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1. Introduction
Within the setting of complex technologies and organization networks, the goal of this research is to 
explore how conceptual blind spots emerge from the interaction of misaligned 
cultures. 
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how incongruous value systems and conceptual schemata cause blind spots to emerge and persist, 
increasing the lik
In complex systems, it is common for c
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direct or i
in the program lifecycle or to discover them and help manage them as the program nears completion. 
To “manage” these influences and interdependencies means making
dimensional space of performance (“trade space”) and also trying to limit the disruptive effects of 
design changes.
Our hypothesis is that conceptual blind spots emerge when the value systems and conceptual schemata 
of collaborating 
visibility domains that are far from the main priorities of each organization 
Furthermore, we hypothesize that these incongruities persist and the
because there is a short
value system and conceptual schemata 
in the program life c
performance goals, 
as the program nears completion, and this manifests in the form of organiza
specific goals at the expense of others. For example, pressure to reduce weight while facing schedule 
pressure can lead designers to increase unit cost by switching to a lighter but more expensive material 
– a “quick fix” compared t
This is a difficult research problem to investigate because it involves the interplay between the 
technical aspects of design and the social aspects of design teams. Case study methods have been used 
to study particul
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Introduction 
n the setting of complex technologies and organization networks, the goal of this research is to 

explore how conceptual blind spots emerge from the interaction of misaligned 
. Our interest is in the social and cognitive mechanisms involved and possible interventions 

that would reduce the odds of the emergence of blind spots th
or missed objectives
based Modelling (ABM) 
how incongruous value systems and conceptual schemata cause blind spots to emerge and persist, 
increasing the likelihood of 
In complex systems, it is common for c
subsystem behaviours and performance variables. Influences can be intended or unintended, and also 
direct or indirect. One of the major goals of system engineering is to anticipate these influences early 
in the program lifecycle or to discover them and help manage them as the program nears completion. 
To “manage” these influences and interdependencies means making
dimensional space of performance (“trade space”) and also trying to limit the disruptive effects of 
design changes. 
Our hypothesis is that conceptual blind spots emerge when the value systems and conceptual schemata 

laborating teams
visibility domains that are far from the main priorities of each organization 
Furthermore, we hypothesize that these incongruities persist and the
because there is a short
value system and conceptual schemata 
in the program life c
performance goals, and/or 
as the program nears completion, and this manifests in the form of organiza
specific goals at the expense of others. For example, pressure to reduce weight while facing schedule 
pressure can lead designers to increase unit cost by switching to a lighter but more expensive material 

a “quick fix” compared t
This is a difficult research problem to investigate because it involves the interplay between the 
technical aspects of design and the social aspects of design teams. Case study methods have been used 
to study particular designs and teams in depth. However, it is not feasible to perform case studies on a 
large number of cases or to control conditions to s
Methods for analysis of system interdependencies have been in use for several decades

Browning 2001
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n the setting of complex technologies and organization networks, the goal of this research is to 

explore how conceptual blind spots emerge from the interaction of misaligned 
ur interest is in the social and cognitive mechanisms involved and possible interventions 

that would reduce the odds of the emergence of blind spots th
or missed objectives. In this initial stage of research 

ing (ABM) to study system engineering in 
how incongruous value systems and conceptual schemata cause blind spots to emerge and persist, 

elihood of a program missing it’s performance goals
In complex systems, it is common for c

viours and performance variables. Influences can be intended or unintended, and also 
ndirect. One of the major goals of system engineering is to anticipate these influences early 

in the program lifecycle or to discover them and help manage them as the program nears completion. 
To “manage” these influences and interdependencies means making
dimensional space of performance (“trade space”) and also trying to limit the disruptive effects of 

Our hypothesis is that conceptual blind spots emerge when the value systems and conceptual schemata 
teams are incongruous 

visibility domains that are far from the main priorities of each organization 
Furthermore, we hypothesize that these incongruities persist and the
because there is a short-term benefit to each organization, namely preserving and reinforcing its core 
value system and conceptual schemata 
in the program life cycle lead to cascading design changes, which lead to

and/or cost over
as the program nears completion, and this manifests in the form of organiza
specific goals at the expense of others. For example, pressure to reduce weight while facing schedule 
pressure can lead designers to increase unit cost by switching to a lighter but more expensive material 

a “quick fix” compared to a time
This is a difficult research problem to investigate because it involves the interplay between the 
technical aspects of design and the social aspects of design teams. Case study methods have been used 

ar designs and teams in depth. However, it is not feasible to perform case studies on a 
large number of cases or to control conditions to s
Methods for analysis of system interdependencies have been in use for several decades

2001]. However, system engineering methods 
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odelling, design cognition, 

n the setting of complex technologies and organization networks, the goal of this research is to 
explore how conceptual blind spots emerge from the interaction of misaligned 

ur interest is in the social and cognitive mechanisms involved and possible interventions 
that would reduce the odds of the emergence of blind spots th

initial stage of research 
to study system engineering in 

how incongruous value systems and conceptual schemata cause blind spots to emerge and persist, 
a program missing it’s performance goals

In complex systems, it is common for components 
viours and performance variables. Influences can be intended or unintended, and also 

ndirect. One of the major goals of system engineering is to anticipate these influences early 
in the program lifecycle or to discover them and help manage them as the program nears completion. 
To “manage” these influences and interdependencies means making
dimensional space of performance (“trade space”) and also trying to limit the disruptive effects of 

Our hypothesis is that conceptual blind spots emerge when the value systems and conceptual schemata 
are incongruous – i.e. work at cross

visibility domains that are far from the main priorities of each organization 
Furthermore, we hypothesize that these incongruities persist and the

term benefit to each organization, namely preserving and reinforcing its core 
value system and conceptual schemata [Hedberg 1981

ycle lead to cascading design changes, which lead to
cost over-runs. Furthermore, the undesirable effects of blind spots increase 

as the program nears completion, and this manifests in the form of organiza
specific goals at the expense of others. For example, pressure to reduce weight while facing schedule 
pressure can lead designers to increase unit cost by switching to a lighter but more expensive material 

o a time-consuming component redesign.
This is a difficult research problem to investigate because it involves the interplay between the 
technical aspects of design and the social aspects of design teams. Case study methods have been used 

ar designs and teams in depth. However, it is not feasible to perform case studies on a 
large number of cases or to control conditions to s
Methods for analysis of system interdependencies have been in use for several decades

However, system engineering methods 
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n the setting of complex technologies and organization networks, the goal of this research is to 
explore how conceptual blind spots emerge from the interaction of misaligned 

ur interest is in the social and cognitive mechanisms involved and possible interventions 
that would reduce the odds of the emergence of blind spots th

initial stage of research the goal is to demonstrate the viability of 
to study system engineering in 

how incongruous value systems and conceptual schemata cause blind spots to emerge and persist, 
a program missing it’s performance goals

omponents to 
viours and performance variables. Influences can be intended or unintended, and also 

ndirect. One of the major goals of system engineering is to anticipate these influences early 
in the program lifecycle or to discover them and help manage them as the program nears completion. 
To “manage” these influences and interdependencies means making
dimensional space of performance (“trade space”) and also trying to limit the disruptive effects of 

Our hypothesis is that conceptual blind spots emerge when the value systems and conceptual schemata 
i.e. work at cross

visibility domains that are far from the main priorities of each organization 
Furthermore, we hypothesize that these incongruities persist and the

term benefit to each organization, namely preserving and reinforcing its core 
Hedberg 1981]. As a consequence, blind spots discovered late 

ycle lead to cascading design changes, which lead to
Furthermore, the undesirable effects of blind spots increase 

as the program nears completion, and this manifests in the form of organiza
specific goals at the expense of others. For example, pressure to reduce weight while facing schedule 
pressure can lead designers to increase unit cost by switching to a lighter but more expensive material 

consuming component redesign.
This is a difficult research problem to investigate because it involves the interplay between the 
technical aspects of design and the social aspects of design teams. Case study methods have been used 

ar designs and teams in depth. However, it is not feasible to perform case studies on a 
large number of cases or to control conditions to study alternative interventions.
Methods for analysis of system interdependencies have been in use for several decades

However, system engineering methods 

DESIGN 2014 

TS IN COMPLEX 
 A 

odelling, design cognition, trade space, 

n the setting of complex technologies and organization networks, the goal of this research is to 
explore how conceptual blind spots emerge from the interaction of misaligned 

ur interest is in the social and cognitive mechanisms involved and possible interventions 
that would reduce the odds of the emergence of blind spots that could lead to serious errors, 

e goal is to demonstrate the viability of 
to study system engineering in multi-team R&D projects, 

how incongruous value systems and conceptual schemata cause blind spots to emerge and persist, 
a program missing it’s performance goals

to have non-trivial influences on system and 
viours and performance variables. Influences can be intended or unintended, and also 

ndirect. One of the major goals of system engineering is to anticipate these influences early 
in the program lifecycle or to discover them and help manage them as the program nears completion. 
To “manage” these influences and interdependencies means making
dimensional space of performance (“trade space”) and also trying to limit the disruptive effects of 

Our hypothesis is that conceptual blind spots emerge when the value systems and conceptual schemata 
i.e. work at cross-purposes to each other 

visibility domains that are far from the main priorities of each organization 
Furthermore, we hypothesize that these incongruities persist and the 

term benefit to each organization, namely preserving and reinforcing its core 
As a consequence, blind spots discovered late 

ycle lead to cascading design changes, which lead to
Furthermore, the undesirable effects of blind spots increase 

as the program nears completion, and this manifests in the form of organiza
specific goals at the expense of others. For example, pressure to reduce weight while facing schedule 
pressure can lead designers to increase unit cost by switching to a lighter but more expensive material 

consuming component redesign. 
This is a difficult research problem to investigate because it involves the interplay between the 
technical aspects of design and the social aspects of design teams. Case study methods have been used 

ar designs and teams in depth. However, it is not feasible to perform case studies on a 
tudy alternative interventions.

Methods for analysis of system interdependencies have been in use for several decades
However, system engineering methods applied to complexity management 

trade space, 

n the setting of complex technologies and organization networks, the goal of this research is to 
explore how conceptual blind spots emerge from the interaction of misaligned 

ur interest is in the social and cognitive mechanisms involved and possible interventions 
at could lead to serious errors, 

e goal is to demonstrate the viability of 
team R&D projects, 

how incongruous value systems and conceptual schemata cause blind spots to emerge and persist, 
a program missing it’s performance goals. 

trivial influences on system and 
viours and performance variables. Influences can be intended or unintended, and also 

ndirect. One of the major goals of system engineering is to anticipate these influences early 
in the program lifecycle or to discover them and help manage them as the program nears completion. 
To “manage” these influences and interdependencies means making trade-off decisions in the multi
dimensional space of performance (“trade space”) and also trying to limit the disruptive effects of 

Our hypothesis is that conceptual blind spots emerge when the value systems and conceptual schemata 
purposes to each other 

visibility domains that are far from the main priorities of each organization 
 blind spots remain undiscovered 

term benefit to each organization, namely preserving and reinforcing its core 
As a consequence, blind spots discovered late 

ycle lead to cascading design changes, which lead to missed schedules, missed 
Furthermore, the undesirable effects of blind spots increase 

as the program nears completion, and this manifests in the form of organizational pressure to meet 
specific goals at the expense of others. For example, pressure to reduce weight while facing schedule 
pressure can lead designers to increase unit cost by switching to a lighter but more expensive material 

This is a difficult research problem to investigate because it involves the interplay between the 
technical aspects of design and the social aspects of design teams. Case study methods have been used 

ar designs and teams in depth. However, it is not feasible to perform case studies on a 
tudy alternative interventions. 

Methods for analysis of system interdependencies have been in use for several decades
applied to complexity management 
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explore how conceptual blind spots emerge from the interaction of misaligned design organization 

ur interest is in the social and cognitive mechanisms involved and possible interventions 
at could lead to serious errors, accidents
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how incongruous value systems and conceptual schemata cause blind spots to emerge and persist, 

trivial influences on system and 
viours and performance variables. Influences can be intended or unintended, and also 

ndirect. One of the major goals of system engineering is to anticipate these influences early 
in the program lifecycle or to discover them and help manage them as the program nears completion. 

off decisions in the multi
dimensional space of performance (“trade space”) and also trying to limit the disruptive effects of 

Our hypothesis is that conceptual blind spots emerge when the value systems and conceptual schemata 
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visibility domains that are far from the main priorities of each organization [Masys 2012
blind spots remain undiscovered 
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As a consequence, blind spots discovered late 

missed schedules, missed 
Furthermore, the undesirable effects of blind spots increase 

tional pressure to meet 
specific goals at the expense of others. For example, pressure to reduce weight while facing schedule 
pressure can lead designers to increase unit cost by switching to a lighter but more expensive material 

This is a difficult research problem to investigate because it involves the interplay between the 
technical aspects of design and the social aspects of design teams. Case study methods have been used 

ar designs and teams in depth. However, it is not feasible to perform case studies on a 

Methods for analysis of system interdependencies have been in use for several decades 
applied to complexity management 

n the setting of complex technologies and organization networks, the goal of this research is to 
organization 

ur interest is in the social and cognitive mechanisms involved and possible interventions 
accidents, 

e goal is to demonstrate the viability of Agent-
and specifically 

how incongruous value systems and conceptual schemata cause blind spots to emerge and persist, 
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viours and performance variables. Influences can be intended or unintended, and also 

ndirect. One of the major goals of system engineering is to anticipate these influences early 
in the program lifecycle or to discover them and help manage them as the program nears completion. 

off decisions in the multi-
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generally focus on specific development tasks (e.g., identification of conflicting requirements) or 
particular design objectives (e.g., product modularization) [Lindemann et al. 2009], and they do not 
directly model cognitive and social factors that can give rise to blind spots [Browning 2001], [Maurer 
et al. 2006]. 
A new field has developed that focuses on modelling social behaviour called “computational social 
science”. Computational social science models social interactions and simulates the resulting social 
behavior through the use of computational agents rather than equation-based methods [Gilbert and 
Doran 1994], [Gilbert and Conte 1995], [Epstein and Axtell 1996], [Casti 1999], [Castelfranchi 2001], 
[Macy and Willer 2002], [Epstein 2007], [Miller and Page 2007]. 
Computational agents are encapsulated computer programs that respond and behave autonomously 
[Jennings and Wooldridge 1998], [Ferber 1999], [Weiss 2000], [Wooldridge 2002]. Agent-based 
Modelling (ABM) is used since it allows explicit modelling of technological and sociological 
dynamics over a broad range of settings and conditions. It is even possible to perform controlled 
experiments to evaluate the effectiveness of alternative interventions. The main challenge for ABM for 
this purpose is to design the ABM to be rich enough to model the essence of the phenomena while 
keeping it simple enough to understand and to provide credible research results. The main claim of 
this paper is that the ABM we have developed achieves these goals. 
The paper is organized as follows. Section 2 describes the modelling and simulation methods used in 
this research, focusing on conceptual issues. Section 3 describes the setting for our simulation – a 
space launch system – and the relevant characteristics of this setting, such as performance dimensions, 
subsystems, dependence between subsystems, the operational and cognitive meaning of blind spots, 
processes to discover blind spots, and the influence of performance pressure in the context of the 
program lifecycle. Section 4 describes the interface for the simulation software. Section 5 presents 
exemplary results with the goal of demonstrating the viability of this approach to research. The paper 
closes with a discussion of the contributions and significance of this research and directions for future 
work. 

2. Method 
The method for modelling and simulation involves four aspects: 1) focal behaviour , 2) ontology and 
representation, 3) agency and agent capabilities, and 4) software implementation. 

2.1 Focal behaviour 
The ultimate behaviour of interest is the effect of conceptual blind spots and change propagation on 
the overall goals for a system and its design and development program. Therefore, we aim to model 
and portray those as directly as possible and abstract away as many other details of system design and 
system engineering as we can. In particular, we chose a very abstract way to represent and model the 
design process for components and system relationships. Also we do not attempt to simulate the 
performance of the designed artefact in any physical or informational sense. Instead, performance 
variables are calculated based on more abstract representations of the system design. 

2.2 Ontology and system representation 
The ontology of a model is the way it represents the phenomena of interest, and especially how 
elements are defined and related to each other. We represent a complex system design program using a 
Component-Behaviour-Performance ontology, Figure 1. The results of the program are characterized 
by “Performance Variables” related to the program itself (e.g. program cost and schedule) as well as 
the system that is being designed. Each Performance Variable is determined by the design choices and 
their interdependencies. Together the Performance Variables constitute the “trade space” of the 
program, meaning that agents often face trade-off decisions in their design where one Performance 
Variable is sacrificed (e.g. unit cost) in favour of another (e.g. reliability). The basic element of design 
is a “Component” which has a cost and component-level performance. Components work together to 
yield “Behaviours”, which are changes in physical state or informational state that relate to a 
Performance Variable. 
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For simplicity, we represent each of these variables as a bounded positive integer, 0 to 100. Any given 
Performance Variable is determined by a weighted sum of the Behaviours that relate to that 
Performance Variable, with the weights given by Nature, simulated by random initialization. In this 
simplified world, the act of designing consists of searching for Components that can be mapped to 
Behaviours in such a way to yield the desired Performance. The mapping between Components and 
Behaviours is represented as a bi-partite graph that effectively creates dependencies (positive or 
negative) between Behaviours. In a matrix with a row and column for each Behaviour in sequence, 
these dependencies can be portrayed and analyzed as a Design Dependency Matrix [Clarkson et al. 
2004]. Design Dependency Matrices have been used frequently in the research literature for both 
Product Design and Management Science to study modularity and interdependence in designs. [Gero 
and Maher 1992] present a complete dependency network model to link Components to Behaviours, 
and Behaviours to Performance Variables. 

 
Figure 1. Component-Behaviour-Performance Ontology 

2.3 Agency and agent capabilities 
Agents in an Agent-based Model (ABM) are those entities that sense the environment, including other 
agents, and take action, possibly learning along the way. While it is common to choose to model 
individual people at a single level of organization, we have chosen a three-level hierarchy of agents 
that more closely matches the structure of design teams in a large program: 1) Programs, 2) Teams, 
and 3) Activities. 
Programs consist of Teams that persist throughout a run. Teams consist of Activities that have a single 
task – to produce a design for a particular Component or to produce a mapping between Components 
and Behaviours. New Activities are spawned when a new or improved Component or mapping is 
needed by the Team. Activities have a finite life depending on the resources devoted to them and they 
are terminated either when they produce a design or when they run out of resources. 
Agency at the Program level is essentially equivalent to a Program Manager. The Program monitors 
the program goals for each Performance Variable relative to goals and allocates resources to Teams to 
achieve those goals. The Program agent also can direct teams to change focus or actions when the 
Program is under pressure (see Section 3.3). 
Agency at a Team level is essentially equivalent to an Engineering Manager for a specific subsystem 
or function within a subsystem. While our simulation can support many teams per subsystem, the 
current implementation uses just three teams, one for each subsystem. 
Most of the intelligence in our model is at the Team level. Teams spawn Activities to design new 
components or refine existing components to meet the Team’s goals, focusing on most important 
components (narrowly defined), and increasing the Team’s expertise in the process. Thus, Teams 
accumulate knowledge and experience during the course of a run that enable them to produce 
Component designs of increasing sophistication. If a focal variable for the Team plateaus, the Team 
will spawn sub-components, at the cost of increased complexity in the subsystem. If the Team is under 
performance pressure, the Team will try more radical component designs and mapping structures. 
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In addition to these core design capabilities, Teams also have the vital capability to discover design 
dependencies, in three ways: 1) 
search (higher probability, but costly)
what other teams know)
Team preferences for each of these three discovery methods are under experimental control.
Agency at an Activity level is intentionally abstract and simplistic because our focus li
and Program levels. Activities perform a blind search through recombination of abstract “raw 
material”, with preference given to combinations that have been successful in the past. As they do they 
consume resources until the goal has been re
An important feature of our agency model is the specification of “value systems”, both at a Program 
level and at a Team level, both under experimental control. At a Program level, the values are 
expressed usin
Cost. At a Team level, the value system is expressed by weights given to each of the Performance 
Variables. Because these weights are under experimental control, it is possib
conditions from “no commonality” (i.e. there is no commonality between the weights of the teams) to 
“full commonality” (i.e. the weights of all teams are the same, and balanced across the performance 
variables). The extreme of “no com
promoting gaps but also promoting self
“full commonality” corresponds to maximum alignment between teams but also least specializati
and least focus in design decision

2.4 Software 
NetLogo was chosen as a simulation platform. It is written in Java, has a simple command language, 
and a graphical user interface that is easy to design and program. The simulation w
with some inspiration from the SKIN model by [

3. Setting
The setting chosen for our research is an idealized space launch system, consisting of the functional 
subsystems of a rocket plus performance dimensions rela
reliability, and maintainability. The design program is idealized as a single program manager and a 
collection of independent teams working on individual subsystems.

3.1 Subsystems and 
The three 
sensors, safety triggers, etc.), 2. Structure (e.g. fuel storage, payload, external skin, barriers between 
components and modules, interconnections, etc.) and 3. Prop
engines, etc.). These three subsystems contribute variously to ten Performance Variables (Figure 2).

Each of the three subsystems have a Performance
Figure 2) and these can be considered their main purpose and value in the program. There are also 

In addition to these core design capabilities, Teams also have the vital capability to discover design 
dependencies, in three ways: 1) 
search (higher probability, but costly)
what other teams know)
Team preferences for each of these three discovery methods are under experimental control.
Agency at an Activity level is intentionally abstract and simplistic because our focus li
and Program levels. Activities perform a blind search through recombination of abstract “raw 
material”, with preference given to combinations that have been successful in the past. As they do they 
consume resources until the goal has been re
An important feature of our agency model is the specification of “value systems”, both at a Program 
level and at a Team level, both under experimental control. At a Program level, the values are 
expressed using goals for each Performance Variable, and a budget for both Schedule and Program 
Cost. At a Team level, the value system is expressed by weights given to each of the Performance 
Variables. Because these weights are under experimental control, it is possib
conditions from “no commonality” (i.e. there is no commonality between the weights of the teams) to 
“full commonality” (i.e. the weights of all teams are the same, and balanced across the performance 
variables). The extreme of “no com
promoting gaps but also promoting self
“full commonality” corresponds to maximum alignment between teams but also least specializati
and least focus in design decision

Software implementation
NetLogo was chosen as a simulation platform. It is written in Java, has a simple command language, 
and a graphical user interface that is easy to design and program. The simulation w
with some inspiration from the SKIN model by [

Setting 
The setting chosen for our research is an idealized space launch system, consisting of the functional 
subsystems of a rocket plus performance dimensions rela
reliability, and maintainability. The design program is idealized as a single program manager and a 
collection of independent teams working on individual subsystems.

Subsystems and 
The three subsystems in the idealized model are 1. Control (e.g. guidance, staging, engine control, 
sensors, safety triggers, etc.), 2. Structure (e.g. fuel storage, payload, external skin, barriers between 
components and modules, interconnections, etc.) and 3. Prop
engines, etc.). These three subsystems contribute variously to ten Performance Variables (Figure 2).

Figure 2. Subsystems and their contribution to Performance Variables

Each of the three subsystems have a Performance
Figure 2) and these can be considered their main purpose and value in the program. There are also 

In addition to these core design capabilities, Teams also have the vital capability to discover design 
dependencies, in three ways: 1) 
search (higher probability, but costly)
what other teams know). 
Team preferences for each of these three discovery methods are under experimental control.
Agency at an Activity level is intentionally abstract and simplistic because our focus li
and Program levels. Activities perform a blind search through recombination of abstract “raw 
material”, with preference given to combinations that have been successful in the past. As they do they 
consume resources until the goal has been re
An important feature of our agency model is the specification of “value systems”, both at a Program 
level and at a Team level, both under experimental control. At a Program level, the values are 

g goals for each Performance Variable, and a budget for both Schedule and Program 
Cost. At a Team level, the value system is expressed by weights given to each of the Performance 
Variables. Because these weights are under experimental control, it is possib
conditions from “no commonality” (i.e. there is no commonality between the weights of the teams) to 
“full commonality” (i.e. the weights of all teams are the same, and balanced across the performance 
variables). The extreme of “no com
promoting gaps but also promoting self
“full commonality” corresponds to maximum alignment between teams but also least specializati
and least focus in design decision

mplementation 
NetLogo was chosen as a simulation platform. It is written in Java, has a simple command language, 
and a graphical user interface that is easy to design and program. The simulation w
with some inspiration from the SKIN model by [

The setting chosen for our research is an idealized space launch system, consisting of the functional 
subsystems of a rocket plus performance dimensions rela
reliability, and maintainability. The design program is idealized as a single program manager and a 
collection of independent teams working on individual subsystems.

Subsystems and performance 
subsystems in the idealized model are 1. Control (e.g. guidance, staging, engine control, 

sensors, safety triggers, etc.), 2. Structure (e.g. fuel storage, payload, external skin, barriers between 
components and modules, interconnections, etc.) and 3. Prop
engines, etc.). These three subsystems contribute variously to ten Performance Variables (Figure 2).

Figure 2. Subsystems and their contribution to Performance Variables

Each of the three subsystems have a Performance
Figure 2) and these can be considered their main purpose and value in the program. There are also 

In addition to these core design capabilities, Teams also have the vital capability to discover design 
During routine design (low cost but also low probability)

search (higher probability, but costly), and 3) 

Team preferences for each of these three discovery methods are under experimental control.
Agency at an Activity level is intentionally abstract and simplistic because our focus li
and Program levels. Activities perform a blind search through recombination of abstract “raw 
material”, with preference given to combinations that have been successful in the past. As they do they 
consume resources until the goal has been reached or the resource allocation is exhausted.
An important feature of our agency model is the specification of “value systems”, both at a Program 
level and at a Team level, both under experimental control. At a Program level, the values are 

g goals for each Performance Variable, and a budget for both Schedule and Program 
Cost. At a Team level, the value system is expressed by weights given to each of the Performance 
Variables. Because these weights are under experimental control, it is possib
conditions from “no commonality” (i.e. there is no commonality between the weights of the teams) to 
“full commonality” (i.e. the weights of all teams are the same, and balanced across the performance 
variables). The extreme of “no commonality” corresponds to a maximum of isolation between teams, 
promoting gaps but also promoting self-interested, focused decision
“full commonality” corresponds to maximum alignment between teams but also least specializati
and least focus in design decision-making. 

NetLogo was chosen as a simulation platform. It is written in Java, has a simple command language, 
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several Performance Variables that are influenced by two subsystems but not all three (e.g. Weight). 
When teams focus narrowly on their unique Performance Variable, they are more likely to achieve 
their goal but they are also likely to cause the program as a whole to miss goals for other Performance 
Variables.
In addition to dependence created by shared Perform
between subsystems via the design choices for Components and their mapping to Behaviours that 
support the prime Performance Variables, as shown in the example in Figure 3.

Figure 3. Dependence between subsys
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relation that has a major effect on a Performance Variable is defined as a ‘blind spot’. They are called 
‘blind’ because they are not factored i
that exist, the more the Performance Variables will deviate from the collective expectations of design 
agents. Blind spots can either be discovered in the course of core design tasks (with a pro
controlled by experimenters) or can be discovered by explicit search. Because it can take time and 
resources away from the core design tasks, the search for blind spots can be seen as an 
exploration/exploitation trade
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program schedule and the gap between goal and actual for a given 
The table entries can be read this way (first row): “When there is pressure to reduce unit cost (left 
side), there is a penalty imposed w
Reliability and Maintainability”. If pressure is felt only in one dimension (e.g. Safety) and the other 
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dimensions are exceeding their goals, then the penalty will have no affect on the design. The
for this is that the Program as a whole can absorb this trade
However, pressure is felt in several dimensions, the penalties can lead to under
dimensions and therefore trigger design chang
programs that fail to meet one or more goals for Performance Variables before completion.

4. Simulation 
The interface to t
goals for each of the ten Performance Variables. Next to each slider is a box that shows the actual 
value of that variable, given the current design. To the right is an oth
Pressure variable associated with each Performance Variable. (For simplicity, one Pressure variable is 
defined for the combination of Safety, Reliability, and Maintainability. In the centre is a Design 
Dependence Matrix w
Performance Variable in each Subsystem. There are three graphs on the right that portray the time 
series related to overall program performance.

Figure 5 shows a Design Dependency Matrix after initialization. Three pieces of information are 
coded in each cell in the matrix. First is the direction of dependency between a pair of Behaviours, 
either positive or negative. Second, the size of the circle
(Hollow circles on the diagonal indicate trivial dependence.) Third, the shading of the cell indicates 
whether any dependence is known or unknown. There is a grey column on the right that indicates the 

dimensions are exceeding their goals, then the penalty will have no affect on the design. The
for this is that the Program as a whole can absorb this trade
However, pressure is felt in several dimensions, the penalties can lead to under
dimensions and therefore trigger design chang
programs that fail to meet one or more goals for Performance Variables before completion.

Table 1. How performance pressures map to performance penalties

Simulation system 
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Pressure variable associated with each Performance Variable. (For simplicity, one Pressure variable is 
defined for the combination of Safety, Reliability, and Maintainability. In the centre is a Design 
Dependence Matrix w
Performance Variable in each Subsystem. There are three graphs on the right that portray the time 
series related to overall program performance.

Figure 5 shows a Design Dependency Matrix after initialization. Three pieces of information are 
coded in each cell in the matrix. First is the direction of dependency between a pair of Behaviours, 
either positive or negative. Second, the size of the circle
(Hollow circles on the diagonal indicate trivial dependence.) Third, the shading of the cell indicates 
whether any dependence is known or unknown. There is a grey column on the right that indicates the 

dimensions are exceeding their goals, then the penalty will have no affect on the design. The
for this is that the Program as a whole can absorb this trade
However, pressure is felt in several dimensions, the penalties can lead to under
dimensions and therefore trigger design chang
programs that fail to meet one or more goals for Performance Variables before completion.
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blind spots are more likely to be found during core design tasks. The opposite is the case with low 
modularity. 
Though not surprising, these results demonstrate that the ABM simulation realistically models the 
interplay between the cognitive/social aspects and the technical aspects of the complex system design 
program. This prepares us for more complicated experiments and analysis. 

6. Discussion 
The contribution of this paper is to show the viability of agent-based modelling (ABM) to study the 
interplay between cognitive/social aspects and technical aspects of complex system design programs. 
The phenomena of blind spots in systems design arise at the interface between these two aspects, and 
therefore it is essential to include both in the simulation. Our ABM simulation includes models of 
Team values (i.e. the weights they place on the program performance dimensions) and Team focus 
(i.e. on core design tasks or on blind spot search), and also the structure and interdependence of the 
system being designed. 
When the simulation is complete, we expect to be able to produce the following results: 

 Identify behavioural signatures of undetected design dependencies. 
 Estimate the value of early detection of blind spots vs. late detection. 
 Evaluate alternative interventions for inter-team communication (e.g. formal vs. informal) and 

staffing (e.g. rotation) and others. 
 Dock with empirical research (e.g. case studies in manufacturing industries [Clarkson et al. 

2004]). 
For future research, we intend to conduct basic computational experiments to evaluate the effect of 
alternative agent rules for blended exploration/exploitation strategies. Also we would like to perform 
experiments to evaluate the effects of alternative interventions such as program management practices 
or team structures. 
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