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functionality this causes far less effort for following iterations if it is well designed. If lightweight 
design aspects are additionally taken into account, the product developer should use methods and tools 
like structural optimization for gaining an optimal initial design [Müller et al. 1999].  
Topology optimization enables the product developer to find a lightweight design proposal by 
computing a discrete geometry of the considered component, while ensuring the product’s 
functionality - especially by meeting the mechanical requirements [Bendsoe and Sigmund 2003]. For 
example, a common structural optimization task during product development is to maximize stiffness 
as objective, while minimizing mass for a given set of loads and boundary conditions. The result of the 
optimization is an optimal material distribution within the given design space, which can then be used 
as an initial design proposal that already ensures the product’s requirements. 
For this reason, structural optimization methods and tools should be integrated as a state of the art 
process during product development and actively be used by design engineers. But this still has not 
already been established. In practical use the application of structural optimization techniques is 
typically the task of a simulation engineer and thereby often performed after the important design 
stages, like embodiment design. On the other hand in the past years there appeared a distinct trend: 
nearly every established CAD system provides an integrated finite element analysis module to the 
product developer, e. g. PTC Creo Simulate [Shih 2011], for analysing the design proposals during the 
design process. Hence the next logical step should be the full integration of structural optimization in 
the design process. Certainly several problems have to be solved. A survey of [Balázs et al. 2002] 
analyses the use of optimization techniques in the UK’s industry and shows that there are several 
reservations against these methods and tools (Figure 2). 

 
Figure 2. Survey: reasons against the use of optimization according to [Balázs et al. 2002] 

Some of the arguments against optimization can be rejected immediately. According to [Schumacher 
2012] structural optimization always leads to improvements and is always applicable, assuming that it 
is used correctly. However, optimization is often applied either too early or too late in the design 
process and too rare in between during the main time. There is either too little information to gain 
useful results or the optimization is performed too late, so that anything can be changed hardly. 
Besides, the most frequently mentioned reason “no experience” shows the necessity of a support for a 
methodical use of structural optimization. Consequently this paper focuses on the development of an 
extended design guideline, which supports the design engineer to use structural topology optimization 
successfully in a methodical way during the engineering design process. First of all, both the state of 
the art technical integration, and the state of the art methodical integration of structural optimization in 
the design process will be shown. Based on the state of the art integration the development of an 
extended integration approach during a design study is presented. Afterwards the new methodology is 
described in a general manner. The paper closes with a short summary and a future prospect. 

2. State of the art 

2.1 Technical integration 
The common proceeding to perform a topology optimization is divided in three main steps, as shown 
in Figure 3. During the first step the CAD model of the design space is created, which is subsequently 
optimized. After performing the optimization the result is reimported as triangulated surface into the 
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CAD environment. This mesh has to be reconstructed and interpreted by the design engineer as a 
feature based CAD model that can be adapted to manufacturing and functional conditions. 

 
Figure 3. Tasks to perform a topology optimization based on [Hessel 2003] 

The optimization itself is divided into three steps: the pre-processing, the calculation step and post-
processing. A finite element model of the design space is always the basis for the structural 
optimization, which is generated during pre-processing by typical finite element tools. After 
performing the calculation, the topology optimization result needs to be interpreted during 
post-processing and exported as a smoothed mesh back into the CAD environment. 
To support this process the current research for technical integration into the design process deals 
mainly with a better integration of the optimization pre-and post-processing steps [Hessel 2003]. 
Especially topics like integration of new manufacturing constraints [Pedersen and Allinger 2006] or 
the development of new optimization algorithms, e. g. for robust topology optimization under 
uncertainties [Chen et al. 2010] are in the focus today. Additionally the expansion of topology 
optimization to other physical fields like optimization of fluid [Aage et al. 2008] or acoustic problems 
[Yoon et al. 2007] is under present research. Certainly these special problems are typically solved by a 
simulation engineer and not by the design engineer. But, during the pre-processing steps, the 
interaction of the design engineer is indispensable because the design space needs to be defined. 
Additionally the optimization task (what is the aim of the optimization?), loads, boundary and 
manufacturing conditions need to be defined by the requirements and the conceptual design. 
During post-processing the result has to be returned back to the CAD system. This rough design 
proposal, which is represented by a triangulated surface mesh, has to be interpreted, validated and 
utilized by the design engineer. At the actual state of the art it remains to decide how this can be 
solved, due to the lack of special tools. 
This topic has to be thoroughly investigated, to allow an automatic or semi-automatic reconstruction 
of the optimized mesh results as feature-based representation in the CAD environment. There are 
several interesting approaches like in [Shane Larsen 2009] who shows a framework for converting 
topology optimization results into parametric CAD models. This is done by gradually removing 
material from the CAD model of the design space by machining features (extrude, revolve, sweep etc.) 
at the same position as the optimizer does. But this leads to the problem that cross-sections of the 
resulting structure concurrently depend on several different features. Consequently an additional 
adoption of the model to match manufacturing and functional conditions is nearly impossible. There is 
a missing link between the parameters the design engineer has in mind and the feature parameters.  
Perhaps other approaches for a feature-based reconstruction of freeform shape optimization results, 
like in [Stangl and Wartzack 2013], can be adopted for the reconstruction of topology optimization 
results, but therefore further investigation is needed. 
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2.2 Methodical integration 
The consistent use of topology optimization, which has previously been the main responsibility of the 
simulation engineer, depends now forcibly on the design engineer who deals with the design of the 
product’s components. The information flow between different INPUT, e. g. collecting requirements, 
design and manufacturing knowhow etc. and OUTPUT streams, like usage of CAD and CAE systems, 
generation of changing announcements, reviews etc. make the design engineer the focal point of a 
modern product development process [Schumacher 2012]. However, typical calculation methods of 
the design engineer are largely limited to analytical calculations like sizing and selection or simple 
(FE) analysis for functional verification. 
In practice the interaction between simulation and engineering design can be described as follows: The 
simulation engineer uses the already completed design draft and checks it by the use of calculation 
tools, if certain requirements are met or a structural optimization can be performed. The CAD models 
of the design engineer, where the design process is in the foreground, are often unsuitable for the 
simulation engineer, so the models need to be prepared for the new purposes [Löffel 1997]. This 
situation is also similar in the reverse order: the recalculated or optimized components may be difficult 
to manufacture because the simulation engineer does not have the same manufacturing knowledge and 
experience like the design engineer. Often multiple iterations between these two sides are necessary. 
With the use of calculation methods and tools by the design engineer the amount of iterations could be 
reduced [Steinbrink et al. 1999]. 
Certainly, not all calculation methods can be used by the design engineer. This statement is supported 
by the classification of computational methods in the so-called ABC categorization by [Mertens 1995]. 
The ABC approach divides calculation methods in three categories in terms of their time effort and 
significance, like shown in Figure 4: 

 
Figure 4. ABC classification according to [Mertens 1995] 

 Class C: low significance and time effort; method is controllable by basic knowledge 
 Class B: mean significance and time effort; method usable by incorporation 
 Class A: high significance and time effort; method is only applicable by specialists 

The time effort does not only mean the computation time but also the overhead of creating the 
simulation models. Therefore, optimal calculation methods would be classified of class A with the 
effort of class C. This approach would be nearly fulfilled by a methodically supported and computer 
aided application of elementary topology optimization during the design process. Therefore a 
structured integration of these tools in the engineering design process is needed. 
Until now there are only a few hints in literature that refer specifically to an integrated and continuous 
application of topology optimization during the engineering design process. [Harzheim 2008] for 
example tries to describe the conventional product development process and postulates an improved 
procedure in relation to an early use of topology optimization like shown in Figure 5. According to 
[Harzheim 2008] the design engineer passes through the main part of the design process in the 
conventional way and initially creates a detailed CAD model. Subsequently an FE analysis is 
performed. If required, the design is optimized and revised until the final shape is defined. The 
improved design process minimizes the iterations between simulation and design by an early 
integration of topology optimization. This process starts with the generation of the design space, what 
is by means of CAD a fast and easy process. Next step is the rough design of the component by the use 
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deviated from the proposal of the optimization due to of manufacturability. Even if the CAD design 
would be a direct reflection of the design proposal, the result has to be checked against existing 
material limits, like fatigue strength etc., which is not considered during topology optimization. 
Therefore after completion of the overall layout of the product a FE analysis is required to validate the 
CAD design. Depending on the result of this validation, the final design is achieved or the result is 
subjected to a detailed optimization, e. g. (freeform) shape or parameter optimization. The last stage of 
the enhanced design process is the definition of the product documents for further realisation. This 
step follows the conventional design process. 

5. Summary and outlook 
At the beginning the importance of structural optimization in particular topology optimization has 
been illustrated for the design process. Reservations about the use of optimization techniques were 
reproduced on basis of a survey, which shows further need for action. Because the structural 
optimization can enforce more and more against these reservations due to its advantages, an early and 
continuous use in product development should be aspired. Finally, according to “do it right the first 
time” it is desirable to design optimal components from the beginning instead of a time-consuming 
iterative adaption of the actual design. While the integration of topology optimization is also currently 
on the technical side constantly evolving, there is little evidence in terms of methodical integration. If 
optimization is used as early as possible during product development in future, the design engineer 
will act more and more as a simulation engineer. Therefore the design engineer needs methodological 
support how to proceed concretely. In order to provide this support, in this paper an extended design 
guideline was presented which supports the product developer to use structural optimization during the 
design process in a structured way. The theoretical considerations given by this paper are supported by 
a design study, in which the entire development process according to the process model of Pahl and 
Beitz was passed through. Furthermore during the development of the new guideline, it turned out that 
topology optimization is basically usable during embodiment design. It was also shown that an earlier 
application within the design stages is difficult due to the lack of information. 
By the use of topology optimization during the design study good results can be achieved, but also 
some limits show up. With the early use of topology optimization for a new design, a problem in 
relation to evaluation of the benefit occurs: The results cannot directly be compared with a previous 
component or product, so an estimation of the improvement in concrete is hardly possible. 
Furthermore, there is the challenge in application of structural optimization techniques that the user 
needs both a familiarity with design engineering tools like the CAD system, as well as simulation tools 
and methods, like finite element analysis and structural optimization is required, which is probably 
rarely encountered in industrial environments. To allow the necessary coupling of the design and the 
calculation engineer in one person in future computer-aided tools need to be developed that could be 
classified class A with an effort close to class C according to the mentioned ABC concept [Steinbrink 
et al. 1999]. This could possibly be reached by specialised knowledge-based tools. 
Consequently further development of the technical integration into the CAD-based design process is 
required and will contribute to the continuous use of structural optimization. Especially the conversion 
of the topology optimized results in feature-based solid CAD models will help to save time and the 
acceptance of structural optimization methods. But also available features of the optimization software 
are not fully developed. For example, the subsequent validation run of an optimization result, e. g. 
resulting stresses, deformation etc. within the simulation environment doesn’t work properly in most 
cases due to a faulty mesh. 
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