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ABSTRACT 
The complexity of today’s highly engineered products is rooted in the interwoven architecture defined 

by its components and their interactions. Quantitative assessment of structural complexity is 

mandatory for characterization of engineered complex systems. In this paper, we develop a 

quantitative measure for structural complexity and illustrate its application to a real-world, complex 

engineered system. It is observed that low topological complexity implies centralized architecture and 

it increases as we march towards highly distributed architectures. We posit that the development cost 

increases super-linearly with structural complexity. Empirical evidences from literature and 

preliminary results from simple experiments strengthen our hypothesis. Preliminary experiments show 

that the effort increases super-linearly with increasing structural complexity (i.e., exponent, b = 1.69). 

We further introduce complicatedness as an observer-dependent property that links structural 

complexity to system level observables like the development cost. We further discuss distribution of 

complexity across the system architecture and its strategic implications for system development 

efforts. 
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1 INTRODUCTION 
Today’s large-scale engineered systems are becoming increasingly complex for numerous reasons 
including higher demands on performance levels and improved lifecycle properties. As a consequence, 
large product development projects are becoming more challenging and are falling behind in terms of 
schedule and cost performance [Bashir and Thomson, 1999]. For example, in 13 aerospace projects 
reviewed by the US Government Accountability Office (GAO) since 2008, large development cost 
growth of about 55% was observed. Such large development cost overruns/failures of large-scale 
system development projects can largely be attributed to our current inability to characterize, quantify 
and manage associated complexity [Bashir and Thomson, 1999, DARPA report 2011]. In order to deal 
with this issue effectively, quantitative metric for system complexity and its relation to development 
effort are needed. A quantified measure of complexity is imperative for systematic optimality search of 
system architecture. Such a quantitative measure of complexity can be evaluated and tracked during 
system development. A particular concern in the area of complexity estimation is that less than one-
fifth of the studies even attempted to provide some degree of objective quantification of complexity 
[Tang and Salminen, 2001]. This is understandable as large system development projects are rare and 
definitely not repeatable, making empirical/experimental studies hard to perform. This has posed a 
significant roadblock to widespread adaptation of generic complexity quantification methods exist for 
engineered systems. In the context of engineered systems, the three main dimensions of complexity 
have evolved and they are grouped as (1) Structural Complexity, (2) Dynamic Complexity and (3) 
Organizational Complexity [Weber C. 2005, Lindemann 2009]. Structural complexity characterizes 
the system architecture, dynamic complexity refers to the complexity of the dynamical behavior of the 
system and organizational Complexity relates to the system development process and the 
organizational structure of the development team. All these dimensions are positively correlated in 
general [MacCormack et. al, 2011] and we decided to focus on the quantification of structural 
complexity and its relationship to system development cost/effort in this paper.   
The structural complexity of systems depends on the heterogeneity, quantity and connectivity of 
different elements, and is a measurable system characteristic. This internal product architecture can be 
represented by complex networks, which are graph-theoretic representation of complex systems where 
components of the systems are the nodes and are connected by links if there exists an interaction 
between any pair of components. [Sheard and Mostashari, 2010]. In this paper, a rigorous and 
quantitative structural complexity metric for engineered complex systems, incorporating the 
fundamental underlying characteristics of system architecture, is proposed. We posit that the 
development cost varies non-linearly with structural complexity. Some empirical evidences of such 
behavior are presented from the literature. This hypothesis is further buttressed by preliminary results 
from simple experiments involving assembly of simpler structures. We introduce the notion of 
structural complexity distribution across the system architecture and how it can impact strategic 
decisions in system development efforts.  

2 STRUCTURAL COMPLEXITY QUANTIFICATION 
The structural complexity of technical systems depends on the quantity of different elements and their 
connectivity structure and is a measurable system characteristic. This quantity include contributions 
coming from the internal complexities of the components of the system; the complexities associated to 
the pair-wise interactions among the components and a quantity that encapsulates the complexity due 
to inherent arrangement of connections (i.e., structure) amongst the components. We propose the 
following functional form for estimating the structural complexity of an engineered complex system: 

Structural Complexity, C  C
1
C

2
C

3 
In the above formulation, the first term C1 represents the sum of complexities of individual 
components alone (local effect). It relates to the component engineering activity within a system 
development effort and does not involve architectural information. The second term has two 
components: (i) number and complexity of each pair-wise interaction, C2 (local effect) and it relates to 
interface design and management activity in a system development effort; (ii) effect of architecture or 
the arrangement of the interfaces C3 (global effect) which reflects on the challenges associated with 
system integration. The individual component complexities can vary across the system (e.g., a low-
pressure turbine is much more complex than the exhaust nozzle in a jet engine) and are designated by 
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3 VALIDATION OF THE PROPOSED STRUCTURAL COMPLEXITY METRIC 
While formulating the structural complexity metric, we performed formal mathematical consistency 
check and verification using Weyuker’s criteria. This only looks at the mathematical validity of the 
proposed metric as a complexity measure. But in order to establish the proposed metric as a valid 
measure of structural complexity, a series of both empirical and experimental validations based on 
real-world applications is necessary. The first obstacle for validation is the inability to directly 
measure complexity. Therefore we have to depend on the indirect measures or well-accepted 
manifestation of complexity in terms of other system observables.  The most visible of these system 
level observables is the system development cost. We state with the following hypothesis relating 
structural complexity to system development cost / effort.  
Hypothesis: System development cost/effort correlates super-linearly with Structural Complexity (fig. 
4).  

 

Fig. 4: Predicted super-linear growth in development cost with increasing structural complexity. 

We start with showing examples from the literature, followed by an experimental validation (using 
natural experiments) and finally we discuss about the characteristics of parameters {a, b} in the 
proposed functional form in the stated hypothesis.  

3.1 Empirical Evidence 
We begin with some empirical evidence in support of the stated hypothesis. Here, we present three 
examples of empirical evidence from the literature [Wood et al. 2001, DARPA Report 2011]. They 
represent simpler systems (e.g., family of electrical drills) at one end and highly complex satellite 
systems at the other end. In all these cases the development costs are normalized and structural 
complexity is computed based on the underlying architecture. The component complexities were 
estimated on a scale [0,5] and interface complexities on a scale of [0,1]. The development costs were 
taken from the existing literature. In these cases shown, we have similar kind of products with the 
similar primary functionality.  

 

Fig. 5: Some empirical evidences of super-linear growth in development cost with increasing structural 
complexity from the literature. 

In all cases shown in fig. 5 above, if we were to fit a power law as per our hypothesis, we obtain R2 = 
0.99, indicating very strong correlation. The parameters of the model {a, b} depends on the nature and 
category of systems. For example, they are higher for satellite development compared to other kinds of 
systems. Please bear in mind that these numbers are based on just 3 data points and therefore not 
statistically significant. They only support the trend consistent with our hypothesis but are not enough 
for a statistically significant confirmation. Apart from such empirical evidence, we concentrated on 
conducting experiments with human subjects to see if we observe a similar behavior. These 
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(ii) Modularity or design encapsulation: Structural modularity or design encapsulation is a means of 
containing the complicatedness of a system. A well-architected system may hide inherent complexity 
in an effective fashion such that it appears less complicated. A good design or architecture always 
presents a less complicated system image to the actor’s or decision units [Tang and Salminen, 2001]. 
Design encapsulation (notice that it also leads to information hiding) helps focusing attention on a 
subset of the system at a time. This is similar to ‘‘chunking’’ of information to circumvent the human 
cognitive span limitation [Hirschi and Frey, 2002].  
 
(iii) Novelty: As an observer gains experience with a system, he/she starts developing knowledge and 
intuition about the system. A user can get more exposure with a system over time and deems it to be 
less complicated with passage of time, although the internal system remains unaltered. This seems 
quite natural if we view humans as adaptive systems. Humans continually update and adapt 
themselves as additional knowledge becomes available to new boundaries / constraints are discovered. 
This also applies in case of component or subsystem re-use in the new system, which drives the 
complicatedness down.  
 
(iv) Cognitive bandwidth: Some actor’s or decision units (i.e., group of individuals / team) may relate 
better to a more complex system than other actor’s. This is reflective of the innate cognitive capability 
of an individual or a group of individuals to unravel the system, understand and manage the system. A 
high cognitive bandwidth on the part of the decision unit helps reduce complicatedness of a system for 
that decision unit.  
 
Looking closely at the factors listed above, we observe that factors (i), (ii) and (iii) are related to the 
system architecture and design, while cognitive bandwidth relates to human ability to handle a given 
complexity.  

4 DISTRIBUTION OF STRUCTURAL COMPLEXITY AND ITS SYSTEMIC 
IMPLICATIONS 

Distribution of structural complexity across the system elements play a very significant role in 
achieving a set of system properties and often to programmatic success of the system development 
project. Knowledge of overall system architecture is absolutely critical to be able to quantify and track 
the complexity during the system development activity. This aspect can be best explained with a 
simple example as shown in fig. 8 below. 
 

 
 

Fig. 8: Increasingly detailed view of the system and evolution of structural complexity if we assume 
components at each level to be of similar category. 

At top level, each component actually represents a subsystem or module and their lower level details 
are shown in fig. 8. Complexity estimates are performed at each level of detail without considering the 
fact that at the top level, we do not have component, but we have subsystems and we cannot treat them 
as simple components. Doing that one might get the impression that structural complexity is only CA 
while in reality, it is C*. This leads to a gross underestimation of structural complexity of the system. 
In order to extract information on complexity distribution we do need complete information about the 
internal structure of subsystems.  This information is crucial for tracking and management of large, 
engineered system development efforts. Implication of the complexity distribution on system 
development effort can be best explored using case studies and development of Boeing 787 (e.g., the 
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Dreamliner) is a good example [Cohan 2011]. Considered the largest industrial program in the world, 
Boeing chose to partner with 17 companies in 10 different countries and the outsourcing of the design 
and production amounts to 70% of the aircraft. Arguably, the decision to outsource so much of the 
design and production of the 787 played a large role in the project not meeting its ambitious goals in 
terms of reduced production cost and speed to market. By outsourcing both the design and the 
manufacturing, Boeing temporarily lost control of the development process since they had a clear view 
only at the level of primary modules, but not beyond. This view obscures what is inside the 
subsystems and made it difficult for Boeing to judge the total structural complexity of the system as it 
evolved. If a subsystem or module started to become too complex, it is possible that the outsourcing 
partner did not have the adequate capability for handling that level of complexity and this may have 
jeopardized the overall system development effort [Cohan 2011]. In this light, we argue that the 
importance of complete knowledge of the overall system architecture is crucial for decision-making 
during the development process and constitutes a core capability for the primary system development 
organization. This capability is essential for complexity to be tracked and actively managed during the 
process.  

5 CONCLUSION 
In this work, we formulated the structural complexity metric for engineered systems, which was shown 
to consist of three terms representing complexities of system components, connections among these 
components and topological complexity. We introduced the notion of matrix energy as a measure of 
topological complexity of product architecture and shown that it increases as we move towards more 
distributed architectures. We presented empirical evidence from real-world engineered systems and 
reported experimental validations to validate the proposed complexity metric. We have posited a 
super-linear growth in development cost with increasing structural complexity, presented confirmatory 
evidence from existing literature and also preliminary experimental validation of the same. Preliminary 
result suggests that effort increases super-linearly with increasing structural complexity with the 
exponent of the power law relation being 1.69. We also developed a complicatedness function for 
human decision units / actor through which structural complexity is manifested in terms of system 
development cost, which is a system observable. We further discussed distribution of complexity 
across the system architecture and argued that adequate knowledge and visibility of the overall system 
architecture is absolutely essential for matured complexity management capability. Distribution of 
overall complexity is a critically important facet and has a big impact on system architecting strategies. 
Knowledge of the relative subsystem complexities influences the selection / composition of the 
subsystem development team and might influence strategic decisions, including outsourcing options. It 
is imperative for every large-scale system development efforts to have active complexity distribution 
and management capability.  
Going forward, the proposed structural complexity metric can serve future complexity-based product 
design and optimization framework and help explore important questions related to tracking, 
management and distribution of structural complexity across the system architecture and its impact on 
other system performance/lifecycle measures.  
The relationship between structural and dynamic complexities presents an interesting area for 
exploration. Although there they are found to be positively correlated in general, there might be 
architectures where they might have to be traded against each other for attaining the ultimate goal of 
minimizing system development cost, compressing the schedule or mitigating risk.  
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