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1. Introduction

1.1 Background
The development of modularization and common module design has been focused on the need to 
contend with an ever expanded and divergent global market for products. 
developing countries opened new markets, diversity of needs and/or prefer
increasing. Thus, industries face challenges on how to produce
keeping or even reducing their cost.
commonization of modules 
challenge.

1.2 Modularization and commonization
Modularization of a product means to subdivide a product into several subsystems. Subsystems that 
compose a product are called
products can share 
Here, product family denotes a group of product
modules w
company can expect cost reductions in
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Figure 1. Common module family [Nissan 2012]
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Figure 1 shows an example of common module product family design released by [Nissan 2012], an 
automobile manufacturer. In this example, four products (MPV, SUV, SED, and H/B) are all divided 
into four modules (Engine…, FR…, Cockpit, and RR…). Several modules are shared by different 
products. For example, the high hood engine compartment is shared by MPV and SUV. As a result, 
four products are composed by 11 modules. In contrast, if no module is shared within the product 
family, number of modules would be 16 (4 x 4). Therefore, this example succeeded in eliminating five 
modules by means of module commonization. 

1.3 Concerns on modularization 
Although modularizations’ ability to realize wide variety of product family are acknowledged, Japanese 
industries have hesitated to take steps toward its actual implementation. One of the strongest concerns 
that Japanese industries have on product modularization is loss of competitive edge. Historically Japanese 
industries have advantages in their integral quality improvement – Suriawase, which can be explained as 
adjustments of interfaces among parts to achieve higher integrity. However, modular design may impede 
such Suriawase as interfaces among modules need to (or at least, should) be agreed beforehand. Thus, 
by embedding opportunity for Suriawase within a module, common module product family design 
could be a prominent way of design and development of product for Japanese industries. 

1.4 Suriawase 
Suriawase is a way of coordinating design of each part. Usually, a product is so large and complex that 
a person cannot design a whole. Thus, several people are assigned to design of part of a product. But 
how design of a product is subdivided reflects working cultures. In several countries, design is 
subdivided with rather clear job descriptions. In contrast, Japanese industries have an unique way. 
They tend not to have clear job descriptions. Under such conditions, negotiation among designers are 
strongly encouraged. [Fujimoto 2006] referred it as "organizational capability that emphasized teamwork 
among a multi-skilled workforce". And he concluded that Suriawase fit with integral architectures. 

1.5 Aim of this paper 
This paper proposes a computational design support method for module commonization structure of a 
product family. To verify the proposed method, the case study on design of solar boat product family 
is demonstrated. While there have been several former studies on module commonization design, this 
paper incorporates the aspect of Suriawase, or integrity of a product. 

2. Related works 
Regarding product family design, there have been several studies that discussed modularization of a 
product, commonization of modules, or platform design [Jiao et al. 2007]. 
First of all, modularization of a product has been discussed by many papers. Importantly, [Hino 2011] 
advocated that interfaces among modules should necessarily be agreed before the design of each 
module. It agree with the concern that Japanese industries have. However, conventional views on 
modularization rarely includes Suriawase as it might be exceptional to Japanese industries. For 
instance [Eppinger 2003] proposed a DSM-based (Dependency Structure Matrix) method to subdivide 
a product into subsystems, which minimises number of dependencies among different subsystems. 
Though [Eppinger 2003] itself is not a paper about modularization, the method to subdivide a product 
was one of the relevant view to modularization. However, [Eppinger 2003] or other related works did 
not discuss loss of opportunity to integral quality improvement  
Modular design is often discussed in relation to commonization of modules within a product family. 
[Xuehong et al. 2001] suggested modularity, commonality and variety as important concerns. Further, 
as mechanism to generate variety, [Du et al. 2001] suggested attaching/removing, swapping, scaling 
and variety nesting. In this paper, only swapping is discussed to reduce the calculation load. [Ishii and 
Martin 2002] proposed a method to divide product into several modules in view of not only 
dependencies among component but also difference of temporal changes of market requirements. 
[Simpson et al. 2001] formulated product family design as a tradeoff between non-commonality index 
and performance deviation index. Which means that commonization may impede performances. 
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Though [Simpson et al. 2001] discussed design of a common platform in a product family, this way of 
formulation is common throughout several papers. 
As for methods to solve product family design as multi-objective optimization problem, [Fujita et al. 
2002a,b,c] proposed a method to optimise module composition of a product family considering quality, 
cost, and lead time as evaluation criteria. [Simpson and D’Souza 2004] employed the genetic 
algorithm to optimise a product family. A number of articles suggests that consideration of product 
modularization is one of the most prominent way to enhance commonization of parts among products. 
However, as stated in the introduction, there are not many discussions on how modularization affects 
integral quality improvement – Suriawase. This paper emphasizes the aspect of integrity (loss of 
integrity caused by modularization). 

3. Approach 

3.1 Modelling a product family 
To discuss commonization of modules within a product family, a panoramic view of the composition 
of products needs to be available and understood. In addition, it is essential to consider the difference 
of needs among products. However, when a company tries to determine a product family structure, 
detailed data of products or their components cannot be expected. Therefore, a product family needs to 
be modelled in accordance with the abstractedness of data (or information) available. 

3.2 Advantages and disadvantages with regard to module commonization 
When planning module commonization, there are several advantages and disadvantages which need to 
be considered. Two advantages (1 and 2) and two disadvantages (3 and 4) listed below are discussed 
in greater detail within this paper: 

1. Module commonization: 
How many modules are shared within a product family. This is the primary concern in the 
planning of module commonization. 

2. Structure commonization: 
To what extent the module division structure of a product is common among the product 
family should be considered. Even if a module is not commonly installed to several products, 
a common module division taken by different products leads to efficiency of organizational 
learning, as similar design experiences can be accumulated. 

3. Inhibition of coordination: 
When a product is divided into several modules, coordination among modules needs to be 
done as a form of preliminary agreement, before the design of each module is initiated. 
Therefore coordination that bridges between modules cannot be regarded as places where 
designs are to be adjusted making it difficult for Suriawase to be done. 

4. Requirements compromise: 
When a module is shared, it is difficult (or impossible) to optimise the design of a module to 
several different requirements given to products simultaneously. Therefore, module 
commonization leads to compromise on requirements. 

In this paper, module commonization planning is formalized as trade-off problem among four aspects 
raised above. When a module/structure commonization is enhanced, inhibition of coordination and  
requirements compromise tend to be larger. A company must strategically take a stance on a balance 
among those four aspects. 
On the proposed model of a product family, these four aspects are described as criteria to evaluate 
module commonization plans. By means of the product family model and four evaluation criteria, this 
paper proposes a design support method for module commonization planning. 

4. Product and product family models 

4.1 Product model 
Product model is inherited from [Oizumi et al. 2011], which comprises three types of elements as 
follows: 
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A c
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A d
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determined to achieve required levels of functional metrics.

 Functional metric
A f
requirement. To 
functional metric.

There are relationship
product model. As shown in Figure 2
‘belongs
different 
this type of relationship.
certain type
levels should be used to illustrate different strength of the effect. In this paper, to ease data acquisition, 
two levels
not strong enough to 
This product model can be depicted as a form of a matrix, which has same structure with
[Akao 1990] 
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A product
products. As products included in a product family would be evaluated on whether they can have 
common modules, it implies 
functional structure of products w
their relationships remain
illustrate different requirements on each pr
functional metrics to each product, a product model matrix Figure 
family model matrix
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5. Expression, 
Based on the proposed product family model, this section discuss how to express, evaluate and explore 
module commonization plans. 
explains how to model component commonization. As modules are composed of several components, 
when a commonization pattern of a product family is determined, it entails how components can be 
modularized.
pattern to ease the calculation. By combining commonization pattern of components and module 
division structure, it is called a module commonization plan. 
four criteria that reflect 
in the following sections

5.1 Commonization of component
This section discusses 
component among several different products 
functional metrics whose importance is differently given to each product. 
cannot be optimised 
of functional metrics, to whom design parameters of a certain component affect, has significant 
differences among products that share the component, it is inevitable 
metrics of several products
and calculated as compromise degree.

As shown in Figure 3 a), for each d
component of
by sensitivity of the functional metrics to the design parameter. The design policy vector denot
strength of drag force that each functional metric has on a certain design parameter to optimise itself. 
Therefore, a design policy vector depicts
When a component is to be 
become 
vectors are unique have one solution compromising those different design policy vectors. A 
compromised design policy vector 
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5.3 Calculation of coordination inhibition degree 
As explained in section 3.2, suriawase does not work when coordination bridges over different 
modules, thus, modularization entails inhibition of coordination. However if there are more 
opportunities for suriawase, integral quality improvement is enhanced. To evaluate this it on the a 
proposed model, coordination inhibition degree is defined and evaluated as follows. 
Suriawase is adjustments among design of each part to improve quality or achieve higher integrity. On 
the proposed model, it can be converted as adjustments of design parameters to improve functional 
metrics. Thus, as shown in Figure 4 c), when design parameters affect a same functional metric, it is 
regarded that there should be coordination between them. It is defined as coordination link, whose 
importance is given as importance of the functional metric. 
As shown in Figure 4 d), coordination links can be categorized into two types; 1) coordination links 
within a module (modular coordination), and 2) coordination links bridging different modules (integral 
coordination). As stated above, coordination links that bridge different modules implies suriawase-
type coordination is inhibited. Therefore, coordination inhibition degree is calculated as sum of 
importance of coordination links bridging different modules. 

5.4 Calculation of part/structure commonization ratio 
Total compromise vector and coordination inhibition degree quantify disadvantages of module 
commonization. The advantages are reduction of component count and shared structure throughout a 
product family. These aspects are evaluated by part commonization ratio and structure commonization 
ratio respectively. Part commonization ratio explains to what extent parts are shared within a product 
family and is calculated as Equation (1). Structure commonization ratio explains to what extent 
module divisions of a product are shared within a product family and is calculated as Equation (2). 
Notations of Equations (1) and (2) are shown in Table 1. 

 (1) PCR = 1 - ((#Parts - #PartTypes) / (#Products * #PartTypes - #PartTypes))
 
SCR = 1 - (#ModuleTypes / #Modules)                                                                                         (2) 

Table 1. Notations of Equations 
Symbol Definition 
PCR Part Commonization Ratio 
SCR Structure Commonization Ratio 
#Parts Number of parts in a product family 
#Products Number of products in a product family 
#PartTypes Number of part types in a product family 
#Modules Number of modules in a product family 
#ModuleTypes Number of module types in a product family 

5.5 Exploration of module commonization plans of a product family 
By combining commonization pattern of components and module division structure a module 
commonization plan can be defined. The purpose of this paper is to propose a computer-aided support 
method for module commonization planning. However, as evaluation criteria are related to each other 
and have trade-off with each other, it is impossible to employ deterministic algorithm to find out the 
optimal plan. In this paper, a multi-objective optimization method that makes use of genetic algorithm 
is proposed to solve the said problem. 
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6. Case study

6.1 Applied case
To verify the proposed method, a case study was conducted on the solar
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highly integral product. But, recent trend of module commonization in automobile industry motivated 
the authors to a
Figure 6
design. 

6.2 Results
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solutions. The plan in a) enlarges modules to keep opportunities for 
contrast, the plan in b) subdivides modules rather smaller and raises 
comparison suggests, the proposed method can support the exploration of wide variety of module 
commonization plans.
Figure 8 illustrates comparison of coordination inhibition on Product 1 of each commonization plan. 
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structure commonization. Through the solar-boat case study, the proposed model and the four criteria 
are verified to be useful for exploring wide variety of module commonization plans. The study 
suggests that that integrity can be taken into consideration when module commonization of a product 
family is examined. 
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