
 

INTERNATIONAL DESIGN CONFERENCE 
Dubrovnik 

DESIGN PROCESS ACCEL
KNOWLEDGE
AUTOMOTIVE AND AEROS

J. Stjepandi
Garcia 

Keywords: 
artificial intelligence, 
management

1. Introduction
During the development, production and operation of products, knowledg
The central role of knowledge in all aspects of the product lifecycle is well recognized, as is its 
function as a driver for the competitiveness of an organization through the capability for effective 
action [Birkinshaw 
capture, structure and (re
One of the most promising research and application fields in this context is Knowledge
Engineering (KBE). KBE applications aim to reduce time and cost of new product development, 
which is primarily achieved through automation of repetitive design tasks while capturing, retaining 
and re-using product and process knowledge [Liese 2004], [La Rocca
are available for development of KBE applications, but vendors of Computer
systems are offering an alternative in the guise of so
Though the two approaches have so
questions arise from an industrial perspective: the two approaches have some fundamental differences. 
Whereas the academic foundation for KBE 
upon, the use of templates in CAD systems has received relatively
often grouped in with KBE literature. As such, the following exploratory questions arise: Which types 
of templates can be distinguished? Which challen
templates?
'true' KBE applications?
The presented research explores these issues and highlights recent work from an industrial per
Two industrial cases are introduced in which template functionality is implemented within a CAD 
system. The developed template functionality addresses part of the challenges identified in Section 2. 
The findings of the industrial cases are subseq
Finally, ongoing and future research work with respect to knowledge templates in CAD systems is 
discussed.

2. Theoretical context
KBE can be seen as an extension of Knowledge
domain, where KBE adds facilities for geometry manipulation and data handling to the acquisition 
mechani
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2012]. Though KBE has its roots in the 1980’s and has been used throughout the years in the 
automotive and aerospace industries in particular, developments such as the commoditization of 
computing and methodological advancements in KBE [Stokes 2001] have sparked a renewed interest 
from both academia and industry, including small-to-medium enterprises (SME’s) [Lovett 2000]. Part 
of this interest is prompted by the tangible benefits achieved by KBE applications, as reported in 
literature [Verhagen et al. 2012] – time savings for complex design tasks can be as high as 99%.  
Commercial offerings for the development and implementation of KBE solutions are typically 
categorized as being 'true' KBE systems or 'augmented CAD (Computer-Aided Design)' systems. True 
KBE systems are characterised by the native use of dedicated programming languages and focus on 
rule and knowledge capture; for an extended discussion, see La Rocca [2012]. In an effort to match the 
benefits offered by 'true' KBE systems, vendors of Computer-Aided Design (CAD) systems have 
made a conscious effort over the past decade to integrate KBE-like functionality into their geometry-
focused solutions. This is done through the use of knowledge-based engineering templates. The 
resulting 'augmented CAD' systems offer similar capabilities in terms of design automation, while 
being positioned as user-friendly alternatives to 'true' KBE systems, which require programming 
expertise. On the downside, the augmented CAD systems are either slower than true KBE 
applications, or require significant programming effort to realize similar fast automation results [La 
Rocca 2012]. 
Despite the differences between KBE systems and templates in CAD systems, both approaches to 
design automation face a number of common challenges. These include black-box implementation and 
(non-)transparency of knowledge bases, maintainability of knowledge and applications, ad-hoc 
development, and a notable lack of (quantified) justification [Verhagen et al. 2012]. However, in the 
context of this industrial paper the focus lies on the characterisation and application of templates in 
CAD systems, for product validation and process representation in particular. 

3. Implementation of knowledge templates 
In industrial practice, various templates can be meaningfully applied to support product design. 
Templates can be characterized using product and/or process breakdown approaches. As an example, 
characterization may include part templates, assembly templates, validation templates, process chain 
templates and system templates. Part and assembly templates, often complemented by design rules, are 
geared to the parts and sub-assembly generation. Often, they are used in connection with skeleton 
model methods which describe references and parameters that are necessary to shape and instantiate 
parts in a sub-assembly. The validation template serves for the testing of complex rules (e.g. legitimate 
duties). In contrast, a process chain template connects different domains (e.g. design and 
manufacturing). In addition, system templates connect descriptions of functions and behavior with the 
shape. Different template types can be combined with each other. In the remainder of this Section, two 
use cases from industry pertaining to a validation template and a process chain template are presented. 

3.1 Use case 1: Validation template for application in automotive industry 
Validation templates are a very promising application of KBE because the workflow is defined by law. 
Since the license for a passenger car is subject to many international rules, norms and standards, the 
KBE template CAVA (CATIA V5 Automotive Extensions Vehicle Architecture) was developed by 
Audi, BMW, Daimler, Porsche and Volkswagen to ensure car design and legal compliance during the 
entire design process - from the concept phase to the homologation [Rohwäder 2007]. 
As an additional CATIA V5 workbench CAVA creates reference or support geometry representing 
design space, clearance areas, or fields of vision required to support draft and design. During the 
concept phase CAVA provides the boundaries for several design aspects, performs automatic checks 
for legal conformity and reports deviations. CAVA includes a complete set of validation procedures 
like rear view mirror, viewing fields, security belts, underfloor clearances, lamp positions, pedestrian 
protection, and much more. Finally it validates that standards have been followed and creates reports 
to be used for homologation of a car. 
Nevertheless there is a strong need for further automation of the validation procedure in the concept 
development of passenger cars, in particular in case of modular architecture and multi-brand product 
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strategy. Hence, validation is one of the tasks that fully harness the benefits of the modular product 
strategy. Otherwise, it shall preserve the quality of design solutions. The concept developmen
passenger car runs by creating a 3D master model and using many knowledge based assistants that 
support the designers in dedicated design tasks: silhouette of a car, design of wheel housing, 
pedestrian protection, gap tolerance area, ejection mitiga
belt numerical simulation [Brüning and Liese 2013]. With this approach the following strategic 
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embedded in the CAD infrastructure. It consists of four main building blocks: configuration, pre
processing, sectioning and post
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To leverage the operation and monitoring, strong o
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performance as well as decrease of maximal memory usage
protocol levels
Introduction of the automatic cross
server signifies a substantial time
improvement
user interaction are achieved
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 Enterprise Knowledge Resource (EKR): a task-oriented container of the knowledge, subtasks 
and output associated with an engineering task. In other words, an EKR can be used to 
represent the content of a task. 

 Product-Process-Resource: classes to represent the product(s), process(es) and resource(s) an 
EKR is associated with. In other words, these classes represent the context of a task. 

As the task is separated from the domain knowledge, it is possible to independently update either 
element. Given the association of the task with its context, it becomes easier to retrieve and access a 
task as well as its individual elements. In short, maintainability and usability of a knowledge-based 
application are improved.  

 
Figure 4. Knowledge Lifecycle Ontology [Verhagen 2013] 

The ontology has subsequently been used as the semantic backbone for development of a knowledge-
based application. Using the preceding considerations, an EKR class diagram has been modelled for 
this specific case study and associated task. The UML class diagram is shown in Figure 5. 
The knowledge-based application optimizes for ply continuity using an automated solution, while 
retaining the required product and process knowledge. This knowledge includes over 30 design and 
manufacturing constraints. Furthermore, a genetic algorithm has been implemented in FORTRAN to 
perform the optimization of ply continuity. To implement the solution, two main architectural 
elements have been devised: 

 EKR Environment for Learning by Doing (eLBD): The environment for learning by doing 
(eLBD) is a web solution aimed at supporting end users. eLBD is based on a knowledge 
management tool called Ardans Knowledge Maker (AKM). Specific models for the 
representation of knowledge and process elements have been implemented within AKM to 
enable the construction of EKRs which package the process and knowledge elements and the 

1920 DESIGN INFORMATION AND KNOWLEDGE



 

cases. For this use case, AKM contains an EKR which holds the design and manufacturing 
knowledge related to the ply optimization problem, as well as a process representation that 
calls the process workflow when executing the EKR (see below). The resulting process 
template is consequently not implemented in CATIA, but interfaces with it through the ply 
specification file. 

 Executable environment for Learning by Doing (xLBD): The executable environment for 
learning by doing (xLBD) is a solution to enable the remote execution of EKRs through a web 
service approach. xLBD uses several software applications and languages (Apache Tomcat 
web server, Java, AKM web services and Phoenix Integration Model Center®) to deploy 
EKRs as web services. Users can access and execute the software remotely, so they do not 
require a dedicated installation of software on their desktops. In particular, the process 
workflow is modeled and automated using Model Center, where the tasks highlighted above 
are implemented in a sequential order. This workflow is initiated through the eLBD 
environment. 

 
Figure 5. EKR class diagram (UML) for design case study 

The implemented knowledge-based solution is able to deliver composite wing conceptual designs 
optimized for manufacturing. Runtime of a single solution is around 1 minute, as opposed to one to 
several hours (incorporating significant variance dependent on the provided specification file and 
manual interventions required within the CAD system) for the previous, highly manual solution. 
Evaluation and trade-off of the conceptual designs is supported by the construction of Pareto fronts 
using weight, cost and manufacturability objective parameters. The solution is fully automated and 
supports independent update of the task knowledge and process workflow. As such, maintainability of 
the knowledge-based application is taken into account. 
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4. Discussion 
KBE technology has become widely accepted in many industries. Especially for design processes with 
a high percentage of repetition KBE may demonstrate significant benefits, and justifies the name 
design automation. In general, the benefit of KBE is extra high if products feature a high variance of a 
basis development, as much as possible single steps of the engineering process can be described by 
algorithms, and operations are cross-divisional (e.g. product design or tool design). By using a KBE 
application or template routine tasks are transformed into an automated process with a minimum of 
user assistance. The high one-time effort for the development of a template loses importance the more 
the template is used. All these criteria are fulfilled in the presented use cases. 
KBE is still subject to intensive research and practical improvements. The valuation of KBE can be 
facilitated in two directions: KBE as autonomous procedure (application) and KBE as component of 
the business process as a whole. This first direction is demonstrated in the automotive case study. The 
second direction is partially included in the aerospace case study.  
When considering KBE autonomously, a number of developments have put KBE on a stronger footing 
over the last decade. In particular, the development and uptake of KBE-dedicated languages, the 
uptake of KBE language or template functionality in most major CAD systems, and the development 
of supporting methodologies such as MOKA [Stokes 2001] have strongly contributed to the uptake of 
KBE. If a KBE application is developed close to a dedicated CAD system, as shown in our automotive 
case study, its flexibility to be used with other CAD system is heavily inhibited. However, a number of 
challenges remain to be solved. 
First of all, the justification of KBE application development, use and maintenance is currently not 
supported by scientific approaches [Verhagen et al. 2012], though recently advances have been made 
to support the identification of knowledge change characteristics [Verhagen 2013] and to offer 
methodological support [Johansson et al. 2013]. 
Second, current KBE applications or templates (within CAD systems) only weakly address the issue 
of workflow integration. In our automotive use case it is done by a dedicated software application 
which must be also updated in case of update of the KBE application. The European iPROD project 
[iProd 2013] aims to address this through the development of models and tools for workflow 
integration into KBE. The project iPROD also considers KBE as a service (Software-as-a-Service, 
SaaS), thereby addressing a third challenge in KBE research, which is to ‘support web collaborative 
solutions and open source initiatives’ [La Rocca 2012]. 
A final research challenge is to address the ‘black-box’ phenomenon of KBE development and use 
[Verhagen et al. 2012]: supporting the integration of code and documentation generation [Liese 2004] 
as well as explicitly linking knowledge base structure and meaningful content with the KBE 
application elements and code. 
When considering KBE as a singular component of a business process, many issues have arisen in the 
past and still remain unresolved. As KBE uses either additional CAD entities or additional software, 
which must be independently installed, in the case of a PDM-controlled development process, KBE 
systems must be subjected to the PDM system, as practised in our automotive case study. That is a 
serious issue because commercial PDM systems do not sufficiently support the KBE workflow 
[Katzenbach et al. 2007]. Therefore, a certain self-limitation of the used KBE functionality is 
necessary to remain in conformance with PDM, at least until PDM systems are able to support the 
whole KBE functionality. 
Another issue is the complexity of the KBE data model and the corresponding relationships between 
singular entities. Although KBE can be applied easily like a blackbox, misunderstandings and 
mistakes can arise if the user has to derive the CAD model created by instantiation of a KBE template 
using complex relationships he is not familiar with. For example, more than 2,500 links are needed to 
define an entire body-in-white structure within a concept template [Katzenbach et al. 2007]. This link 
management gives the capability of dividing complex structures into template- based and usable part 
structures. This issue could be resolved by use of augmented reality (AR) techniques that enable the 
multimedia representation of knowledge, especially interactive animation of 3D CAD models 
[Januszka et al. 2012]. AR provides the changing views of virtual data – especially 3D models – in a 
real environment and allows the user to better understand the presented virtual data and knowledge in 
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a more comprehensive way. Therefore, visualization of relationships in engineering remains a subject 
of research. 

5. Conclusions and Outlook 
As the preceding sections and use cases indicate, the use of KBE applications and templates can 
achieve significant results through automation of complex engineering tasks, significantly decreasing 
engineering task time while retaining product and process knowledge and increasing the robustness 
and process stability. Recent developments like CATIA V6™ allow use of templates for each module 
in this package allowing automation of (theoretically) each engineering task. It could be used as one of 
basic technologies for systems engineering too [Fukuda et al. 2013]. In such way design automation 
becomes more ubiquitous. 
A breaking point preventing the comprehensive use of KBE lies in engineering collaboration. 
Commercial KBE applications are not prepared for the exchange of templates on a regular basis (e.g. 
within the supply chain). Our both use cases underlie the same constraint. It helps, although not 
intentionally, to protect the intellectual property stored in this templates [Liese et al. 2012]. Therefore, 
each partner in the supply chain is forced to act autonomously. Furthermore, if KBE entities shall be 
exchanged between two applications (e.g. different CAD systems), it would fail because there is no 
standard interface for such an exchange. Apart of the first draft of the KBE Services for PLM done by 
the Object Management Group (OMG) [Bermell-Garcia 2007], there is no known standardization 
activity. 
Finally, when considering the introduction and use of KBE applications and templates, the adaptability 
and maintainability of developed applications and templates remains a point of concern. 
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