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Selection from among competing alternatives is pursued in this work for a rapidly growing class of compliant
mechanisms. By using the framework of storage and retrieval of a database, we present a method to select
a displacement-amplifying compliant mechanism (DaCM) for a given application. The motivation for this
work is to catalogue known compliant mechanisms and thereby select the most suitable mechanism for given
quantitative specifications of the user. The quantitative data for a DaCM includes force, displacement, and
stiffness specifications at the input and the output. The DaCMs in our catalogue consist of slender beams con-
figured in particular topologies. These are analyzed using finite element analysis (FEA) and the mechanism’s
springs-mass lever model (SML) parameters are extracted and stored parametrically as functions of the size
of the device. Thus, by using the specifications of the user, pre-computed parametric SML model parameters
are utilized to select the most suitable DaCMs of appropriate size.
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1. INTRODUCTION
Compliant mechanisms are joint-free, elastically deforming structures that serve the purpose of force
and motion transmission as well as transformation. In this work, we focus on a particular type of
compliant mechanisms that can provide an amplified output displacement for a given input displace-
ment. We call them Displacement-amplifying Compliant Mechanisms (DaCMs).1 Systematic design
of compliant mechanisms has been an active area of research in the last two decades. Just as the motion
of a complicated rigid-body linkage is not intuitive, the motion of the compliant mechanism too is not
obvious. Predicting the direction in which an elastic structure would move at a point due to a force
applied at some other point requires a good understanding of elastic mechanics. It is not easy without
an intuition for elastic deformation. This makes the design of compliant mechanisms hard. Hence, the
development of design methods has become the focus of much of compliant mechanism research.

Two classes of design methodologies have emerged for compliant mechanism research. The first uses
kinematics design principles and a pseudo rigid-body model to account for the elastic deformation of
flexural joints and/or beams2 as shown in Figure 1a. The other class of methods use elastic displacement
analysis coupled with optimization techniques3 as shown in Figure 1b. Both methods have been
demonstrated to be useful in solving practical design problems. In the latter class of methods, two open-
access software programs are also available (TopOpt4 and YinSyn5). These programs generate optimal
topologies of compliant mechanisms from nominal high-level specifications from the users. The phrase
optimal topology here implies the geometric form of the elastically deformable structure with optimum
number of holes placed at the most appropriate locations along with the optimal shapes and sizes for
all its features. Since compliant mechanisms are single-piece deformable structures, their conceptual
design is equivalent to topology determination. Their conceptual design can thus be automated by way
of topology optimization. However, this has some limitations at present: post-processing is needed
to avoid highly stressed flexural joints;3 stress and buckling constraints are not yet implemented to
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Figure 1. Two existing approaches to compliant mechanism design (a) Pseudo rigid-body approach where one begins with
a rigid-body linkage topology, determines torsional spring constants, and then obtains the continuum design (b) Topology
optimization-based approach wherein the optimization algorithm automatically generates the topology by determining the widths
or thicknesses of the segments in a super-structure.

pragmatically useful extent;7 manufacturability as in minimum feature size,8 the level of complexity
of shapes, batch-producibility, etc.; ergonomics; and aesthetics.

In this work, we take a different approach based on selection among known designs most of which
were produced by topology optimization but some were conceived intuitively. We do this for two
reasons: (i) all practical requirements cannot be incorporated into topology optimization at this time
of its development, and (ii) the number of compliant mechanisms designs is steadily growing making
selection an attractive, computationally efficient alternative design paradigm. Selection approach is
computationally efficient because it only requires evaluation of designs in the catalog to see if any
of them suit the new application. Furthermore, the designs in the catalog already satisfy many of the
practical requirements. While our approach can be extended to other types of compliant mechanisms
(e.g., force-amplifying compliant mechanisms, bistable compliant mechanisms, compliant grippers,
compliant suspensions for single and two axis platforms, flexures, etc.), we consider only DaCMs in
this paper.

1.1. Problem Statement and Related Issues
The tasks addressed in this work can be stated as follows: “cataloguing of DaCMs and parameterizing
them with sufficient generality so as to select one or more suitable DaCM designs for a new application.”

It is not enough to store DaCM designs as pictures or sketches in a computerized catalog because
their geometric form and material properties are crucial for their functionality. Hence, we store meshed
finite element analysis (FEA) models in the catalog. But this does not restrict the size of the mechanism
or the aspect ratio of the rectangle that bounds the space occupied by the mechanism. Since the DaCMs
we have considered are made of slender beam segments, there is adequate generality in morphing the
DaCMs of the catalog to suit the user specifications. Furthermore, the DaCMs are parameterized as a
function of the size and the aspect ratio. The parameters come from a lumped model of a DaCM called
the spring-mass-lever model (SML). This model is described in Section 2. The selection algorithm uses
the parameterized SML models. The algorithm, the modules of the prototype software implemented
in Matlab, and the graphical user interface (GUI) are presented in Sections 3 and 4.

2. SPRING-MASS-LEVER MODEL AND CATALOGUING DaCMs
The kinematic and elastic behaviors of a DaCM can be expressed using an SML model so that its
amplifying feature as well as the stiffness and inertia properties can be accounted for Ref. 1. The
concept of an SML model is similar to that of representing an elastic structure as a single lumped
spring and a mass. A single spring is enough if there is only one port where a force is applied. But a
DaCM has two ports: input and output. Since it amplifies displacement, it is like a lever but a lever with
finite stiffness at the input and output sides. Unlike a normal rigid-body lever, the de-amplification



RPS Research into Design: Supporting Multiple Facets of Product Development “icord2009-chap” 2004/12/27 28

28 Research into Design: Supporting Multiple Facets of Product Development

Figure 2. (a) A Displacement-amplifying Compliant Mechanism (b) the right symmetric half along with the deformed profile
shown in dashed lines.

from the output to the input side is not simply the reciprocal of the amplification factor from input to
the output. In order to appreciate this and the other features of compliant mechanisms, consider the
DaCM shown in Figure 2a.

The DaCM shown in Figure 2a is a 2D mechanism consisting of slender beam segments shown
as lines. The black squares indicate the anchors; i.e., those points are fixed to a frame. The input is
indicated with i and output with o. Arrows at the input and output indicate the respective directions
of motions. The symmetric right half is shown in Figure 1b along with the deformed profile in dashed
lines. It can be noticed that the input has hardly moved while the output has moved substantially. If we
effect an input displacement ui by applying a force there, we get an output displacement uo. The ratio
of the two, n = uo/ui is called the inherent amplification of the DaCM. The DaCM would deform in a
certain way under this force and it is shown in Figure 2b. Now, imagine applying a force at the output
and effecting displacements vo and vi at the output and input points, respectively. Now, this mechanism
would deform in a different way. Consequently, vi/v0 6= (1/n). In other words, the deformation pattern
of the DaCM, or any elastic structure for that matter, depends on the point of application of the force
and the direction of the force.

The non-interchangeability of input and output behavior of a DaCM can also be understood with
a simpler example of a cantilever beam with a tip load. The beam bends under a sufficiently large
transverse load causing both axial and transverse displacements of the tip. But when only an axial–say
tensile–load is applied, the mode of deformation is simple axial stretching without any transverse
displacement of the tip. The SML model captures this subtle feature of DaCMs in the way they deform
under loads applied at the input and output.

Figure 3 shows the SML model of a DaCM within a dashed rectangle. It has five parameters: n =
inherent amplification from the input side to the output side; keci = input side stiffness; kco = output
side stiffness; mci = input side inertia; and mco = output side inertia. Two more springs are also shown
in Figure 3 to illustrate that this model allows the modeling of any other attachments to a DaCM.
Thus, DaCM can be treated like a black-box using its SML. Here, we show a spring at the input side
to indicate actuation stiffness or the stiffness of a signal such as the one encountered in a compliant
accelerometer or another sensor. We also show an external spring at the output to indicate a load. Forces
can now be applied directly on the masses, i.e., the input and output ports. Because of the way the
masses are arranged at the input and output sides, the displacement patterns of the SML are different
for forces applied at the input and output.

For static behaviors, we only need n, kci, and kco. If for two DaCMs, these three parameters are
identical, we can conclude that both are the same for the purposes of basic functionality. We use this
feature to compare different DaCMs in the catalog. Quantitative differences in the performance can
also be determined using this model. This forms the basis for our selection algorithm. We explain the
procedure for obtaining the three parameters for a given DaCM’s meshed FEA model.

2.1. Determining the SML parameters
The SML parameters, as explained above, are lumped parameters that describe the abstracted input-
output terminal behavior. In order to compute them, however, we need to do the finite element analysis
of the compliant mechanism. As shown in Figure 4, once the input and output as well as the anchor
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Figure 3. A spring-mass-lever model of a DaCM is shown within the dashed rectangle. Two additional springs (ks = input
actuation/signal spring, and kext = external output spring) are also shown to illustrate that SML enables a block-box approach to
a DaCM.
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Figure 4. A compliant mechanism and its SML model when only the input force is applied. This is used to calculate (with the
help of the finite element analysis of the meshed model of the compliant mechanism) the input-side stiffness, kci, and inherent
amplification, n.

portions are identified, we apply an input force Fin only and measure the displacement xin at the input.
With these, as in an ordinary lumped spring modeling of an elastic structure, we compute the input-side
stiffness, kci.

kci =
Fin

xin
(1)

By also measuring the output displacement, xout , we compute the inherent amplification, n.

n =
xout

xin
(2)

Next, we consider a different loading situation shown in Figure 5, to get the lumped behavior of
the compliant mechanism when the force is applied only at the output in the direction opposite to the
intended output displacement, i.e., the direction of the output load. By considering the SML model of
this situation shown in Figure 5, we write the potential energy, PE, as follows. Note that the potential
energy is the sum of the strain energy and the negative of the work done by the external forces.

PE = −Foutyout +
1
2

kco(yout − nyin)2 +
1
2

kciy2
in (3)

By differentiating PE with respect to yin and yout , and equating them to zero for static equilibrium,
we get two equations that can be solved to get yin and yout . The resulting expression for yout is used to
solve for kco as follows.

kco =
Foutkci

kciyout − Foutn2 (4)

When dynamic behavior is considered, which is not done in this paper, the lumped inertia parameters,
mci and mco, can be computed in a similar way by computing the first two natural frequencies with the
help of the modal analysis of the SML model. The SML parameters completely determine the essential
kineto-elastic behavior of the compliant mechanism.
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Figure 5. A compliant mechanism and its SML model when only the output load is applied. This is used to calculate (with the
help of the finite element analysis of the meshed model of the compliant mechanism) the output-side stiffness, kco.

2.2. Cataloguing DaCMs
The proposed DaCM catalogue has three types of data: (i) pictures and animations, (ii) meshed finite
element model, and (iii) SML parameters.

The purpose of the first one is to show the mechanism topology with the complete details of the
geometry and enable pictorial depiction of how it works. This includes pictures and animation of the
deformation pattern. It should be noted that the animated deformation of a compliant mechanism says
a lot to the discerning user.

The second one–the meshed model–is really what it says it is. It consists of the essential data
pertaining to the finite element model of the DaCM. It is similar to the input file of typical commercial
finite element analysis software. It consists of the nodal coordinates, element connectivity (i.e., which
nodes make up an element), cross-section properties of the elements, material property data, and
boundary conditions. Boundary conditions define which nodes are fixed and where the input force is
applied, and where the output load and/or spring are connected.

The third is the important and non-trivial part of the database. Here, we store the SML parameters,
kci, kco, and n. These parameters are given as functions of the size of the DaCM. This is explained
next.

The default size of the DaCM is not necessarily the size that a designer desires for a new application
at hand. In view of this, we compute the three SML parameters a priori for varying sizes. By sizes,
here, we mean the extents in x and y directions of the rectangle that bounds the DaCM. For this,
we stretch the finite element mesh in both directions by different magnitudes as necessitated by the
user-specified size. This is applicable only to the nodal coordinates while we keep the element cross-
section properties the same. For each pair of stretches in x and y directions, we perform a finite element
analysis and extract the SML parameters as per the procedure explained in Section 2.1. This is done
with sufficiently fine resolution of the sizes so that the SML parameters can be reasonably interpolated
for any specified size. Thus, each DaCM is catalogued with all its size variations. The cross-section
dimensions of the DaCM are not varied here because that is better done by size-optimization9 rather
than uniformly changing all the dimensions by the same factor.

3. SELECTION ALGORITHM
3.1. Example Problem Statement
DaCMs are useful for sensor and actuator applications. Here, we consider an actuator example to
explain the selection algorithm. The parameters specified for each problem are generic and so the
algorithm can be used for other applications with only small changes in the terminology and slight
modifications of the procedure. The problem of interest, a valve example, is shown in Figure 6.
As shown in the figure, the displacement of an actuator needs to be amplified at the output against
an output load. A DaCM is necessary if the maximum stroke of the actuator is far too small as
compared with the required displacement at the output. In order to achieve this, the actuator should
have a fairly large force as compared with the output load. Such a situation, for instance, arises with
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Figure 6. Specifications of an example problem of an actuator for which a Displacement-amplifying Compliant Mechanism
(DaCM) is necessary.

piezo-actuators. Per Figure 6, the following parameters are defined for this application:

Input force = Fin
Maximum input displacement = din
Stiffness of the actuator = ka
Output load = Fout
Required output displacement = dout
Stiffness at the output = kext

Maximum input force is transferred to the DaCM when the input displacement is zero. Due to the
stiffness of the actuator, the effective force transferred to the mechanism gradually decreases and
becomes zero at the maximum input displacement. Hence, only two out of the three parameters, Fin,
din, and Ka, are specified. That is, ka can be inferred when Fin and din are specified. Both output
force and the output spring may not usually exist; only one of them is usually there. For the sake of
generality, both are included here. Except the output displacement, all other values are specified by
the chosen actuator and the output load.

3.2. Re-Sizing and Selection Procedure
When the user enters the values of the parameters shown in Figure 6, an algorithm is run to process
the data in the catalogue of DaCMs. For each DaCM, using the SML parameters, the input and output
displacements are calculated using the following formulae derived by applying the static equilibrium
equations to the SML model attached to the actuator and external springs shown in Figure 3.

uin =
Foutnkco + Fin(kco + kext)

kext(kci + ks + n2kco)+ kco(kci + ka)
(5)

uout =
Fout(kci + ks + n2kco)+ Finnkco

kext(kci + ks + n2kco)+ kco(kci + ka)
(6)

The computed displacements are checked against the maximum possible input displacement and the
required output displacement. That is, the DaCMs that satisfy the following conditions are marked as
suitable ones.

uin − din ≤ 0 (7)

dout − uout ≤ 0 (8)

This simple check is not likely to yield a solution for any specifications given by the user. The reason
for the likely failure is not the number of designs in the catalog (which is eight at present and can
be extended to 16 immediately and to a much larger number later) but the incompatibility in the size
of the mechanism as a whole and the dimensions of the beam segments. For this reason, as noted in
Section 2.2, each DaCM is stored with a long list of SML parameters that vary with the size of the
mechanism. In order to use this feature, the user is prompted to enter the maximum and minimum size
of the mechanism in the x and y directions.
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Now, the database is searched to see for which size-variations of the DaCM, Equations (7) and (8)
are satisfied, and those entries are retrieved and ranked by dout , the one with the largest value of dout
being the most preferred. The satisfactory ones ranked in this manner are presented to the user for final
selection.

4. CHOOSING THE EXTERNAL SPRING CONSTANT
As an alternative to the above algorithm, we also consider choosing a suitable external spring constant
value. The purpose of this alternative algorithm is to increase the scope of finding more designs that
are suitable. This alternative is applicable irrespective of whether the user specifies kext or not. As can
be understood from Figure 3 and Equation (5), the output spring (i.e., kext) helps control uin. Since
there is an upper limit on uin, we can find a suitable kext using the following.

kext =
kco(Fin + Foutn− dinks − dinkci)

din
(

kci + ks + n2kco
)

− Fin
(9)

The corresponding output displacement is then computed as follows.

uout =
uin

(

kci + ks + n2kco
)

− Fin

nkco
(10)

These values are computed in real time and additional designs along with the values of kext are displayed
to the user. The satisfactory ones are ranked as above to present to the user. Low kext takes precedence
in ranking.

5. SOFTWARE WITH A GRAPHICAL USER INTERFACE
The selection algorithms are implemented in Matlab environment with a GUI. Since the computation
involved in the algorithms is not significant, the speed is not limited at present. Implementing in Matlab
has the advantage that developing the code, plotting figures and interacting with the user are easy.

The GUI contains a line-sketch of the DaCM along with its deformed configuration. Also included
in the GUI are two surface plots that show the values of uin and uout in the same units as those entered
by the user against the sizes in x and y along their respective axes. The numerical values of uin and uout
are indicated in the text boxes. The user can enter the desired overall sizes of the mechanism in the
text boxes provided for them. Even though the algorithm already selects the best possible size-variant
of the mechanism, the software gives the option to the user to enter different values for the sizes in
both the directions. As the user enters different values, two guiding rectangles in the surface plot shift
to indicate the changed choice. This enables the user explore the effect of changing the size of the
mechanism. Two buttons, NEXT and PREVIOUS, are provided to enable the user to consider each
mechanism, if he/she so desires. There is also a button “k(ext) Test”. When the user clicks on this
button, the algorithm explained in Section 3.3 is run and two plots that indicate the values of kext and
Uout are generated. As before, the user can enter different sizes in the x and y directions and explore
different DaCM mechanism topologies for each of which the most suitable size-variant is displayed at
first. The user can still see what happens if the size is relaxed or tightened. The entire sets of attributes
are displayed for the final mechanism chosen as shown in Figure 7.

6. DISCUSSION
A comment on the size of the database is appropriate here. As stated, only eight DaCM designs are
coded in the software now. All these are very different in terms of their SML parameters. Some more
are already known in the literature and many more can be created using topology optimization. This
will be done as this ongoing work progresses. But it should be noted that, because we allow size
variations, there is enough scope to explore a number of design alternatives and identify all those that
are applicable.
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Figure 7. Display of the attributes of the final mechanism preferred by the user from among the alternatives suggested. The
software gives the user the option of choosing or discarding the alternative designs that meet the specified requirements.

The principal benefit of the selection approach described here is to identify suitable DaCMs with the
appropriate dimensions for given specifications. The topology optimization procedures that are widely
researched in the literature also enable the same. But the difference here is that only manufacturable and
tested designs are present in the catalog. Additionally, the selection is done with very little computation
because a parameterized database exists in the software. More features will be included in this software
as part of the extensions of the ongoing work. For example, the cross-section dimensions of the beam
elements are currently kept constant as the size of mechanism is changed. But it does not have to be
this way. The scope of the design can be expanded by parameterizing the SML model in terms of the
cross-section dimensions.

In Figure 7, there is a button that shows “Start with Material Selection”. This points to another
extension (see Ref. 10) where the maximum stress allowed by a material can be taken into account so
that strength considerations too can be incorporated into the software. It should be noted that including
stress constraints in topology optimization is still an unsolved problem. Similarly, accounting for
possible buckling is also an unsolved problem. Here, since the parameterized SML parameters of the
DaCMs can be checked for buckling and other potential problems before putting into the database,
the selection approach proposed in this paper looks attractive from a practical viewpoint. Finally, the
natural frequency requirements can be met by also including the inertia parameters of the SML model.

7. CLOSURE
Even though the optimization methods can generate optimal conceptual topologies, the resulting
designs are not often practical in view of manufacturability, meeting strength considerations, buckling,
etc. In this paper, we propose an alternate approach to design based on selection from known topolo-
gies. By using a spring-mass-lever model and parameterizing it in terms of the mechanism’s overall
size, we presented a selection algorithm and prototype software that implemented the algorithm. The
software searches the catalog based on the user specifications and identifies the ones that satisfy the
requirements by varying the size as necessary. This pragmatic approach yields practical designs that
can be readily manufactured. Future work aims to extend this framework to obtain designs that are
free from the problems such as buckling and excessive stress while also enabling material selection
and meeting natural frequency requirements.
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