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1. Introduction
The megatrend of individualization can also be found in the cabin interior of passenger aircraft. It 
applies all the more as the individual cabin look and layout is one of the few measures 
distinguish itself from its competitor because every airline has to buy from the same few aircraft 
manufacturers. Therefore, airlines often have special demands towards design, layout and extra 
comfort when ordering a new cabin. The varie
when looking at some selected examples of partitions from the product range of a medium sized cabin 
interior supplier in Figure 1. The interior suppliers and the aircraft manufacturers are thereby faced
with the challenge of dimensioning all these variants when in development.

Figure 1. Different product variants of aircraft cabin partitions (source: Diehl Service Modules 

As cabin interior monuments stay within the vicinity of passengers they are
safety regulations. Furthermore, larger cabin monuments exert high interface loads at their fixations 
which often run directly to primary aircraft structures and therefore affect the safety assessment of 
primary structures.
Usually, a good mechanical design in aviation needs several iterations to find a suitable optimum in 
design with low weight and just enough safety margin. The cabin interior suppliers, sometimes small 
and medium sized companies, can often not afford the tremen
dimension each and every variant in all detail over several design loops. In case precise values for the 
needed model parameters for simulations of the many variants are missing, the dimensioning can only 
be based on engi
unused. The problem becomes worse for the challenging and time consuming dimensioning under 
dynamic loads. In dynamic analysis a lot of interdependencies between mass, stiff
affect the vibrational behaviour. Rough estimation and simplifications as in static design are often not 
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be based on engineering judgement from experience. This is leaving a lot of optimization potential 
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The megatrend of individualization can also be found in the cabin interior of passenger aircraft. It 
applies all the more as the individual cabin look and layout is one of the few measures 
distinguish itself from its competitor because every airline has to buy from the same few aircraft 
manufacturers. Therefore, airlines often have special demands towards design, layout and extra 
comfort when ordering a new cabin. The varie
when looking at some selected examples of partitions from the product range of a medium sized cabin 
interior supplier in Figure 1. The interior suppliers and the aircraft manufacturers are thereby faced
with the challenge of dimensioning all these variants when in development.
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The megatrend of individualization can also be found in the cabin interior of passenger aircraft. It 
applies all the more as the individual cabin look and layout is one of the few measures 
distinguish itself from its competitor because every airline has to buy from the same few aircraft 
manufacturers. Therefore, airlines often have special demands towards design, layout and extra 
comfort when ordering a new cabin. The variety of simple partitions or class dividers can be seen 
when looking at some selected examples of partitions from the product range of a medium sized cabin 
interior supplier in Figure 1. The interior suppliers and the aircraft manufacturers are thereby faced
with the challenge of dimensioning all these variants when in development.

Figure 1. Different product variants of aircraft cabin partitions (source: Diehl Service Modules 
GmbH) 

As cabin interior monuments stay within the vicinity of passengers they are
safety regulations. Furthermore, larger cabin monuments exert high interface loads at their fixations 
which often run directly to primary aircraft structures and therefore affect the safety assessment of 

lly, a good mechanical design in aviation needs several iterations to find a suitable optimum in 
design with low weight and just enough safety margin. The cabin interior suppliers, sometimes small 
and medium sized companies, can often not afford the tremen
dimension each and every variant in all detail over several design loops. In case precise values for the 
needed model parameters for simulations of the many variants are missing, the dimensioning can only 

neering judgement from experience. This is leaving a lot of optimization potential 
unused. The problem becomes worse for the challenging and time consuming dimensioning under 
dynamic loads. In dynamic analysis a lot of interdependencies between mass, stiff
affect the vibrational behaviour. Rough estimation and simplifications as in static design are often not 
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The megatrend of individualization can also be found in the cabin interior of passenger aircraft. It 
applies all the more as the individual cabin look and layout is one of the few measures 
distinguish itself from its competitor because every airline has to buy from the same few aircraft 
manufacturers. Therefore, airlines often have special demands towards design, layout and extra 
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As cabin interior monuments stay within the vicinity of passengers they are
safety regulations. Furthermore, larger cabin monuments exert high interface loads at their fixations 
which often run directly to primary aircraft structures and therefore affect the safety assessment of 

lly, a good mechanical design in aviation needs several iterations to find a suitable optimum in 
design with low weight and just enough safety margin. The cabin interior suppliers, sometimes small 
and medium sized companies, can often not afford the tremendous effort to model, simulate and 
dimension each and every variant in all detail over several design loops. In case precise values for the 
needed model parameters for simulations of the many variants are missing, the dimensioning can only 

neering judgement from experience. This is leaving a lot of optimization potential 
unused. The problem becomes worse for the challenging and time consuming dimensioning under 
dynamic loads. In dynamic analysis a lot of interdependencies between mass, stiff
affect the vibrational behaviour. Rough estimation and simplifications as in static design are often not 
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The megatrend of individualization can also be found in the cabin interior of passenger aircraft. It 
applies all the more as the individual cabin look and layout is one of the few measures 
distinguish itself from its competitor because every airline has to buy from the same few aircraft 
manufacturers. Therefore, airlines often have special demands towards design, layout and extra 
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with the challenge of dimensioning all these variants when in development. 

Figure 1. Different product variants of aircraft cabin partitions (source: Diehl Service Modules 

As cabin interior monuments stay within the vicinity of passengers they are subject to strict aviation 
safety regulations. Furthermore, larger cabin monuments exert high interface loads at their fixations 
which often run directly to primary aircraft structures and therefore affect the safety assessment of 
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design with low weight and just enough safety margin. The cabin interior suppliers, sometimes small 
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neering judgement from experience. This is leaving a lot of optimization potential 
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dynamic loads. In dynamic analysis a lot of interdependencies between mass, stiffness and damping 
affect the vibrational behaviour. Rough estimation and simplifications as in static design are often not 
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valid and good dimensioning using a detailed analysis is only possible when the necessary model 
parameters have been gathered from tes
In particular the variety challenge is targeted in this paper, 
The problems of current dimensioning of variant structures under dynamic load are analysed in section 
2. Based on this in
dynamic excitations with a detailed mechanical analysis for highly variant products is presented in 
section 3. Section 4 further focusses on the methodical model preparation step of the approach. The 
preliminary application evaluation of the approach is shortly presented in Section 5.

2. The problem and current means of action
The following analysis provided the basis for the development of the supporting approach.
Generally, if no special care is taken to ha
dimensioning under dynamic loads is multiplied by the number of variants making the dimensioning 
of variant aircraft cabin interior very challenging.
When looking at the production of a medium siz
high but also the produced numbers per variant are very low. The data collected in the study [Jonas et 
al. 2012] clearly shows the difficult situation for the supplier: Between the years 2009 and 2010 the
number of produced variants of partitions and class dividers (Figure 1) increased by 50% to an 
absolute 3
20% to only 3.7 produced units per variant. Therefore, the mone
by less produced units lowering the spread of each variant if costs are not handed on to the customer.
The multiplier effect can be further fragmented into the three combinatorial factors “load case”, 
“geometry” and “
these three factors. Variants are usually reflected in dimensioning by variations of load cases and 
geometry. Different load cases arise from different use cases and differen
aesthetic or functional design requirements. For dimensioning, each set of a load case and an external 
geometry requirement makes up one variant.
The combinatorial problem becomes worse because in dimensioning not only the number of
multiply dimensioning efforts but also internal parameter variations in the design process. When 
looking for a design optimum in dimensioning, the design engineers will use iteration loops and vary 
the internal geometry (space that is not restric
will stay within the dimensioning design phase and not cause the generation of different variants.

Figure 2. The multiplication factors of combinatorial variety in dimensioning with a detailed 

This variety or specifically the combinatorial variety of a system and its states can be described with 
the word complexity [Malik 1977]. As shown in [Brosch and Krause 2011], the term complexity is 
used differently in various sciences and 
paper will focus on the combinatorial variety, which contributes to the complexity of a system.
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Figure 4. A combination of modules to form 

The Module Interface Graph, MIG, [Blees et al. 2010] is a 2D sketch with media flows between the 
relevant components in the product structure for all variants. The various components can then
accumulated to modules in the further process as described in [Blees et al. 2010]. The type of 
interfaces is specified by a colour coding. In the dimensioning context only potentially load carrying 
interfaces are of interest. As the approach in this pa
MIG is used here (see Figure 4) that only consists of the defined modules and does not depict the 
components anymore. Since the substructure boundaries for a technical analysis are defined according 
to the modules’ system boundaries, internal interfaces of modules are not subjected to variety and are 
therefore not in the focus of combinatorial dimensioning. This is called a black box model [Pintelon 
and Schoukens 2001], where only the behaviour at the in
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branches like aviation, special purpos
PKT approach has been primarily focused on the earlier design phases and not been applied to 
dimensioning for the vibrational behaviour with a detailed mechanical analysis, the scope of this 
paper. The idea of using only a few well defined modules to combine in order to generate a vast set of 
different variants will therefore be transferred into structural dynamic dimensioning.

3. Better dimensioning with detailed mechanical analysis
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detailed mechanical analysis as described in [Schürmann 2005] is usually compulsory. With the use of 
simulations based on the Finite Element Method (FEM) as described
behaviour can be predicted and the relevant mechanical requirements, such as load cases, can be 
substantiated. In the following, an approach will be presented that supports the dimensioning under 
stationary dynamic loads of
detailed mechanical analysis of modules. The dynamic models of the modules can be combined to 
form a full system product variant and hence the vibrational behaviour of that variant fo
optimisation is calculated from the coupled models of the modules.

3.1 The dynamic substructuring method
In literature, the term “dynamic substructuring” refers to the coupling of models in structural dynamic 
analysis. By using coupling and decou
substructure in dimensioning is possible. It also makes the interchangeable use of substructure models 
from simulation or real test data possible. Using dynamic substructuring, the detailed mecha
analysis can use test data where a simulation will not yield acceptable results. Because of the 
possibility to use test data without the reduction to simplified one
modal domain, the Frequency Based Assembly (FBA) is c
(CMS) in this context. For further reading on the technical implementation side of the approach 
presented, please refer to [Plaumann et al. 2013] and [Plaumann and Krause 2014].
A first presentation of the frequency 
The authors describe the vibrational analysis of a helicopter that is segmented into five substructures. 
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The dynamic models are defined separately for each substructure. The substructures are then coupled 
together. However, the authors do not mention the possible application to improve variety handling 
among the advantages of the approach. A more recent source describing the current state of dynamic 
substructuring is [de Klerk et al. 2008]. Here only the benefit of having different groups working on 
the same complex system is mentioned regarding aspects of variety. The use in a modular substructure 
is not targeted in these and other publications investigated except for [Sellgren and Drogou 1998], 
which will be covered in the next section. The lack of methodical support regarding variety aspects 
shows best in typical descriptions of the formulation of the coupling matrix. The coupling matrix 
defines which substructure is coupled to another as well as which degrees of freedom (dofs) are 
coupled at the interface nodes. In the given literature the coupling matrix simply appears without any 
hints to the derivation process. But a consistent interface definition for all possible combinations of 
modules is crucial for a dynamic substructuring calculation in dimensioning. Therefore a methodical 
derivation guideline is needed to support the application towards dimensioning of variant product 
families. 

3.2 An approach for combinatorial dynamic dimensioning 
The only source found in a literature study that deals with dynamic substructuring in the context of 
product development are publications like [Sellgren and Drogou 1998] and [Blackenfelt and Sellgren 
2000] forming the cumulative dissertation of Sellgren. Unfortunately, there are several mismatches 
between their approach and the application background presented in this paper. Firstly, these sources 
deal with component-mode-synthesis only, a state-of-the-art feature of today’s commercial FEM-tools, 
which cannot cover the complex behaviour of assembled cabin interior monuments properly as shown 
in [Plaumann et al. 2013]. Secondly, their approach of modularization differs significantly from the 
idea of life phase modularization in the early phases of product development as they modularize after 
detailed design aspects have been targeted like the definition of interfaces as unique geometric entities. 
The modularization step in the integrated PKT approach occurs in the early phases of product 
development by bringing together the design expertise from all relevant product life phases at an early 
stage. Requirements towards the modularization will be formulated following certain module drivers 
of each life phase [Blees et al. 2010]. 
In order to support the dimensioning of highly variant structures like aircraft cabin interior regarding 
its vibrational behaviour, a three step approach is under development at the institute PKT. It is based 
on the idea to handle many variants with only a few modules, which are defined earlier in a life phase 
modularization. In order to use dynamic substructuring, a transfer from modules to the technical 
dynamic substructures is necessary, providing interfaces and system boundaries clearly defined to the 
specific technical needs. Dynamic substructures can have a much more detailed definition of single 
parts contained and degrees of freedom to be coupled. Modules are defined at an earlier step in 
product development where the design is not detailed to every interface screw and nut. In this context, 
a consistency of interface definitions for all used combinations of modules is crucial for calculation. 
The process is depicted in Figure 5 with the localization of transfer steps from variants to modules, 
from modules to substructures as well as back again to modules and variants. 
Step 3 in Figure 5 mainly consists of the coupling of dynamic substructure models according to the 
combination in each variant. This process step makes use of the Frequency Based Assembly (FBA) 
approach [de Klerk et al. 2008], [Jetmundsen et al. 1988]. The technical aspects towards the 
application with the presented background are given in [Plaumann et al. 2013], which also contributes 
the test data of completely assembled systems as benchmarks for the technical validation of the 
support. The evaluation and validation will be further detailed in [Plaumann and Krause 2014] using 
an aircraft galley partially loaded with sliding masses. 
The second step generates the dynamic models for each substructure in a reduction process based on 
system identification. The dynamic behaviour of each substructure is reduced to the behaviour at its 
interfaces and relevant inner nodes in the frequency domain and described in a Frequency Response 
Functions (FRFs). The use of the Frequency Based Assembly method in the last step keeps the 
dynamic models more accurate regarding possible non-linearities, which would have been linearized 
when using classical component-mode-synthesis as in [Sellgren and Drogou 1998]. Test and 
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Table 1. Modularization requirements from simulation and testing in dynamic substructuring 

Requirements of the simulation Requirements of testing 

• Keep in mind the modelling and calculation effort 
(trade-off between accuracy and costs) 

• Keep in mind, that often model reductions to 
simple mechanical elements have to be possible 
for simplified dimensioning calculations 

• Ensure measurability of the necessary variables at 
module interfaces and surrounding environment 

• Ensure that a test-specific fixation of each module 
as well as of the entire product is techn. feasible 

• Keep module weight within the testing capabilities 
• Keep module size within the testing capabilities  

 
Especially the technical aspects of testing demands are likely to generate detailed technical 
requirements specific to the product and the manufacturer’s capabilities (as for example test rigs). To 
foster the consequent implementation of modules over all life phases and stake holders the integrated 
PKT approach recommends the invitation of appropriate representatives, which are in this case 
familiar with the requirements of dimensioning and substantiation in simulation and testing, to the 
modularization process. 
After a successful modularization the actual process as depicted in Figure 5 can be started. This paper 
focusses on the first step of model preparation which will be detailed in the following. Certain sub 
steps dealing with organizational and technical necessities, will not be covered in detail here. They 
manage the jumping to process sub steps under certain process boundaries as well as the definition of 
coupling variables, target variables, frequency range and global coordinate system. The main point of 
this technical sub step is that it is generally advisable to define what you expect from an analysis 
before starting with the actual work. The two sub steps presented in detail here cover the methodical 
proceeding of detailing the system boundary and interface definition. 

4.2 Detailed definition of the system boundaries (part assignment) 

The detailing of the system boundaries mainly consists of an assignment of the structural parts to one 
of the module-matching substructures. The assignment starts with the system boundary definition 
coming from the modularization, which usually is not yet defined on the hierarchical level of single 
parts. As test results depend on a clear definition of which parts of interfaces belong to which module, 
a clear definition is needed here. The level of detail has to be defined in a way that is as simple as 
possible and yet yields sufficiently accurate results for dimensioning. In order to establish this level of 
accuracy, parameter studies in simulations and simple development tests may be necessary. 
The further detailed boundary definition is based on a first analysis of the dominant flows described by 
[Stone 1997] as part of the method of module heuristics. In structural analysis the dominant flow is 
usually the transfer of force and torque. 
If this is not yielding sufficiently detailed boundary definitions, a segmentation and analysis of the 
boundary regions using the concept of working surfaces [Roth 1982] is proposed here. A more recent 
development well suited for this subtask is the contact and channel approach, as presented in [Albers 
et al. 2008]. The deployment of a certain function is of minor interest in the context presented here as 
the focus lies on the detailed analysis and definition of subsystem boundaries. It has been used in the 
following example of the contact between a literature pocket and a partition wall in Figure 6. 

 
Figure 6. Detailed boundary definition using the analysis of working surface pairs 
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The further sub
each variant. The variant specific coupling may also happen at a later stage.
In the example of Figure 8 the baby bassinet (BB) is connected to the partition panel (PA) at four 
model nodes instead of one. By spreading the inter
measure rotatory dofs or obtain a higher local prediction resolution. Here, the necessary level of 
prediction resolution, the area covered by the interface and the amount of mass added to the main 
structure are the most relevant factors indicating that more than one node is needed for modelling. If 
uncertain about the necessary interface node number, parameter studies have to be performed. The 
technical characteristics to be defined for each different inte
modelling of local force distribution at the interface and dimensions to be coupled.

5. Preliminary evaluation in a development study
The approach has been developed to a level to be applied in a real application of a
panel with different literature pockets to be added on, thereby forming different product variants. This 
preliminary application evaluation showed a prediction quality well suited for the application 
background. In Figure 9 a hybrid dynam
together with a literature pocket model from a small shaker test resembles the measured 
transmissibility curve of the complete assembled system on the Hexapod vibration test rig very well.
A good coincidence of prediction and benchmark as shown in Figure 9 needs a clear model definition 
and a guideline as described in this contribution. A more detailed evaluation and validation study on 
an aircraft galley will be presented in [Plaumann and Kraus
obtained if a good data base is used, which renders the approach feasible for the application.
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on its own. This 
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