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Abstract.  Many have offered criteria for judging a design as creative. Among these criteria 

have been novelty, value, and surprise. We offer a unique perspective and synthesis of these 

three criteria with the goal of giving agents – be they artificial, human, or collectives thereof – 

a common model to judge the creativity of their own designs and the designs of others, and 

ultimately to inform computational modelling of creative design. We illustrate an AI approach 

to judging creativity using an example of sustainable design -- the Bloom laptop. 
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1. Introduction 

There is increasing interest in computational systems that model creative processes and generate 

creative designs, yet we still rely on humans to evaluate whether a specific design is creative. In 

parallel there is increasing interest in computational systems that encourage and enhance human 

creativity; these latter systems make no claims about whether the computer is being creative, but do 

make claims that the human/computer pairing is more creative than the human alone.  

As the boundary between human creativity and computer creativity blurs, we are interested in 

evaluating creativity that makes no assumptions about whether the creative entity is a person, a 

computer, or a (potentially large) collective intelligence of human and computational entities. We 

desire a ―Turing Test‖ for creativity that is not biased by the form of the entity that is doing the 

creating. Ultimately, such tests will imbue artificial agents with an ability to assess their own designs, 

informing computational models of creative reasoning. Such tests will also inform the design of 

cognitive assistants that are effective collaborators with humans in sophisticated socially intelligent 

computational systems.  

This paper takes steps towards assessing creativity by considering formalizations of three criteria for 

creativity that are often referenced in the literature, though not always together and often by different 

names; these are novelty, value and surprise. We believe that our treatment of these criteria goes 

beyond earlier treatments, in part because we synthesize across them, suggesting and formalizing 

relationships between the three. Our paper begins with a survey of relevant creativity research; 
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followed by targeted surveys of novelty, value and surprise; formalizations of each of the three in 

terms of distance measures;  and illustrate these measures with laptop designs, to include the Bloom 

laptop. We end with the relevance of machine learning for assessing creativity and to other future 

work. 

2. Creativity research  

When describing and evaluating creative processes and products, there is a ―conceptual space‖ 

(Boden, 2003) of possibilities that structures, constrains and otherwise biases thought. Boden (2003) 

describes combination, exploration, and transformation as ways in which the conceptual space is 

traversed when generating a creative design: combination finds novel ways of combining ideas within 

the conceptual space; exploration finds parts of the space that were not discovered previously; and 

transformation extends the space to include novel ideas. Much work on creative thought has focused 

on processes of individuals (Mumford, Mobley, Uhlman, Reiter-Palmon, and Doares, 1991). Recently 

there has been interest in understanding individual and team cognition in creative processes, and the 

role of shared mental models (Reiter-Palmon et al 2008). From a computational creativity perspective, 

Gero (2000) presents combination, transformation, analogy, emergence, and first principles as 

processes for generating creative designs. Maher et al (1995) presents a framework to characterize 

different computational processes in terms of transformation and exploration and describes a zone of 

creativity to evaluate their potential for generating creative designs. Brown and Chandresekaran 

(1989) distinguish routine, innovative, and creative design in terms of existing knowledge of 

decompositions and plans for generating the design. A similar distinction between routine, innovative 

and creative design is made in Goel (1997) and Gero (1994), showing how creative designs result in a 

new, often expanded conceptual space. 

Often, we cannot observe the creative process directly. Rather, people often judge the design (or 

artefact, product, idea, etc) that results from a process instead of judging the process directly. 

Judgements of designs can serve as a ―Turing Test‖ of the underlying process that produced the 

design. Though a Turing Test approach is imperfect, we continue in this tradition, and speak of 

―creative designs.‖  

Most descriptions of creative designs, including dictionary definitions, include novelty as an essential 

characteristic. However, psychologists, computer scientists, and engineering designers suggest 

creativity goes beyond novelty. Csikszentmihalyi and Wolfe (2000) define creativity as an idea or 

product that is original, valued, and implemented. Amabile (1996) claims an outcome or result is 

interpreted as creative if it is both novel and appropriate. Runco (2007) summarizes several 

researchers who claim that creativity results in something new and useful, and others who claim 

creativity is more than that. Boden (2003) claims that novelty and value are the essential criteria and 

those other aspects, such as surprise, are kinds of novelty or value. Wiggins (2006) defines novelty 

and value as different factors of creativity, yet often uses value to indicate all valuable aspects of a 

creative product. Cropley and Cropley (2005) propose four broad properties of products that 

characterize their creativity: effectiveness, novelty, elegance, and genesis. Besemer and O'Quin (1987) 

define a Creative Product Semantic Scale of products along three dimensions: novelty (the product is 

original, surprising and germinal), resolution (the product is valuable, logical, useful, and 

understandable), and elaboration and synthesis (the product is organic, elegant, complex, and well-

crafted). Horn and Salvendy (2006) report on consumer perception of creativity along three 

dimensions: affect (our emotional response to the product), importance, and novelty. Goldenberg and 

Mazursky (2002) report that creativity in products includes "original, of value, novel, interesting, 



ICDC2012  47 

elegant, unique, surprising." From the engineering design perspective, Oman and Tumer (2009) 

combine novelty and quality to evaluate engineering designs. Shah, Smith, and Vargas-Hernandez 

(2003) associate creative design with ideation and develop criteria for novelty, variety, quality, and 

quantity of ideas.  

Amabile (1982) summarizes the social psychology literature on the assessment of creativity: while 

most definitions of creativity refer to novelty, appropriateness, and surprise, current creativity tests or 

assessment techniques are not closely linked to these criteria. She further argues that ―There is no 

clear, explicit statement of the criteria that conceptually underlie the assessment procedures.‖ In 

response to an inability to establish criteria for evaluating creativity that is acceptable to all domains, 

Amabile (1982, 1996) introduced a Consensual Assessment Technique in which creativity is assessed 

by a group of judges that are knowledgeable of the field. Since then, several scales for assisting human 

evaluators have been developed, such as Besemer and O'Quin's (1999) Creative Product Semantic 

Scale; Reis and Renzulli's (1991) Student Product Assessment Form; and Cropley et al‘s (2011) 

Creative Solution Diagnosis Scale.  

In sum, the two most-widely endorsed factors in the literature that contribute to creative designs are 

novelty and value. Surprise is articulated much less often, but we nonetheless believe it is an important 

factor, different from but related to both novelty and value. While these factors have been discussed to 

varying extents, and have informed the development of computational systems to generate designs that 

were then judged by humans to be creative, we know of no work that quantifies these factors so that an 

artificial agent can use them collectively to assess creativity. 

3. AI models of novelty and surprise 

Computational models of novelty and surprise have been developed for various purposes in AI and 

these models inform our understanding of these concepts for evaluating creative design. A clustering 

approach based on Self-Organizing Maps (Kohonen, 1993) is the basis for a real-time novelty detector 

for mobile robots (Marsland et al. 2000), using Stanley‘s model of habituation (1976). Habituation and 

recovery imbues a novelty filter with the ability to forget, which for design, allows novel designs that 

have been seen in the past to be considered again as potentially creative using a new value system. 

Saunders and Gero (2001) drew on the work of Berlyne (1996) and Marsland et al (2000) to develop 

computational models of curiosity based on novelty, using sigmoid functions to represent positive 

reward for the discovery of novel stimuli and negative reward for the discovery of highly novel 

stimuli. Negative rewards reflect that designs that are too different are not considered creative, perhaps 

because they were perceived as violating constraints or norms that help establish the value of a new 

design. This suggests that a creative design should be sufficiently different to be considered novel, but 

similar enough to be ―in the ballpark‖. 

Horvitz et al (2005) develop a model of surprise for traffic forecasting. They generated probabilistic 

dependencies among variables, for example linking weather to traffic status. They assume a user 

model that states that when an event has less than 2% probability of occurring, it is marked as 

surprising. They use a temporal model of the data, grouping incidents into 15 minute intervals. 

Surprising events in the past are collected in a case library of surprises. Itti and Baldi (2004) describe a 

model of surprising features in image data using a priori and posterior probabilities. Given a user 

dependent model M of some data, there is a P(M) describing the probability distribution. P(M|D) is the 

probability distribution conditioned on data. Surprise is modeled as the distance d between the prior, 

P(M), and posterior P(M|D) probabilities.  Ranasinghe and Shen (2008) develop a model of surprise as 

integral to developmental robots. In this model, surprise is used to set goals for learning in an 
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unknown environment. The world is modeled as a set of rules, where each rule has the form: 

Condition  Action  Predictions. A condition is modeled as: Feature   Operator  Value. For 

example, a condition can be feature1 > value1 where ―greater than‖ is the operator. A prediction is 

modeled as: Feature  Operator. For example, a prediction can be ―feature1 >‖ where it is expected 

that feature1 will increase after the action is performed. Comparisons can detect the presence (%) or 

absence (~) of a feature, and the change in the size of a feature (<, <=, =, >=, >). If an observed feature 

does not match its predicted value, then the system recognizes surprise. 

The models of surprise and novelty provide different approaches to recognizing creativity using 

clustering and distance, probability and expectations, and generalized rules based on previous 

experience. In the remainder of this paper we focus on clustering and distance, while acknowledging 

that other AI models may be part of a larger toolbox for evaluating creativity. 

4. An AI approach to evaluating factors of creativity 

A ―Turing Test‖ for creativity presupposes that characteristics of a design tell us something about the 

process that created it. To develop such a test we elaborate on two principles: (1) creativity is a 

relative measure in a conceptual space of possible and existing designs and (2) novelty, value, and 

surprise capture distinct characteristics of creative design within that space. We illustrate these 

principles using the laptop domain, describing the conceptual space initially of Mac laptops only, and 

consider the addition of a new laptop to this set: The Bloom laptop (Figure 1), which was designed by 

mechanical engineering students at Stanford University and Aalto University (Bhobe et al, 2010). The 

laptop was designed for ease of recycling with design requirements including minimum number of 

parts and types of material, modular construction and disassembly, ease of disassembly, minimum 

disassembly time and has an unexpected value-adding feature of a removable keyboard during use.  

 

 
 

Figure 1. Bloom laptop modular design and removable keyboard; images from (Bhobe et al 2010); 

available under CC BY-SA licence (http://creativecommons.org/licenses/by-sa/3.0/) 

4.1 Relative measures in a conceptual space 

 Novelty, value and surprise for a new design are measured in a conceptual space of existing and 

possible designs. We assume a representational schema in which a design is described by attribute-

value pairs, though relational schemas are possible and often preferable. For measuring novelty and 

value, we suggest different aspects of the conceptual space: a description space for measuring novelty 

and a performance space for measuring value. For example, we characterize the description space of 

laptops as a set of attributes including Processor Speed (GHz), Height (in), Display size (in), Memory 

(GB), Storage (GB), HD Graphics Processor, Resolution-x (pixels), Resolution-y (pixels); and the 

value space to include Battery life (hours), Price (min US$), Weight (lbs). Note that there is 

subjectivity, stemming from the preferences of users – an elderly person using the laptop for email and 

Web surfing may care very much about weight, price and battery, and may not even know that 
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processor speed is a characteristic, much less having a preference on it. So, while Csikszentmihalyi 

(1996) suggests that value is a social construct and determined by the ―gatekeepers,‖ these gatekeepers 

and preferences will, of course, vary among observers, as will the attributes that these observers 

associate with preferences. We have not specified aesthetic and affective features of creativity as a 

separate factor since these are domain dependent and therefore may be included in what we call value. 

For example, in many areas of design, people correlate the aesthetic of increasing complexity of 

images or ideas with creativity; in such cases, complexity is a characteristic that would be included in 

the measurement of value. 

In this initial work on assessing creativity quantitatively, we use distances as relative measures within 

the design space. For example, given two designs, X
(1)

 and X
(2)

 each described along numeric 

attributes, Xi
(K)

, the Euclidean distance is the square root of the sum of squared differences in the 

corresponding attributes (after normalization) of each design: Xi
(1) 

- Xi
(2) 

)
2
. Even when we commit 

to distance as a means of measuring novelty, there are multiple ways to operationalize this approach.  

 As above, we can measure the distance of a design in terms of its distances to other specific 

designs in the conceptual space; for example, equating novelty of design X as the distance to 

its nearest neighbor in the conceptual space is an example of a individual-link approach. 

 However, if we were to measure novelty of X by the ratio of X‘s distance to its nearest 

neighbor, divided by the average of nearest-neighbor distances of all other designs (excluding 

X), then this would be an example of a family-link measure, since information about ALL 

designs, through the average of nearest neighbor distances, would be taken into account. 

 Yet another family-link strategy is to measure the distance between X and the centroid of 

designs in the conceptual space. The centroid is a theoretical point in the space, created by 

averaging the attributed values across all designs in the space. X‘s novelty could be 

operationalized as its distance to the centroid, or some ratio involving the centroid. 

  

Continuing along these lines, it is natural/desirable for cognitive agents to organize their observations 

into rich conceptual structures. When new designs are observed, they are not (necessarily) assessed 

relative to an unorganized collection of previous designs, but against a backdrop of conceptual 

structures over these designs. Clustering has been proposed and used as an organizing principle for an 

autonomous agent‘s conceptual structures (e.g., Fisher, 1996; the use of SOMs in Marsland et al., 

2000). We will use the well-known K-means clustering algorithm, using Euclidean distance and 

centroids, to organize the known designs. When a new design is observed, its distance to the nearest 

cluster centroid will inform assessments of novelty, value and surprise.  

4.2 Measures of novelty, value and surprise in a conceptual space 

Novelty, value and surprise are distinct perspectives on the location of a new design in a conceptual 

space of possible designs. We treat novelty and value as arising from different perspectives of the 

conceptual space (as noted in 4.1); novelty stems from a comparison (e.g., based on distance) in a 

descriptive space, and value is based on attributes that have utility preferences associated with them.  

Importantly, while novelty and value are assessed in different (descriptive and performance) spaces, 

we assume that both can be assessed through distance – distance in descriptive space and distance in 

performance space. In addition, of course, value not only has a magnitude component (distance), but a 

directional component too. We don‘t address the directionality component here other than to note that 
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a measure like Euclidean distance cannot capture it per se; and just as there were choices in how to use 

distance (e.g., centroid vs neighbour), choices in directionality must also be addressed (e.g., is positive 

score in one performance dimension more important than others). 

It is possible for something to be novel and valuable, but not be surprising. Surprise is a feature that is 

based on expectations, which can themselves be represented as a subspace of possible designs – thus, 

surprise is based on anticipating patterns or trends in the space of both actual designs and possible 

designs, leading to violated expectations.  

We illustrate our approach to evaluating these three characteristics for the Bloom laptop, relative to a 

space of previous Mac laptops (i.e., MacBook, 11-inch MacBook Air, 13-inch MacBook Air, 13-inch 

MacBook Pro, 15-inch MacBook Pro, 17-inch MacBook Pro). The values for descriptive and 

performance attributes for the Mac laptops were taken from the apple.com technical specifications, 

and the values for the Bloom laptop were found in Bhobe et al (2010). The laptops have been 

conceptually organized using the K-means algorithm (with K=2, with attribute normalization). 

Distances between the Bloom and nearest centroids inform measures of novelty, value and surprise. 

Novelty: Table 1 shows the full set of descriptive attributes (column 1), the cluster number (second to 

last row), and the distance from each design to the centroid of its cluster (last row). The Bloom‘s 

(rightmost column) Euclidean Distance to the centroid of its cluster is an order of magnitude larger 

than the distance of the Mac designs to the centroid of their respective clusters. This larger distance 

indicates that the Bloom is novel with respect to the other designs in this space, in large part because 

of the large differences in Body Parts (row 1), Removable Trackpad (row 2), and Removable 

Keyboard (row 3). In fact, there was no variance on these three variables before Bloom‘s introduction, 

and they would likely not have been used in descriptive analyses at all – Bloom‘s introduction added 

these variables in effect. 

Value: Table 2 shows the performance attributes (again, a matter of subjectivity, but our example 

illustrates the point), the cluster number (second to last row), and the distance from each design to the 

centroid of cluster 1 (since the Bloom laptop is in a cluster of 1 and the distance to its centroid is 0). 

When comparing the Bloom to existing laptops, this distance is 2 orders of magnitude higher than the 

other designs, due to differences in the first three attributes/rows of Table 2.  

Surprise: The large distance between the Bloom and the centroids of the 2 clusters in the description 

space suggests that in a 3-cluster space, the Bloom would be placed alone, and indeed K-means (K=3) 

places the Bloom in its own cluster. In value space, even in the 2-cluster solution, the Bloom is placed 

alone. We interpret surprise as a difference so great that the new design is effectively creating a new 

cluster in the conceptual space, and thereby changing expectations for new designs.  
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Table 1. Description space for laptop design (Data from apple.com and Bhobe et al, 2010) 

 
MacBook 

11-inch 

MacBook 

Air 

13-inch 

MacBook 

Air 

13-inch 

MacBook 

Pro 

15-inch 

MacBook 

Pro 

17-inch 

MacBook 

Pro 

Bloom 

Laptop 

Design 

Body Parts 1 1 1 1 1 1 14 

Removable Trackpad 0 0 0 0 0 0 1 

Removable Keyboard 0 0 0 0 0 0 1 

Processor Speed (GHz) 2.4 1.6 2.13 2.7 2.3 2.3 2.4 

Height (in) 1.08 0.68 0.68 0.95 0.95 0.95 1.08 

Display size (in) 13.3 11.6 13.3 13.3 15.4 17 13.3 

Memory (GB) 4 4 4 8 8 8 4 

Storage (GB) 500 128 256 500 750 500 256 

HD Graphics Processor 0 0 0 0 1 1 0 

Resolution-x (pixels) 1280 1366 1440 1280 1440 1920 1280 

Resolution-y (pixels) 800 768 900 800 900 1200 800 

Battery life (hours) 7 5 7 7 7 7 7 

USB ports 2 2 2 2 2 3 2 

Cluster 1 1 1 1 2 2 1 

Distance to Centroid 0.14 0.16 0.12 0.18 0.03 0.03 1.8 

 

Table 2. Value space for laptop design (Data from apple.com and Bhobe et al, 2010) 

 
MacBook 

11-inch 

MacBook 

Air 

13-inch 

MacBook 

Air 

13-inch 

MacBook 

Pro 

15-inch 

MacBook 

Pro 

17-inch 

MacBook 

Pro 

Bloom 

Laptop 

Design 

Disassembly (min) 45 45 45 45 45 45 2 

Removable Trackpad 0 0 0 0 0 0 1 

Removable Keyboard 0 0 0 0 0 0 1 

Price (min US$) 1000 1000 1300 1200 1800 2500 1000 

Weight (lbs) 4.7 2.3 2.9 4.5 5.6 6.6 4.7 

battery life (hours) 7 5 7 7 7 7 7 

Cluster 1 1 1 1 1 1 2 

Distance to Centroid 0.0148 0.0524 0.0175 0.005 0.0164 0.0094 2.167 

     

Before closing, we draw from Boden (2003) and Gero (2000), who note that there are several ways in 

which a new design can be creative: a previously unknown value for an attribute is added (which the 

Bloom did in the case of several attributes), a new attribute is encountered in a potentially creative 

design (again, with the Bloom), or a sufficiently different combination of attributes is encountered. In 

all of these cases, a creative design changes the organizational structure of existing designs in a 

conceptual space, which we show using clustering and relative distance. The Bloom illustrates 

transformational creativity in that it triggers a realignment of conceptual structures. There are many 
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interesting questions that need to be addressed as we design a cognitive artificial agent that can learn 

(cluster) designs and assess novelty, value and surprise (and creativity generally) of new designs 

relative to learned concepts, particular issues of how the agent is motivated to transform the 

conceptual space. Our point here is to sketch how clusters of designs in a conceptual space might be 

learned and used to assess creativity. 

5. Conclusions  

This paper presents an AI approach to evaluating creative designs that is independent of the design 

discipline and of the source of creativity. The AI models operate in a conceptual space, thereby 

contextualizing the evaluation and providing a relative measure of creativity rather than a binary 

judgment. Formalizing the criteria for evaluating creativity facilitates comparisons of computational 

systems that are themselves creative, as well as computational systems that enhance human creativity. 

The three criteria for evaluating relative measures of creativity described here are novelty, value and 

surprise. With metrics for these we have a common ground for evaluating creativity in human, 

computer, and collectively intelligent systems.  

Our next steps are to evaluate our method for evaluating creative designs, which will involve first 

collecting attribute-value representations of successive designs in a domain such as the laptop 

illustration used here, and measuring how successive laptops compare to previous ones along our 

metrics. Ultimately we are interested in how our distance-based assessments compare with judgments 

by humans when presented with the same ordering of designs. In addition to having to elaborate on 

some smaller, but important issues, such as directionality (as well as magnitude) in assessing value, we 

have alluded to larger issues of conceptual organization of conceptual spaces that undoubtedly bias 

human judgements and that will ultimately guide computer judgements of creativity as well. 

Unsupervised machine learning approaches, while often viewed as data analysis tools, are also 

approaches for organizing a cognitive agent‘s memory of designs, products and processes (Fisher, 

1996; Fisher and Yoo, 1993), creating the backdrop against which an agent can make more 

sophisticated assessments of creativity. 
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