Design Creativity Practice

The Third International Conference on Design Creativity (3rd ICDC) ISBN 978-1-904670-60-5 Bangalore, India, 12th-14th January 2015

CREATIVE CHUNKING: MODULARITY INCREASES PROTOTYPING QUANTITY, CREATIVE SELF-EFFICACY AND COGNITIVE FLOW

Joel Sadler¹, Lauren Shluzas¹, Paulo Blikstein², Riitta Katila³

¹Mechanical Engineering Department, Stanford University, Stanford, USA ²School of Education and Computer Science Department, Stanford University, Stanford, USA ³Managment Science and Engineering Department, Stanford University, Stanford, USA

Abstract: Prototyping intermediate solutions to a creative challenge is a core design skill. However for technical novices, the process of including electronic components in prototypes can hamper the creative process with technical details. Software and electronic modules can reduce the amount of work a designer must perform in order to express an idea, by condensing the number of choices into a physical and cognitive "chunk." This paper presents the results of a creative prototyping study (N=86) that explores the question: "*How does prototyping tool modularity influence the creative design process?*" Using a browser-based crowd platform (Amazon's Mechanical Turk), participants created electric "creature circuits" with LEDs in a virtual prototyping environment. We found that increasing the modularity of LED components (i) increased the quantity of prototypes created and the quantity of LEDs used by study participants; and (ii) increased participants' degree of perceived self-efficacy, self-reported creative feeling, and cognitive flow. The results highlight the importance of tool modularity in creative prototyping.

Keywords: Prototyping, Interaction Design, Modularity, Self-Efficacy, Flow

1. Introduction

When faced with a creative challenge, designers are often encouraged to create many low-resolution solutions in a limited time period. These prototypes tend to highlight the essence of an idea, rather than the technical details of implementation. In contrast, prototyping with software and electronics tools may add functionality and technical details to design ideas, but can also slow down the creative process by (i) requiring prior technical knowledge and (ii) introducing potential for errors in implementation. Through

using pre-defined modules, a designer may add blocks that encapsulate a desired functionality, while hiding the technical details. But do these modular blocks limit or accelerate creative output? In this paper we explore how the modularity of a prototyping tool may influence a designers creative process.

During prototyping we assume that an ideal creative toolkit will enable a designer to confidently create many prototypes in a given time frame, allow diverse ideas to be expressed, and place a designer in "the zone" of continuous cognitive flow. Since modularity tends to reduce the difficultly and number of steps required to create a prototype, we hypothesize that increasing the modularity of prototyping tools will have positive effects on:

- 1. Prototype Quantity: The number of distinct prototypes created in a given time period.
- 2. **Designer's Creative Feeling**: The degree to which designers feel they are in a creative state.
- 3. **Self-Efficacy**: The confidence that a designer has in his or her ability to create prototypes. (Csikszentmihalyi, 1977).
- 4. **Cognitive Flow**: The degree to which a designer feels that a task's difficulty level matches one's perceived abilities. (Csikszentmihalyi, 1992).

The above metrics have interconnected effects on one another. For instance, prior research has shown that designing several prototypes in parallel can contribute to an increase in both the quantity and creativity of prototypes produced (Dow et al. 2010). This research focuses on the above metrics as general indicators of a desirable prototyping experience.

1.1. Research Contributions

This paper presents the results of a prototyping study (N=86) that varies the modularity of a prototyping tool for a creative design task. The study uses a simulated circuit prototyping environment in software to show the degree to which tool modularity affects creative output. This paper has three main contributions:

- It presents quantitative and qualitative evidence that tool modularity can increase a designer's creative output for an open-ended prototyping challenge.
- The paper shows that tool modularity can increase a designer's self-efficacy to create, while in a state of cognitive flow.
- The study demonstrates the use of a software simulation with a crowd-sourced platform (Amazon Mechanical Turk) to conduct a creative prototyping task involving simulated electronics.

2. Background

Modules are encapsulated blocks of functionality that can be added to or removed from a system independently (Baldwin & Clark, 2000). A component with a high degree of modularity, has fewer dependencies on outside variables (design choices). In prototyping, this implies that modules enable designers to freely try combinations of parts, much like adding bricks in a toy construction kit. Thus, we expect that modular prototyping will influence a technical novice's ability to gain confidence or self-efficacy in the use of design tools, and to improve cognitive flow while designing.

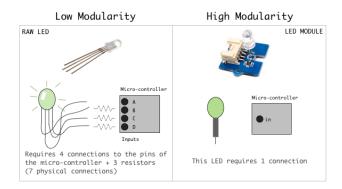


Figure 1. Comparing the modularity of two LED components.

2.1. Modularity Tradeoff – An LED Example

What does high or low modularity look like with electronic components? Consider the following example of two multi-color light emitting diode (LED) components shown in Figure 1. In the example of "low modularity," a low-cost tri-color LED can be added to a programmable microcontroller by connecting four individual pins, and choosing 3 appropriately sized resistors. In this case, the LED does not contain all of the components required to function reliably, and a designer must choose resistors out of thousands of possible resistance values. Making an incorrect connection, or choosing a resistor that is too small or too large, results in a non-functional light. In the "high modularity" example, a self-contained LED module contains the necessary components to function properly and a single connection to the outside world. In this case, an expert has made the resistor choices in advance, and the module has a simplified single connection interface. This module reduces the outside variables that may lead to errors, such as choosing bad resistors or plugging in the component in an opposite polarity. These contrasting examples illustrate that a key difference in prototyping with modules is that they tend to reduce the variability, difficulty, and number of steps required to combine components, in exchange for reduced flexibility and increased cost. These trade-offs are summarized in Table 1. Modules may be a poor choice if one's goal is to educate a designer on the technical aspects of a system, since the details are hidden. However, if the primary goal is to enable functional prototyping of a creative idea as quickly as possible, then modules are effective candidates. Modules are therefore the "chunks" that enable a designer to incorporate a whole unit of functionality; in much the same way that cognitive chunking (Miller, 1956) enables efficient clustering of complex information. Here the authors use the concept of a "chunk" as equivalent to a module, as proposed by the design decomposition work of Pimmler and Eppinger (1994).

Metric	Less Modular	More Modular
Number of steps (to combine)	More steps required	+++
Difficulty Threshold	Increased initial difficulty	+++
Error Probability (success variability)	Increased chance of error	+++
Component Cost	+++	More expensive
Technical Learning	+++	Reduced technical learning
Flexible Functionality (Ceiling)	+++	Harder to modify

 Table 1. Comparing Modularity Trade-offs (+++ is best)

2.1. Bandura's Self-efficacy and the Confidence to Create

Creating prototypes with technology can be difficult for a technical novice. A designer who lacks a technical background in electronics and sensors, for example, may be less confident in his or her ability to make working prototypes that include electronic components. Bandura (1977) refers to the measure of a

person's confidence in his or her ability to achieve a task as *self-efficacy*. In this research we consider a specific aspect of self-efficacy, referred to as *creative self-efficacy* (Tierney et al. 2002). For a prototyping task, we aim to understand how the qualities of a tool will encourage designers to feel confident in their ability to create. Prior work on the use of novice electronic prototyping toolkits found that using modular building blocks can be an effective way to encourage more fluid prototyping (Hartmann et al. 2006). The core premise of Hartmann's work is that modularity hides some of the technical details and reduces the perceived and actual difficulty to play with an unknown component. However, to the authors' knowledge there is limited prior data on the cognitive effects of modularity during creative prototyping.

2.2. Cognitive Flow and Modularity

Designers often describe a creative episode as a sustained burst of focused energy on the task at hand, where time fades into the background and one gets into *the zone*. The cognitive psychologist, Mihaly Csikszentmihalyi (1992), describes this state as a *flow state*, and his work has shown that being in a state of flow is positively correlated with creative performance. His work describes the typical conditions required to trigger a flow state and found that flow is modulated by a balance between one's perceived skill and the perceived difficultly of a task. If a task is too challenging for a person's current skill level, Csikszentmihalyi's model predicts a state of anxiety. Similarly, if the challenge of a task is low and the perceived skill is high, the person may be in a state of low arousal or boredom. The flow state is characterized by a balance of challenge and skill, in a *channel of flow*, which is linked with higher task performance and creativity (per Figure 2). This model has been validated by many researchers whose work illustrates the positive relationship between flow and task performance (Engeser and Rheinberg, 2008). From Hartmann et al.'s work we see that modularity changes the prototyping experience by promoting components as "chunks" rather than as individual technical details. However, current research has yet to measure modularity's role in inducing a flow state during a design activity.

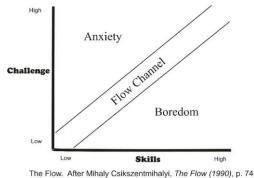


Figure 2. Flow as a balance between skills and challenge. (Csikszentmihalyi, 1997)

3. Related Work

In order to examine the effects of tool modularity on the creative design process, we needed to first identify ways to manipulate a creative design task and measure design performance. The methods we chose were modeled on two prior studies, one examining conformity in creative generation tasks (Marsh et al., 1996), and another by Kulkarni et al. (2014) that uses a crowd-sourced method to explore a creative prototyping task.

3.1. Conformity in Creative Generation Design Tasks

Marsh et al. illustrated that presenting design examples to participants prior to a generative design task influences one's creative output. Participants were shown pre-made examples of alien creatures and then

asked to draw as many unique creatures as possible in a given period of time. The study found that showing design examples in advance increased the degree of conformance among design ideas. We consider this study as a strong model of a creative prototyping task, with a controlled manipulation. Specifically, we see a parallel between electronic modules and the pre-made design examples in the study by Marsh et al., since modules can be considered as pre-made units of function that a designer is provided in advance and may choose to include in a prototype.

3.1. Timing Effects on Creative Output: A Crowd-Sourced Design Task

In building on the prior study, Kulkarni et al. examined how creative output is affected by the timing when design examples are shown to study participants. Their research found that early and repeated exposure to examples increased creative design performance, as measured by the number of uncommon and novel features created by study participants. There was a correlation between exposure to examples and conformance, but this did not reduce the number of unique features incorporated into ideas. Most notably, this study showed the feasibility of using a crowd sourced web-based platform to recruit participants (N=81) and collect a large number of prototype alien ideas using Amazon's Mechanical Turk. The use of a software environment to test creative prototyping is advantageous since it allows controlled modification of the environment. Our work builds on these two studies, in terms of "imagining alien creatures" as a creative prototyping task, but adapts the task to the creation of "electric alien circuit boards" with colored LED modules. To the authors' knowledge, no prior work has specifically examined the effect of modularity on creative output, self-efficacy, and cognitive flow.

4. Methods

Our research aims to understand how modularity affects creative prototyping from both quantitative and qualitative perspectives. For a controlled design task, we hypothesize that:

H1: Increasing the modularity of a prototyping tool enables designers to generate a higher quantity of prototypes in a given period of time.

H2: Increasing the modularity of a prototyping tool increases a designer's creative feeling, perceived selfefficacy, and cognitive flow. [Conversely, increasing a designer's exposure to technical details while prototyping (e.g. through the number of wiring options) decreases these cognitive measures.]

To test these hypotheses, we provided a generative prototyping challenge to a broad group of participants, and varied the degree of tool modularity for each participant. Based on a modified version of the prototyping task by Kulkarni et al., we asked participants to create as many unique and novel electric alien creatures as possible in a 10-minute period. We provided the following prompt, adapted from Marsh et al.:

"Imagine a planet like earth existing somewhere else in another universe. It is currently uninhabited. Your task is to design new creatures to inhabit the planet. The creatures in this world are very special, since they all are made up of tiny electric blocks. With 10 minutes allotted, draw and describe as many new and different creatures of your own creative design as you are able. Duplications of creatures now extinct or living on the planet Earth are not permitted."

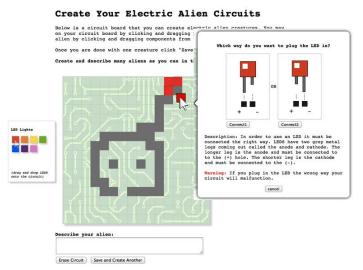


Figure 3. The alien circuit creator interface where participants could drag LEDs onto a 16x16 grid.

We developed an HTML/Javascript based circuit creation tool that allowed participants to drag and drop colored LED's or draw grey paint on a 16x16 circuit board (Figure 3). Users could submit as many prototypes as they wished in the time allotted, as well as provide a verbal description of each prototype (Figure 4). Participants were asked to physically arrange and describe each circuit board design, where each circuit would be a visual representation of a novel creature. The LED components were presented as a possible design option to add "virtual" colored lights. Using this software representation of a circuit allowed us to manipulate features of the interface for three user groups.

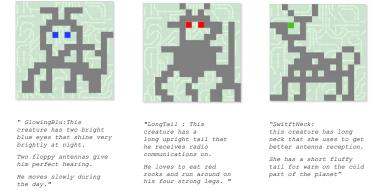


Figure 4. Example electric creatures shown to the participants.

4.1 Participants and Groups

We recruited (N=86) participants on Amazon's Mechanical Turk with a compensation of \$1.00 USD per participant (48 male, 38 female, average age 36 years). Users were filtered to include only fluent English speakers located in the United States. Participants were randomly assigned to one of three groups. The control group was able to freely place LEDs on the circuit board as encapsulated modules, without interruption. When participants from Groups A or B attempted to place an LED on their circuit, they were interrupted by a technical description of LED polarity, and asked to plug in wire leads in the correct orientation before they would appear on the circuit (Figure 5). Groups A and B have less modular interactions, as described in section 2.1, since there is an additional choice that must be made before successfully adding each LED. Group B differed from Group A, in that they were presented with a randomized LED orientation and randomized plug orientation.

Figure 5. Three Groups. Groups A an B were given a technical description of LEDs. Participants had to select the correct wire orientation for the placement of each LED.

4.2 Procedure

Each participant engaged in four steps: (i) pre-survey, (ii) description of task and creature examples, (iii) 10 minute task, and (iv) a post-survey. Before and after the task, participants were asked to rate their level of confidence in prototyping with electronics, and their current feeling of creativity on a 1-7 point Likert-type scale, with 7 being the highest. At the end of the study, cognitive flow was measured using the flow short scale survey developed and validated by previous studies on flow (Engeser and Rheinberg, 2008). We logged usage statistics, such as the number of creatures created and the number of LEDs used per participant. For each group we computed the (Y_1) average quantity of creatures created, (Y_2) average number of LEDs used, (Y_3) average change in creative feeling between pre-task and post-task surveys, and (Y_4) average change in perceived self-efficacy.

5.Results

All participants (N=86) attempted to create creatures, and the virtual circuit building exercise appeared to be an effective design task for generating diverse prototype ideas (Figure 6). Qualitatively we found that the 16x16 grid was sufficient to express creative ideas and most participants provided colorful verbal descriptions. Statistically comparing the control group with each group (two-tailed t-test), we found the following results (Figure 7). :

- 1. **Prototype Quantity:** Participants in Group B made significantly fewer creatures than the Control. (2.42 vs. 3.47, p<0.05). Both Group A and B used fewer LEDs than the control group (A=16.6 B=12.62 vs. Control=27.6, p<0.05). There was no statistical difference between the prototype quantity of Group A and the Control (3.43 vs 3.47 p>0.05). (
- 2. Self-efficacy & Creative Feeling: Both the Control and Group A reported an increase in creative feeling and self-efficacy after the design task (+0.57 and +0.47, and +0.5 and +0.44, respectively). Group B reported a decrease in creative feeling and self-efficacy (-0.58, -0.37, on the 7-point Likert scale), and these changes were significantly different than the Control (p<0.05).
- 3. Cognitive Flow: Group A had an increased flow score compared with the Control (4.99 vs. 4.56, p < 0.05). There was no statistical difference between the flow scores of Group B and the Control.

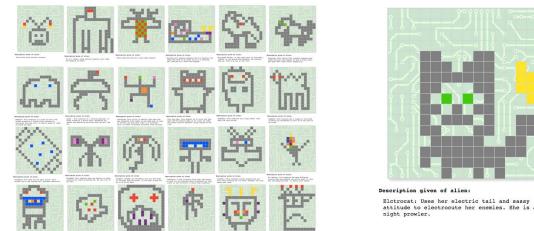


Figure 6. A sample of creatures created by participants, illustrating the diversity of creatures.

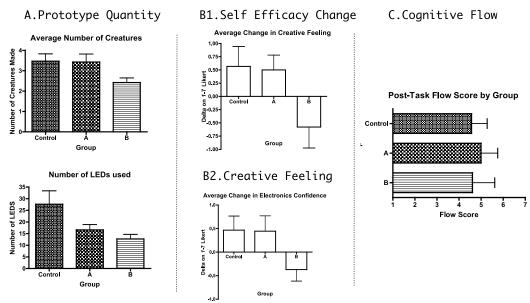


Figure 7. Summary of prototype quantity, self-efficacy change, creative feeling and flow across groups.

6. Discussion

The results of this study show that we can measurably increase a designer's perceived self-efficacy and creative feeling through the use of modular prototyping tools. In contrast, exposing designers to a higher degree of technical detail while prototyping (e.g., through having one select the correct wire orientation for each LED) had a significantly negative effect on design performance, as evidenced by a decrease in prototype quantity, self-efficacy, and creative feeling for participants in Group B. It appears that repeated exposure to technical interruptions while prototyping can create a cumulative barrier to one's design creativity. The act of wiring individual LEDs diverted time away from the task of creating, which was seen through the reduced quantity of ideas generated by Group B. However, the increase in cognitive flow observed in Group A (the group presented with a consistent wiring orientation for each LED) suggests that exposure to technical choices that require minimal cognitive interruption contributes to a state of flow, which corresponded to an increase in creative feeling and self-efficacy. The findings from this study underscore the importance of increasing the modularity of technology design tools to encourage playful prototyping and creative expression. While this pilot study shows promising results with a software simulation and crowd-sourced participants, future work will focus on matched cohort testing with physical parts, rather than simulated circuits. Also, we aim to evaluate how modularity impacts objective measures (i.e., prototype quantity, accuracy, and functionality) associated with the designs produced.

7. Conclusion

We present a creative prototyping user study with N=86 crowd-sourced participants, on a virtual LED circuit task. The study tested the hypothesis that modules can reduce the difficulty of prototyping by hiding technical details into cognitive chunks. The findings demonstrate with empirical evidence that modularity has creative benefits on prototyping tasks. Specifically, the results show that increasing the modularity of design tools allowed participants to create more prototypes, and significantly increased designers' feelings of creativity, self-efficacy and cognitive flow. This study lays the groundwork for an understanding of how modular tools amplify creative prototyping.

Acknowledgement

We thank the Hasso Plattner Design Thinking Research Program for supporting this research.

References

Baldwin, C. Y., & Clark, K. B. (2000). *Design rules: The power of modularity* (Vol. 1). MIT Press. Bandura, A. (1977).*Self-efficacy: toward a unifying theory of behavior change. Psychological Review*,84(2),191-215.

Csikszentmihalyi, I. S.(1992). *Optimal experience: Psychological studies of flow in consciousness*. Cambridge Press. Dow, S.P., Glassco, A., Kass, J., Schwarz, M., Schwartz, D.L., Klemmer, S.R. (2010). *Parallel Prototyping Leads to Better Design Results, More Divergence, and Increased Self-Efficacy*. ACM Trans. Comput.-Hum. Interact.17(4)18. Engeser, S., & Rheinberg, F. (2008). *Flow, performance and moderators of challenge-skill balance*. Motivation and Emotion, 32(3), 158-172.

Kulkarni, C., Dow, S. P., & Klemmer, S. R. (2014). *Early and repeated exposure to examples improves creative work*. In Design Thinking Research (pp. 49-62). Springer International Publishing.

Hartmann, B., Klemmer, S. R., & Bernstein, M. (2005). *d. tools: Integrated prototyping for physical interaction design.* IEEE Pervasive Computing.

Marsh, R. L., Landau, J. D., & Hicks, J. L. (1996). How examples may (and may not) constrain creativity. Memory & Cognition, 24(5), 669-680.

Miller, G. A. (1956). The magical number seven, plus or minus two: some limits on our capacity for processing information. Psychological review, 63(2), 81.

Pimmler, Thomas Udo, and Steven D. Eppinger. *Integration analysis of product decompositions*. Cambridge, MA: Alfred P. Sloan School of Management, Massachusetts Institute of Technology, 1994.

Tierney, P., & Farmer, S. M. (2002). Creative self-efficacy: Its potential antecedents and relationship to creative performance. Academy of Management Journal, 45(6), 1137-1148.