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traceability, especially between objectives and system architecture, still does not exist” [Zingel et al. 
2012]. 

2. Problem statement and goals 
Based on the aforementioned challenges, further research concerning system models is necessary. 
There are two different ways of fulfilling the demands. Firstly, several different system models, each 
representing a specific view of a product, can be used, resulting in increased effort to synchronise 
these models. This approach is used for example in the partial models of Frank [2006]. Secondly, one 
central system model, as also proposed by Stiegler [2013], can be used for capturing all the necessary 
information relating to a product. The research representing this kind of product modelling is 
presented in this contribution. In doing so, the question of how to model complex mechatronic 
systems, the dependencies between different departments of product development (e. g. of the 
mechanical design and resulting effects on the development of controller structures) from the 
designer’s point of view have to be examined. 
The Characteristics-Properties Modelling (CPM) by Weber and Wener [2000] represents an approach 
of design methodology which, due to its generic character, should be able to model the above-
mentioned aspects within a central system model. However, literature shows that there are still some 
open research questions to answer before CPM can be used for such a model. According to Weber, the 
approach should be able to model mechanical as well as mechatronic products, but the latter have still 
not been examined [Weber 2012]. 
Control systems also contain the elements of mechatronic systems (sensors, actuators, mechanical 
structure and information processing). The main difference between mechatronics and control systems 
is their focus. The former focus on interdisciplinary work whereas control systems focus on system 
theory regardless of the specific domain, e.g. they could be completely mechanical [Paetzold and 
Schweiger 2002]. 
For realising the modelling of mechatronic systems using CPM and by considering the differences of 
mechatronic systems and control systems, the goal of this contribution is to show that control systems 
can be modelled using CPM and thus its applicability. This modelling of the elements of control 
systems is a preliminary task for modelling mechatronic systems, thus the central research questions of 
this contribution can be stated as follows: 
Can a closed-loop control system and its component parts be modelled using CPM? 
Based on the research question, a hypothesis can be formulated as follows: 
Control systems and their component parts can be modelled using CPM. 
For the verification of the hypothesis, literature dealing with CPM and different approaches to model 
mechatronic systems is analysed. To improve the current situation, an approach to model control 
systems using CPM is elaborated (see Section 4). Following this, the developed approach is 
implemented by assessing the approach for modelling the control system of a hydraulic cylinder (see 
Section 5). The contribution concludes with a critical discussion (see Section 6) and provides an 
outlook for further research (see Section 7). 

3. State of the art 
First of all, the CPM and – based upon this – the Property-Driven Development (PDD) to model the 
development process are presented. Then similar approaches to CPM are briefly discussed. 

3.1 Characteristics-Properties Modelling (CPM) 
Weber and Wener [2000] presented a new approach for modelling products (CPM) and their 
associated development process (PDD). One motivation for Weber was the lack of activity by the 
design society in the definition of product models focussing on digital product models [Weber and 
Wener 2000]. According to Weber, not only should another approach be developed but existing 
approaches should indeed be combined [Weber 2012]. CPM focusses on modelling products by using 
their characteristics (Ci) and properties. The characteristics define a product itself and can be directly 
determined by the designer. The properties describe the product’s behaviour and can only be 
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influenced by its characteristics. The properties are further subdivided into required properties (RPi) 
and properties representing the actual state (Pi). 
There are two ways of connecting properties and characteristics. Firstly (see Figure 1, left-hand side), 
there are steps of analysis in which the actual properties of a product are determined by characteristics 
using different relations (Ri) (e. g. experience, formulas, FE simulations, experiments). Secondly (see 
Figure 1, centre), the characteristics of a product have to be determined. These steps of synthesis 
represent the main activity in product development. For the synthesis there is another set of relations 
(Ri

-1). These are for example association, experience or catalogues. Both determination of 
characteristics and properties has to be carried out considering several external conditions (ECi) as 
well as modelling conditions (MCi) [Weber and Wener 2000]. An example of the latter is a linearised 
formula which can suitably be used only in the direct environment of the set point. An example for an 
external condition (EC) is the restriction of a maximum allowed width of a product, because otherwise 
it cannot be transported in a given container. Some of the product’s numerous properties are less 
important for customers and therefore do not have to be considered by developers. Nevertheless, some 
of these seemingly unimportant properties have to be considered because they constitute disturbances 
such as loss of power [Weber and Wener 2000]. 

 
Figure 1. Basic models of analysis and synthesis within the CPM in accordance with Vajna et al. 

[2009] and basic control loop of PDD according to [Weber 2005] 

Weber’s approach can also be used for modelling product development processes (PDD). Here, 
processes can be seen as continuously switching between analysis and synthesis and can therefore be 
modelled like a control loop (see Figure 1, right-hand side). In each step more characteristics 
(synthesis step) or properties (analysis step) can be determined or already known ones can be 
determined more precisely. The control loop comprises the four major steps: Determination of 
characteristics based on required properties or the difference between required and actual properties, 
definition of actual properties, determination of the differences and the decision whether the cycle is 
run through again [Weber 2005]. There are some extensions to CPM (e. g. the Change Impact Risk 
Analysis, CIRA) which are not presented here. An overview of them is given in [Weber 2012]. 

3.2 Comparison of the CPM and similar approaches 
Although there are some different approaches (e. g. CPM, Axiomatic design) to model products, not 
all of them are equally suited. Therefore, in the following a comparison of the approaches is presented. 
The requirements used for this selection process are derived from the actual research project of the 
IKTD within the research unit 918 (“hybrid intelligent design elements). Goal of the project is the 
development of a knowledge base, which helps the different development departments synchronizing 
their knowledge based on a single product model. 
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Modelling products from a designer’s point of view leads to several requirements that have to be 
fulfilled. Firstly, designers have to recognise and know which dependencies and contradictions exist. 
Here, it is useful to divide the attributes into characteristics and properties, so that the direct influence 
of designers of one department on another one can be modelled and predicted. Therefore, it becomes 
necessary to model the relations between the characteristics and properties as well. The modelling of 
design guidelines, which show influences of other domains (e. g. manufacturing), has to be performed 
so that any resulting changes or constraints are considered. Literature shows that there are several 
models (e. g. FE model) used within the development process. Their boundary conditions have to be 
additionally considered. Especially in control engineering, the effects of disturbance have to be 
recognised. The distinction between analysis and synthesis is not essential if products only are 
modelled. However, if the development process and its different iterations are to be modelled, this 
distinction becomes important. Since the presented research focusses on product modelling, the 
approaches have to support the embodiment phase of the development process. Although, it can be 
stated that focusing on the embodiment phase exclusively is not sufficient to support the whole 
development process, it is the starting point of this research. However, Kaiser [2014] also explains the 
need of further research regarding an increasing coordination of the development departments within 
the embodiment design by the modelling of products. Due to the advantages of a central system model 
described in the introduction, this kind of system has to be developed. Table 1 summarises the results 
of this comparison. 

Table 1. Comparison of CPM and similar approaches 

 
 
The main problem of CPM are the lack of a procedure for how to manage the complexity of models 
and that, there are no commercial software tools using CPM in the aforementioned form. 
In Axiomatic Design by Suh [1998], Functional Requirements (FR) are defined as “a minimum set of 
independent requirements that completely characterises the functional need of the product”. Hence, 
only characteristics and properties as well as their connections concerning the product’s functions are 
considered. Analysis and synthesis are not explicitly mentioned but appear as a process called 
“zigzagging” [Suh 1998]. Differences from CPM are the more mathematical approach (linearity, 
matrix driven approach) and the resulting restrictions. Limitation of the functional needs of products, 
claim of minimised number of independent FR and a less detailed view of external conditions (e. g. 
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disturbances, design guidelines) and modelling conditions (e. g. uncertainties of models) are further 
differences. A detailed discussion of the differences can be found in [Weber 2005]. 
The partial models first presented by Frank [2006] use several models which have to be synchronised 
instead of a single model. In this approach, the partial models focus on the conceptual phase of 
product development, resulting in several restrictions. The approaches presented in [Frank 2006], 
[Rieke et al. 2012] and [Kaiser 2013] show no distinction between characteristics and properties, 
although these elements and their relations in the conceptual phase are captured. The work of Rieke et 
al. uses the partial model “behaviour” as a domain-spanning model and derives domain-specific 
models from it to ensure their synchronisation. His work is located in the transition area between the 
conceptual and the embodiment phase. A direct modelling of design guidelines (EC) or the modelling 
conditions (MC) is not explicitly considered, but these elements are considered implicitly in the 
different partial models. No direct distinction is made between analysis and synthesis. 
Wäldele’s approach [2012] includes the modelling of external conditions or modelling conditions like 
in the CPM, although some of the external conditions appear as process properties. Connections 
between the dependent properties (represent the properties in CPM) and the independent properties 
(represent the characteristics in CPM) are only qualitatively modelled. Furthermore, no distinction is 
made between analysis and synthesis. The developed approach was not used for modelling 
mechatronic systems or control systems [Wäldele 2012]. 
Both Krehmer [2012] and, based on this, Luft [Luft and Wartzack 2013], [Luft et al. 2013] focus on 
the implementation of the basics of CPM in development processes. In doing so, Luft evaluates the 
process using different examples. Although the basic elements of CPM are used (characteristics and 
properties), the modelling of external conditions (EC) and modelling conditions (MC) is still not 
provided. Additionally, the question of how to manage the complexity of such models is not further 
examined. The approach is only used to model common mechanical systems. 
The contributions of Zingel et al. [2012] and Stiegler et al. [2012] represent approaches from the 
research field of model-based systems engineering (MBSE). Zingel describes in detail the combination 
of the contact and channel-approach (C&C²-A) with the system modelling language (SysML) and the 
resulting advantages. Stiegler et al. presents the modelling of an automatic gearbox using SysML at 
AVL List GmbH. One type of information which could not be modelled using SysML are time-
dependent functions. Both contributions focus on the modelling of the active structure, thus they focus 
on the conceptual phase. The detailed modelling of products by characteristics and resulting properties 
is not described, although these elements are collected for the conceptual phase. Zingel focuses on the 
conceptual phase, although there are connections to the embodiment design. A clear distinction 
between analysis and synthesis is discussed but not shown in the models. Furthermore, Stiegler states 
that the currently available support for modelling using SysML still needs to be improved by 
appropriate software tools [Stiegler et al. 2012]. Gausemeier states that the development of SysML is 
driven by software engineering; hence mechatronic systems cannot be modelled in a user-friendly 
way. This leads to aversions especially in mechanical engineering [Gausemeier et al. 2012]. 
The Function-Behaviour-Structure framework of Gero and Kannengiesser [2004] shows several 
communalities with CPM. However, the connections between the elements (relations in CPM) are not 
described in detail. Additionally, neither external nor modelling conditions are explicitly considered 
[Gero and Kannengiesser 2004]. 

4. Modelling of a two-degree-of-freedom controller structure using CPM 
Keeping in mind the central question of this contribution of how to model control systems using CPM, 
the elements of control systems which have to be considered have to be determined. Furthermore, the 
depiction’s level of detail has to be set. Then the connections between the elements of control systems 
and of CPM (characteristics, relations with external conditions and modelling conditions as well as 
properties) have to be identified. Finally, the depiction of a generic control system is presented. 
The aim of control systems is to let the control variable follow the reference variable, keeping the 
control error at zero despite the presence of external disturbances and modelling errors. The basic 
elements of control systems are, comparable to mechatronic systems, sensors, actuators, controllers 
and the plant. The term ‘plant’ means the process or system to be controlled, e.g. the mechanical 
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structure of a mechatronic system. The controller determines the actuating variable based on the 
measured variables and an external reference variable. State-of-the-art control engineering offers a 
wide range of different types of controllers arranged in various possible control structures. With the 
objective of modelling a typical and generic control system, a so-called two-degree-of-freedom control 
structure will be analysed. This control structure consists of two independent controllers that both 
contribute to the control action. The feedforward controller reacts to changes in the reference variable 
in order to make the control variable follow the desired value. Since the feedforward controller 
controls the plant directly without utilising any measured signals, it is also called an open-loop 
controller. The feedback controller, on the other hand, uses the control error, which is the difference 
between the reference and the (measured or estimated) control variable, and thereby closes the control 
loop. It is used to ensure stability and disturbance rejection [Dorf and Bishop 2011]. 
Both feedforward (open-loop) and feedback (closed-loop) controller are summarised and called 
information processing in [VDI 2004]. The specific type of controller (e.g. PID) has no influence on 
the presented approach and has to be chosen adequately by the control engineer. 
The overall behaviour of the control system is affected by the complex interplay of its elements 
regarding their particular behaviour. Here, the term behaviour is used to describe the dynamic relation 
between the input and output of an element. The behaviour of the plant and the behaviour of the 
feedback as well as feedforward controller obviously have a strong influence on the behaviour of the 
control system (equivalent to the behaviour of the whole system examined) and thus must always be 
taken into account. In general, the behaviour of sensors and actuators also influences the closed-loop 
control system. In the case of sensors, the dynamics of the underlying electrical circuits are typically 
fast compared to the dynamics of the plant such that their influence can usually be neglected. 
However, in many cases the control variable cannot be measured directly and the measurement is 
corrupted by noise. Therefore the behaviour of the sensors is considered explicitly. In contrast, the 
behaviour of the actuators is not considered explicitly here, as they can always be interpreted as part of 
the plant. 
Next, the level of detail will be determined. In general, the behaviour of each element of the control 
system is the result of the definition of its characteristics. For example, the behaviour of a hydraulic 
cylinder is among others influenced by its mass and the geometry of the cylinder and piston 
[Weickgenannt 2013]. Those characteristics can also be modelled using CPM. This contribution 
focuses on the control system and therefore it is assumed that the behaviour of the sensors and the 
plant is given, because they are purchased parts for example, and thus cannot be influenced by the 
control engineer. Additionally, an actuator of the examined system is modelled. 
In accordance to Weber and Wener [2000] the interaction of feedback and feedforward controller, 
plant and sensors corresponds to analytical relations of CPM. The selection and design of suitable 
controllers are synthesis steps. In contrast to most other applications of CPM, properties of control 
systems are dynamic. Figure 2 illustrates the general case of a control system in a two-degree-of-
freedom control structure using CPM. On the left side are the characteristics that determine the 
behaviour of the feedforward and feedback controller, the plant and the sensor. In the central part of 
Figure 2 the analytical relations are shown. The right-hand side of Figure 2 shows the properties. 
Within the analytical relations the control error e(t), as a property, is determined by the external 
reference variable y_d(t) and the measured variable y_m(t). The latter will be generated by the sensor 
and is influenced by the control variable y(t) the behaviour of the sensor and the noise w(t). The 
control variable y(t) is then determined by the actuating variable u(t), the behaviour of the plant 
(including the behaviour of the actuators), as well as an external disturbance z(t) which cannot be 
influenced by the designer and is therefore considered as an external condition. The behaviour of the 
feedback and feedforward controller together with the control error and the reference variable define 
the actuating variable u(t). Following the principles of CPM, every relation defines exactly one 
property. The actuating variable u(t), the control variable y(t) and the control error e(t) are important 
properties for evaluating closed-loop control systems. The step of synthesis is shown in the upper part 
of Figure 2 for the sake of completeness and clarity. This step includes the design of both controllers, 
which includes the selection of suitable types of controllers as well as the quantitative determination of 
their parameters. This will not be further examined in this contribution. 
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Figure 2. Depiction of a general two-degree-of-freedom controller structure using the CPM 

5. Application scenario: Positioning control of a hydraulic cylinder 
The previously described concept will now be applied to the example of positioning control of a 
hydraulic cylinder according to [Weickgenannt 2013]. This positioning control is part of the control 
system of the Stuttgart SmartShell. The SmartShell is a prototype for a lightweight civil structure that 
can actively adapt to external loadings. For this adaption hydraulic cylinders are used. 
The aim of the control system is to let the piston follow the desired position keeping the control error 
at zero despite the presence of external disturbances (e.g. forces) and modelling errors. In this case, the 
control error is the difference between the piston’s target and actual position. Hence, the control 
variable is the piston’s position. Since it can be measured directly at high sampling frequencies using a 
high resolution digital position sensor, the behaviour of the sensor is not considered here. The 
actuating variable is the valve position controlling the oil flow to the hydraulic cylinder. Since the 
magnetic actuation of the valve is fast compared to the dynamics of the hydraulic system, the 
behaviour of the valve is not considered either. In general, a hydraulic cylinder shows a non-linear 
response from the valve position (actuating variable) to the piston position (control variable). 
However, under certain assumptions (these are stored as modelling conditions in the CPM) the 
dynamic behaviour of the cylinder can be simplified to pure integrating behaviour. The behaviour of 
the feedforward controller is chosen to be reciprocal to the behaviour of the mechanical structure and 
is hence differentiating, so that the behavioural of the open-loop control system will be equal to one 
and the control variable follows reference variable immediately. The feedback controller is chosen to 
be simply proportional (Kr). Figure 3 shows CPM of the hydraulic cylinder’s position control system 
based on Figure 2. By identifying the external reference input, the behaviour of the whole system can 
be determined quantitatively. 
After presenting the positioning control of the hydraulic cylinder, the complex dependencies between 
mechanical and control engineering and their models shall be described based on one product model. 
In Figure 4, the behaviour of the hydraulic cylinder and its influencing characteristics are examined in 
accordance to [Weickgenannt 2013]. The dynamic behaviour of the cylinder is determined by several 
characteristics and resulting properties. These are the area in each cylinder chamber, the supply and 
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ambient pressure and the behaviour of the valve. The former can be determined by the diameters of the 
cylinder and the hydraulic piston, while the pressures are either given or determined by designers. 

 
Figure 3. CPM of the closed-loop positioning control of a hydraulic cylinder 

The behaviour of the valve and its occurring pressure drop are also results from its characteristics 
defined by mechanical engineers and can also be modelled in a more exact way by CPM. 

 
Figure 4. Detailed model of the hydraulic cylinder according to [Weickgenannt 2013] 

Here, it is assumed that the external forces result, for example, from the weight of the controlled 
system, thus the weight can also be determined by a designer. The presented model is based on several 
simplifications modelled according to [Weickgenannt 2013] as external and modelling conditions. For 
example, it is assumed that there is no leakage in the system and a constant supply pressure. Both 
figures (3 and 4) show that the dependencies between mechanical and control engineering can be 
modelled using CPM. The resulting behaviour of the hydraulic cylinder in Figure 4 corresponds with 
the behaviour mentioned in Figure 3. Due to reasons of space, the models are not presented as one 
huge model. 
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6. Discussion of the results 
In this section, the presented results are critically discussed. In addition to this, some implications are 
presented in order to define further research fields. First of all, it has to be checked whether the 
research question has been answered. Although the results show that control systems can be modelled 
using CPM, an unambiguous answer is not possible due to the multitude of possible control systems 
and the limited number of examples. As a result of this, more different control systems have to be 
modelled so that the hypothesis can be confirmed for certain. This also has been tested within a 
student research project by Rheintaler [2013]. The modelling of cascading control systems has also 
been investigated, but due to lack of space it is not presented here. Difficulties arise in the clear 
assignment and distinction of the constraints to external and modelling conditions. A detailed 
examination of the dependencies between mechanical and control engineering has to be carried out so 
that the complete network of dependencies between them becomes comprehensible. Additionally, 
there are more interesting dependencies between departments involved at the development of 
mechatronic products (e. g. software development, simulation and testing departments). For a generic 
product model all dependencies between the departments have to be captured and modelled too. 
Although a less complex example was used, it is shown that the developed model rapidly becomes 
very complex. Furthermore, the procedure to model both mechanical and mechatronic systems by 
CPM has to be carried out. 

7. Conclusion and outlook 
This contribution presents a concept for modelling control systems using CPM. In addition to the 
presented basics of CPM, several similar approaches are discussed. Based on a brief introduction to 
the structure of mechatronic systems and control engineering, this leads to a first generic model of a 
two-degree-of-freedom control structure using CPM. Using this, a general model of closed-loop 
positioning control of a hydraulic cylinder is modelled. Furthermore, in order to show the 
dependencies between mechanical and control engineering, the characteristics determining the 
dynamic behaviour of the cylinder are presented. Using the concept, an evaluation and advancement of 
the concept will be performed in the DFG research unit 981. However, further research which focuses 
on modelling the dependencies between further departments (e. g. dependencies between software and 
hardware development) has to be carried out. Then, mechatronic systems and their component parts 
can be modelled using CPM. It is assumed that by developing a software tool, the effort to model such 
systems can be significantly reduced. The resulting complex networks leads to another necessary point 
for research: How can the complexity of the actual needs of the user being reduced? Therefore the 
approach has to be extended to include a selectable change of detail, for example. 
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