulated 
in order to find the best concept [7], [8]. Hence the number of parameters that have to be 
considered is considerable, quickly leading to an enormous number of required simulation 
runs. For complex models this implies large efforts, regarding both time and resources. 
Reducing the number of simulation runs can be most effectively achieved through a reduction 
of the required changes of input parameters, which sensitivity analysis can be used for. In this 
way parameters can be determined that have only limited influence on the overall system 
behavior and thus can be fixed. In the specific case of the active suspension, sensitivity 
analysis has been performed through the use of Plackett-Burmann design. As depicted in 
Figure 5 seven parameters have been analyzed with only eight simulation runs, only using 
maximum and minimum values for each parameter. Based on the effect plots, parameters with 
less influence on the simulation result can be identified. In the specific case, the rotational 
stiffness, the tire pressure and the friction have only minor influence, identifiable through the 
low slope of the effect plots. Hence for further investigation those three parameters can be 
fixed to a mean value. In this way the number of required simulation runs for the investigation 
of the remaining parameters can be considerably reduced. 
 

 
Figure 5 Effect plot of the model parameter for actuator force simulation 
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5 Conclusion 
Uncertainty is ubiquitous in product development projects, particularly in early phases. The 
reasons are manifold and have been tried to be sorted in this paper. Furthermore the state of 
the art regarding methods and techniques for dealing with uncertainty has been tried to be 
summarized. However, since a large amount of techniques exists and countless fields like 
mathematics, physics, and engineering contribute to this, there is no demand for completeness 
and consistency of this summary. Instead the authors tried to filter the most important 
techniques for product development in a first attempt, particularly for simulation-based 
mechatronic design. 
In order to make those techniques applicable in simulation-based design, these analyzed 
methods and techniques have been integrated into the authors design framework. This attempt 
is still rather generic giving advice on when to use the individual techniques and what for. 
The application has been illustrated on simplified examples from a mechatronic design 
project. Since this paper only represents a first attempt for the integration of uncertainty 
handling in early phases of simulation-based design, further efforts are necessary. For this 
purpose the state of the art from different scientific areas will have to be addressed more 
comprehensively. Based on the identified broader set of methods and techniques more 
concrete guidance for engineers dealing with simulation-based design has to be derived. This 
would for example mean to support the choice of suitable techniques including guidance for 
required information and reliability of results. The developed support should also be validated 
and exemplified, ideally on a case study which is dealing with more complex simulation 
models than the example in this paper. Eventually the development of a software tool for the 
support of engineers and analysts might be expedient. Such a tool could be used as a 
metamodel for simulation which is used to manage and control uncertainty and simulation 
runs providing the relevant inputs for the individual simulation environments.  
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