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ABSTRACT

The complexity of today’s highly engineered products is rooted in the interwoven architecture defined
by its components and their interactions. Quantitative assessment of structural complexity is
mandatory for characterization of engineered complex systems. In this paper, we develop a
quantitative measure for structural complexity and illustrate its application to a real-world, complex
engineered system. It is observed that low topological complexity implies centralized architecture and
it increases as we march towards highly distributed architectures. We posit that the development cost
increases super-linearly with structural complexity. Empirical evidences from literature and
preliminary results from simple experiments strengthen our hypothesis. Preliminary experiments show
that the effort increases super-linearly with increasing structural complexity (i.e., exponent, b = 1.69).
We further introduce complicatedness as an observer-dependent property that links structural
complexity to system level observables like the development cost. We further discuss distribution of
complexity across the system architecture and its strategic implications for system development
efforts.
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1 INTRODUCTION

Today’s large-scale engineered systems are becoming increasingly complex for numerous reasons
including higher demands on performance levels and improved lifecycle properties. As a consequence,
large product development projects are becoming more challenging and are falling behind in terms of
schedule and cost performance [Bashir and Thomson, 1999]. For example, in 13 aerospace projects
reviewed by the US Government Accountability Office (GAO) since 2008, large development cost
growth of about 55% was observed. Such large development cost overruns/failures of large-scale
system development projects can largely be attributed to our current inability to characterize, quantify
and manage associated complexity [Bashir and Thomson, 1999, DARPA report 2011]. In order to deal
with this issue effectively, quantitative metric for system complexity and its relation to development
effort are needed. A quantified measure of complexity is imperative for systematic optimality search of
system architecture. Such a quantitative measure of complexity can be evaluated and tracked during
system development. A particular concern in the area of complexity estimation is that less than one-
fifth of the studies even attempted to provide some degree of objective quantification of complexity
[Tang and Salminen, 2001]. This is understandable as large system development projects are rare and
definitely not repeatable, making empirical/experimental studies hard to perform. This has posed a
significant roadblock to widespread adaptation of generic complexity quantification methods exist for
engineered systems. In the context of engineered systems, the three main dimensions of complexity
have evolved and they are grouped as (1) Structural Complexity, (2) Dynamic Complexity and (3)
Organizational Complexity [Weber C. 2005, Lindemann 2009]. Structural complexity characterizes
the system architecture, dynamic complexity refers to the complexity of the dynamical behavior of the
system and organizational Complexity relates to the system development process and the
organizational structure of the development team. All these dimensions are positively correlated in
general [MacCormack et. al, 2011] and we decided to focus on the quantification of structural
complexity and its relationship to system development cost/effort in this paper.

The structural complexity of systems depends on the heterogeneity, quantity and connectivity of
different elements, and is a measurable system characteristic. This internal product architecture can be
represented by complex networks, which are graph-theoretic representation of complex systems where
components of the systems are the nodes and are connected by links if there exists an interaction
between any pair of components. [Sheard and Mostashari, 2010]. In this paper, a rigorous and
quantitative structural complexity metric for engineered complex systems, incorporating the
fundamental underlying characteristics of system architecture, is proposed. We posit that the
development cost varies non-linearly with structural complexity. Some empirical evidences of such
behavior are presented from the literature. This hypothesis is further buttressed by preliminary results
from simple experiments involving assembly of simpler structures. We introduce the notion of
structural complexity distribution across the system architecture and how it can impact strategic
decisions in system development efforts.

2 STRUCTURAL COMPLEXITY QUANTIFICATION

The structural complexity of technical systems depends on the quantity of different elements and their
connectivity structure and is a measurable system characteristic. This quantity include contributions
coming from the internal complexities of the components of the system; the complexities associated to
the pair-wise interactions among the components and a quantity that encapsulates the complexity due
to inherent arrangement of connections (i.e., structure) amongst the components. We propose the
following functional form for estimating the structural complexity of an engineered complex system:

Structural Complexity, C=C, +C,C,

In the above formulation, the first term C; represents the sum of complexities of individual
components alone (local effect). It relates to the component engineering activity within a system
development effort and does not involve architectural information. The second term has two
components: (i) number and complexity of each pair-wise interaction, C, (local effect) and it relates to
interface design and management activity in a system development effort; (ii) effect of architecture or
the arrangement of the interfaces C; (global effect) which reflects on the challenges associated with
system integration. The individual component complexities can vary across the system (e.g., a low-
pressure turbine is much more complex than the exhaust nozzle in a jet engine) and are designated by



a’s. This measure could be based on the widely used notion of component TRL (i.e., Technology
Readiness Level) [Sadin et al., 1988] or other similarly motivated measures. We propose a component
complexity scale of [0, 5] and computed using component TRL level as:

( TRL_ —TRL )

LTRL ~TRL

max min

o=

Similarly we can represent interface complexities (i.e., B;’s) using a multiplicative model. Each
interface complexity depends on the complexities of interfacing components (o; and o) and a
coefficient characteristic of the interface type (fj):
B; = fa,a; where o, #0
If there were multiple types of connections between two components (say, load-transfer, material flow
and control action flow), it would have a high B value since it would be more 'complex' to
achieve/design this connection compared to a simpler load-transfer connection. For large, engineered
complex systems, it appears that f in [0,1] is a good initial estimate. Another alternative for estimation
of component and interface complexities is to use pooling of experts opinion. Multiple expert opinions
can be aggregated to define a final probability distribution that describes the component complexity
[Babuscia and Cheung, 2012]. In such case, the resulting structural complexity will also have a
probability distribution and not a deterministic value. The term C; represents the topological
arrangement of the interfaces and defined as the topological complexity metric. Topological
complexity originates from interaction between elements and depends on the nature of such
connectivity structure. The adjacency matrix A € M o OF @ network is defined as follows:
LY, (= ])and (i, j) e A]
{0 otherwise
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where Arepresents the set of connected nodes and n being the number of components in the system.
The diagonal elements of A are zero. The associated matrix energy of the network [Nikiforov 2007] is
defined as the sum of singular values of the adjacency matrix:
E(A)= zgi, where o, represents i" singular value
i=1
Matrix energy is used as a measure of topological complexity of the system architecture and is
invariant under isomorphic transformations of the matrix. We define C; as:
Cy=7E(A)
where y[J = 1/n acts as sort of a normalization factor. The topological complexity term C; quantity
helps distinguish structural complexity of very different connectivity structures with the same number
of components and interactions (see fig. 1).
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Fig. 1: Two architectures having the same number of nodes and connections but are differentiated
based on their internal structure with E(A1) = 4.9 and E(A2) = 6.83.

To check conceptual validity of the proposed topological complexity metric, we benchmarked it
against the set of required properties prescribed by Weyuker [Weyuker 1988] and it can be shown to
be fully compliant with Weyuker’s criteria [Lindemann et al. 2008, Weyuker 1988]. The proposed
structural complexity metric is defined below:

C = C,+CC,
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The effect of system architecture captured in Cs represents a global effect whose impact could be first
realized at the time of system integration and captures the challenges associated with system
integration efforts [Sinha and de Weck 2012]. Topological complexity increases from centralized
towards more distributed architectures (see fig. 2). A more distributed system is one that cannot be



condensed/reduced, and such a system indicates higher topological complexity but it might also help
achieve higher performance levels with high robustness and reliability [Carlson and Doyle, 2002].

Increasing Structural Complexity

Fig. 2: Evolution of topological complexity based on their internal structure: (a) ‘centralized’ or bus
architecture; (b) hierarchical architecture and (c) ‘distributed’ architecture.

According to fig. 2, highly distributed architecture would lead to high C; value and thereby imply high
system integration effort. Note that C; is only a part of the structural complexity measure and the total
structural complexity is also dependent on component and interface complexities. For example,
assume a total structural complexity budget of C = 100. We can distribute this total complexity among
its different components C;, C, and Cs. There is an interesting tradeoff discussion of whether to opt for
(i) complex components and simple architecture, or (ii) simpler components and complex architecture.
Assuming we have both options open after considering other life-cycle considerations like robustness
etc., the first option calls for excellence in component development and very high component
reliability while the second option requires expertise in system architecting and integration. This may
often be a strategic decision to be made by the development organization. In the following sub-section,
we demonstrate operationalization of the proposed methodology using a simple example and also
allude to a larger jet engine example where this methodology has been applied and reported in an
earlier article [Sinha and de Weck 2012].

2.1 lllustrative Example
We present a small example of a hypothetical system for demonstrating the mechanics of the method,
using a hypothetical fluid flow system as shown in fig. 3.
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Fig. 3: (a) Sample system: it shows different connection types amongst components -
physical/mechanical connection (black); material/fluid flow (red); energy flow (green) and
information/control signal flow (blue); (b) aggregated adjacency matrix.

The graph energy is E(A) = 5.6. Now let us differentiate among components and let the component
complexity vector be {(controller=5); (pump=2);(valve=1); (filter=1);(motor=3)}. The sum of
component complexities C; = 5+3+2+1+1 = 12. Let us use the following connection complexities:
pmech = 0.5, IRV = 1.0 and B = 1.0. Note that mechanical and information connections are
bidirectional, while fluid and energy flows are unidirectional. Therefore, the sum of connection
complexities C, = 2*5%0.5 + 1*5*1 + 2*1*1 = 12. If we use y[I[J[J[10n = 1/5, the structural
complexity is (12+12*(5.6/5)) = 25.44. Here developing the system components is more complex than
the connection complexities and it has the effect of increasing the contribution of component
complexities in the structural complexity metric. The same method was applied to two different jet
engine architectures, namely a dual spool turbofan and a geared turbofan engine. The specific details
can be found in [Sinha and de Weck 2012]. The detailed sensitivity analysis revealed that primary
functionality generators (e.g., those generating thrust) are significant contributors to component
complexity while supporting systems (e.g., lubrication systems, accessory gearbox, robust control
systems) are the primary contributors to topological complexity and have significant impact on system
integration efforts [Denman et al. 2011, Sinha and de Weck 2012].

In practice, assignment of component and connection complexities could be uncertain during the
conceptual stage or even after the product architecture is finalized. In such cases, the resulting
structural complexity will not be a single number but a distribution, depending upon the distribution of
individual component and connection complexities.



3 VALIDATION OF THE PROPOSED STRUCTURAL COMPLEXITY METRIC
While formulating the structural complexity metric, we performed formal mathematical consistency
check and verification using Weyuker’s criteria. This only looks at the mathematical validity of the
proposed metric as a complexity measure. But in order to establish the proposed metric as a valid
measure of structural complexity, a series of both empirical and experimental validations based on
real-world applications is necessary. The first obstacle for validation is the inability to directly
measure complexity. Therefore we have to depend on the indirect measures or well-accepted
manifestation of complexity in terms of other system observables. The most visible of these system
level observables is the system development cost. We state with the following hypothesis relating
structural complexity to system development cost / effort.

Hypothesis: System development cost/effort correlates super-linearly with Structural Complexity (fig.
4).

Y=axb

Dev. Cost (y)

v

Structural Complexity (x)
Fig. 4: Predicted super-linear growth in development cost with increasing structural complexity.

We start with showing examples from the literature, followed by an experimental validation (using
natural experiments) and finally we discuss about the characteristics of parameters {a, b} in the
proposed functional form in the stated hypothesis.

3.1 Empirical Evidence

We begin with some empirical evidence in support of the stated hypothesis. Here, we present three
examples of empirical evidence from the literature [Wood et al. 2001, DARPA Report 2011]. They
represent simpler systems (e.g., family of electrical drills) at one end and highly complex satellite
systems at the other end. In all these cases the development costs are normalized and structural
complexity is computed based on the underlying architecture. The component complexities were
estimated on a scale [0,5] and interface complexities on a scale of [0,1]. The development costs were
taken from the existing literature. In these cases shown, we have similar kind of products with the
similar primary functionality.
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Fig. 5: Some empirical evidences of super-linear growth in development cost with increasing structural
complexity from the literature.

In all cases shown in fig. 5 above, if we were to fit a power law as per our hypothesis, we obtain R* =
0.99, indicating very strong correlation. The parameters of the model {a, b} depends on the nature and
category of systems. For example, they are higher for satellite development compared to other kinds of
systems. Please bear in mind that these numbers are based on just 3 data points and therefore not
statistically significant. They only support the trend consistent with our hypothesis but are not enough
for a statistically significant confirmation. Apart from such empirical evidence, we concentrated on
conducting experiments with human subjects to see if we observe a similar behavior. These



experiments were conducted as “natural” experiments as nearly as possible with a group of nearly
homogeneous subjects, using simple ball and stick models as described in the following section.

3.2 “Natural” Experiments

There is not much publicly available data to validate our hypothesis for large, real-world complex
engineered systems. Given the lack of available data, we choose to perform simple natural experiments
related to assembly of simpler structural models by human subjects. We perform an experiment with a
molecular modeling kit, used in chemistry for illustration of structure of organic molecules. The atoms
are the components, and the bonds between them are the interfaces. Test subjects were required to
correctly assemble structures given this molecular kit and a 2D picture of the structure to be built. We
track the total assembly time for each structure as the observable and is used as a surrogate for system
development effort. Any incorrect assembly involves rework and leads to increasing total assembly
time. Notice that this is a natural experimental setting and the idea is to mimic the real-world
assembly process. The sequence in which different subjects were given the molecular structures was
randomized. In all cases, we assumed o = 0.1 for all atoms, f = 0.1 for all links and y = 1/n where n is
the number of atoms in a given molecule. This is because all atoms are used as is and there is no
perceptible difference in assembling using different bond types (i.e., curved vs. straight bonds). We
have looked at the sensitivities of component and interface complexities and found no significant
impact on the nature of the Structural Complexity - Development Cost relationship.

- ey eonsv gty 4] Functional form: Y=axt

- ¢ i Fitted parameters: a=10.23;b=1.69

Model adequacy: R?=0.9967; adjusted R2= 0.9962

N\

Aty Time (v |
£
n\

Significance test (parameters): | t,=9.258>,=2.306; t, = 37.56>t,=2.306

oy _j/ ..... o ] e .
.- ﬁ’ = Significance of regression (F test): F=1206.05> ), ,=5.32
pee = . B

Fig. 6: Some representative molecular structures that subjects were asked to assemble using a
molecular kit and initial results based on a set of 10 structures with varying structural complexities.
Here, the number of subjects, N = 12.

Initial results based on our experimental investigations show a similar relationship between structural
complexity and molecule assembly time (see fig. 6) as in fig. 4. Also note that variation in assembly
time increases as the structural complexity level increases. The statistical quality of the functional
relationship is shown above in tabular format. All statistical significance analysis assumed 95%
confidence level. The most interesting preliminary result is the exponent of the power law relation, b =
1.69. This suggests that effort increases super-linearly but is not quite quadratic with increasing
structural complexity. This study will be expanded in future to include a larger sample size (i.e.,
number of test subjects) and assembly of additional structures from different complexity regimes.

3.3 Complicatedness function

Let us analyze the development cost vs. structural complexity model of the form Y = aX ®where
{X,Y} stands for structural complexity and system development cost/effort respectively. At a given



level of structural complexity X = X, we have a distribution of system development efforts as seen
from fig. 6. Let us term the maximum development effort as Y, and minimum development effort as
Y. Also define the corresponding parameters as {a,,b,} and {a;,b;} respectively. Based on the data,
we find the following relationship between structural complexity and spread in the system

development efforts:

Y a ®,~b)

L=l (X )" " ~1.49X

e v
The parameters of the functional model emphasize two very different aspects associated to system
development efforts. The parameter a characterize work efficiency of the actor (i.e. ability to perform
known/specified work efficiently). The parameter b, on the other hand, relates to individual/ group’s
innate ability to synthesize solutions and cognitive capability plays a big role. This parameter becomes
more significant at higher regimes of complexity. We observe this phenomenon at an individual level.
The exponent parameter b increases significantly for higher complexity regimes vis-a-vis lower
complexity regimes (see table 1 below).

Table 1: For an individual, the exponent b increases significantly as we move from lower structural
complexity regime (0 — 4] to higher structural complexity region (4 — 12.7). The exponents were
computed after segmenting the complexity regimes.

Exp t Lower Complexity level (0-4) Higher Complexity level (4.0 - 12.7) Overall
b 1.13 2.58 2.39

We define b as complicatedness function of the actor (an individual or a group of individuals).
Complicatedness is an observer-dependent property that characterizes an actor’s / observer’s ability to
unravel, understand and manage the system under consideration. In contrast, complexity is an inherent
system property and a complex system may represent different degrees of complicatedness depending
on the observer. For example, the complexity of an automobile’s automatic transmission may be
hidden from a user and is perceived to be less complex. We can think of complicatedness as a conduit
through which complexity manifests itself at the level of system-level observables like the system
development cost [Tang and Salminen, 2001]. Complicatedness provides insights to the cognitive
aspects of the observer and his/her ability to handle a certain level of complexity. We list the five main
factors affecting complicatedness as (i) complexity; (ii) modularity or design encapsulation; (iii)
novelty; (iv) cognitive capability and bandwidth. Effects of each of these four factors are as follows:

(i) Complexity: Complicatedness is the degree to which an actor or decision unit for the system is able
to manage the level of complexity presented by the system. Assuming other factors being equal,
complicatedness K can be written as a function of complexity, K=g(C). We expect monotonicity of
complicatedness with respect to complexity and at C=0, K=0.

K

»

c.

Fig. 7: Complicatedness vs. complexity: two different behavioral patterns, both with knee points
defined by (C*, K*).

Intuitively, there is a level of complexity beyond which the observer can barely cope with the system
and the system complicatedness becomes unmanageable (see fig. 7). Hence, K — oo for C>C .



(if) Modularity or design encapsulation: Structural modularity or design encapsulation is a means of
containing the complicatedness of a system. A well-architected system may hide inherent complexity
in an effective fashion such that it appears less complicated. A good design or architecture always
presents a less complicated system image to the actor’s or decision units [Tang and Salminen, 2001].
Design encapsulation (notice that it also leads to information hiding) helps focusing attention on a
subset of the system at a time. This is similar to ‘‘chunking’’ of information to circumvent the human
cognitive span limitation [Hirschi and Frey, 2002].

(iii) Novelty: As an observer gains experience with a system, he/she starts developing knowledge and
intuition about the system. A user can get more exposure with a system over time and deems it to be
less complicated with passage of time, although the internal system remains unaltered. This seems
quite natural if we view humans as adaptive systems. Humans continually update and adapt
themselves as additional knowledge becomes available to new boundaries / constraints are discovered.
This also applies in case of component or subsystem re-use in the new system, which drives the
complicatedness down.

(iv) Cognitive bandwidth: Some actor’s or decision units (i.e., group of individuals / team) may relate
better to a more complex system than other actor’s. This is reflective of the innate cognitive capability
of an individual or a group of individuals to unravel the system, understand and manage the system. A
high cognitive bandwidth on the part of the decision unit helps reduce complicatedness of a system for
that decision unit.

Looking closely at the factors listed above, we observe that factors (i), (ii) and (iii) are related to the
system architecture and design, while cognitive bandwidth relates to human ability to handle a given
complexity.

4 DISTRIBUTION OF STRUCTURAL COMPLEXITY AND ITS SYSTEMIC

IMPLICATIONS
Distribution of structural complexity across the system elements play a very significant role in
achieving a set of system properties and often to programmatic success of the system development
project. Knowledge of overall system architecture is absolutely critical to be able to quantify and track
the complexity during the system development activity. This aspect can be best explained with a
simple example as shown in fig. 8 below.
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Fig. 8: Increasingly detailed view of the system and evolution of structural complexity if we assume
components at each level to be of similar category.

At top level, each component actually represents a subsystem or module and their lower level details
are shown in fig. 8. Complexity estimates are performed at each level of detail without considering the
fact that at the top level, we do not have component, but we have subsystems and we cannot treat them
as simple components. Doing that one might get the impression that structural complexity is only Ca
while in reality, it is C". This leads to a gross underestimation of structural complexity of the system.
In order to extract information on complexity distribution we do need complete information about the
internal structure of subsystems. This information is crucial for tracking and management of large,
engineered system development efforts. Implication of the complexity distribution on system
development effort can be best explored using case studies and development of Boeing 787 (e.g., the



Dreamliner) is a good example [Cohan 2011]. Considered the largest industrial program in the world,
Boeing chose to partner with 17 companies in 10 different countries and the outsourcing of the design
and production amounts to 70% of the aircraft. Arguably, the decision to outsource so much of the
design and production of the 787 played a large role in the project not meeting its ambitious goals in
terms of reduced production cost and speed to market. By outsourcing both the design and the
manufacturing, Boeing temporarily lost control of the development process since they had a clear view
only at the level of primary modules, but not beyond. This view obscures what is inside the
subsystems and made it difficult for Boeing to judge the total structural complexity of the system as it
evolved. If a subsystem or module started to become too complex, it is possible that the outsourcing
partner did not have the adequate capability for handling that level of complexity and this may have
jeopardized the overall system development effort [Cohan 2011]. In this light, we argue that the
importance of complete knowledge of the overall system architecture is crucial for decision-making
during the development process and constitutes a core capability for the primary system development
organization. This capability is essential for complexity to be tracked and actively managed during the
process.

5 CONCLUSION

In this work, we formulated the structural complexity metric for engineered systems, which was shown
to consist of three terms representing complexities of system components, connections among these
components and topological complexity. We introduced the notion of matrix energy as a measure of
topological complexity of product architecture and shown that it increases as we move towards more
distributed architectures. We presented empirical evidence from real-world engineered systems and
reported experimental validations to validate the proposed complexity metric. We have posited a
super-linear growth in development cost with increasing structural complexity, presented confirmatory
evidence from existing literature and also preliminary experimental validation of the same. Preliminary
result suggests that effort increases super-linearly with increasing structural complexity with the
exponent of the power law relation being 1.69. We also developed a complicatedness function for
human decision units / actor through which structural complexity is manifested in terms of system
development cost, which is a system observable. We further discussed distribution of complexity
across the system architecture and argued that adequate knowledge and visibility of the overall system
architecture is absolutely essential for matured complexity management capability. Distribution of
overall complexity is a critically important facet and has a big impact on system architecting strategies.
Knowledge of the relative subsystem complexities influences the selection / composition of the
subsystem development team and might influence strategic decisions, including outsourcing options. It
is imperative for every large-scale system development efforts to have active complexity distribution
and management capability.

Going forward, the proposed structural complexity metric can serve future complexity-based product
design and optimization framework and help explore important questions related to tracking,
management and distribution of structural complexity across the system architecture and its impact on
other system performance/lifecycle measures.

The relationship between structural and dynamic complexities presents an interesting area for
exploration. Although there they are found to be positively correlated in general, there might be
architectures where they might have to be traded against each other for attaining the ultimate goal of
minimizing system development cost, compressing the schedule or mitigating risk.
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