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1. Introduction 
The goal of the EU-Project AMISA – Architecting Manufacturing Systems and Industries for 
Adaptability – is to optimize system’s architecture towards maximum lifecycle value. 
All systems and products are designed to fulfill the needs of their stakeholders. The more accurately 
they are able to meet these needs, the higher is their value to the stakeholder. This is not a one-point-
in-time problem, but applies to the whole product life cycle. Design for Adaptability aims at 
minimizing the gap between stakeholder needs and the capability of a system or product to fulfill 
them. Minimizing this gap is a two dimensional issue. On the one hand the customer needs and 
requirements might change throughout the service life, resulting in an expected value gain of the 
system. On the other hand the system undergoes wear out and obsolescence. When talking about the 
stakeholder of a system, this refers mainly to the owner and the use of the system. From the view point 
of the manufacturer, this would be his customer. 
Correspondingly, [Hashemian 2005] describes adaptations as the response of a system to new service 
or operational requirements. Adaptations always involve modifications to the internal structure of the 
system. Design for Adaptability (DfA) is a comparatively novel design paradigm. Its goal is to provide 
design teams a framework that helps to “maximize the reuse of design information” [Fletcher et al. 
2009]. 
There is still a lack of understanding on the concept of adaptability, how to systematically design 
adaptability into systems and how to quantify the degree of adaptability of a system. This is the reason 
for the implementation of the European research project AMISA (Architecting Manufacturing 
Industries and Systems for Adaptability), whose goal is to develop a quantification methodology for 
adaptability [European Commission 2011]. 
In order to determine which adaptions can contribute to fulfilling that goal it is essential to have the 
capability to evaluate the value that adaptions provide in relation the the cost of making them possible. 

2. Background and motivation 
There are various reasons for system components to lose value and obsolesce. [Willems et al. 2003] 
distinguish between physical changes and changing requirements as thetwo reasons for products or 
components to become obsolete. Physical changes, such as wear,aging or corrosion can be 
encountered by the adaptation categories named remanufacturing, repair or maintenance. Otherwise 
they lead to increased operational cost and less functionality, safety and quality. Changes in 
requirements can be caused by legislation, changed values, technical progress or fashion trends and 
can be encountered by the adaptation categories named upgrading/downgrading, rearrangemement, 
enlargement/reduction or modernization. Adaptations always require some kind of changes to the 
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underlying procuct. [Fricke et al. 2000] give two different reasons, which necessitate a product to be 
changed. The first one is that requirements actually change and the second one is that requirements are 
documented or understood incompletely or incorrectly during the development phase. The latter case 
requires a later adjustment, even though the actual requirements have not changed. [Fricke et al. 2000] 
further classify the reason for changing requirements into the three so-called moving targets 
“Competitors”, “Customers” and “Technological Evolution”. They also emphasize that adaptations of 
products are necessary, since “today’s dynamic environment results in continuous changing customer 
needs and, consequently, changing product requirements”. They regard this issue as especially 
problematic if the development time of a given product lasts longer than the time span between two 
changes. This is the case, for example, with electronic devices within a car. Electronics exhibit a half-
life that is short compared to the development time of car. Therefore, [Fricke et al. 2000] conclude that 
every engineer has to cope with unexpected changes no matter how precise the forecasts are. 
[Browning and Honour 2008] explain the advantages of adaptability using the example of the life 
cycle value (LCV) of a system. As depicted in figure 1 they argue that an increased adaptability also 
increases the LCV of a system. This is because they assume that adaptability allows for a higher 
number of small upgrades instead of just a few big upgrades along the life cycle.  

 
Figure 1. Increased Life Cycle Value due to increased adaptability [Browning and Honour 2008] 

The value loss due to the lack of adaptability is represented by the area between the “Value desired by 
stakeholder” curve and the “Life Cycle Value of the system” saw toothed block. This area is the same 
as the value gap illustrated in Figure 1. This area is decreased by the higher number of upgrades. On 
the other hand, adaptability expands the life cycle time of the system, i.e. the system remains in 
service for a longer time and postpones the purchase of a new system. 
[Fricke et al. 2000] also demand to implement a structured change management process during the 
product development and put “change management” and “decision management” on the same level. 
Changing requirements can also be regarded as one form of uncertainty in design. Uncertainty is 
present in the majority of engineering applications due to limited available data. [De Neufville 2004] 
provides a good overview on the issue of uncertainty management and defines uncertainty as “the 
entire distribution of possible outcomes”. In his opinion, uncertainty management is very important in 
the field of engineering systems. Designing systems for uncertainty automatically leads to a different 
system architecture than that of systems that are designed with the concepts of best practice 
engineering. This is the case because systems considering uncertainty might need reconfiguration in 
order to meet new requirements. Altough uncertainty is often considered a negative issue, [De 
Neufville 2004] emphasizes the upside of uncertainty. He states that uncertainty management is not 
solely risk management, i.e. dealing with the protection of the system and its users, but relates to 
opportunities as well. This is because the statistical uncertainty distribution works in both the negative 
as well as the positive direction (comp. figure 2). Therefore, [De Neufville 2004] emphasizes that 
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designers must not only build indestructible and secure systems but also have to enable them to 
develop and adapt to changing conditions. 

 
Figure 2. Risk and opportunities of uncertainty (comp. De Neufville 2004) 

3. State of the art 

Product architecture 

The term “product architecture” (or more general “system architecture”) describes the relation 
between the functions and the components of a product (or system): [Ulrich 1993] defines product 
architecture as the way how “the function of a product is allocated to physical components”. He 
separates product architecture into the three aspects of (1) how the functional elements are arranged, 
(2) how the functional elements are mapped to the physical components and (3) how the interfaces 
between interacting components are specified. Similarly, [Whitney et al. 2004] define system 
architecture as “the description of the entities of a system and the relationships between those entities”, 
in which the entities can either be functions of physical components. They state that architecture is 
important for many engineering fields, such as physical products, engineering systems, computer 
networks or software. They also describe the product architecture as the characteristics of a system 
that determine its “ility”. [Harzenetter 2002] describes product architecture as a fundamental process 
during the development of a system, since it not only defines the components and modules of a system 
but it also determines the organization of the development project. 

Definition of options 

[McCafferty and Wasendorf 1998] describe options as “the legal rights, acquired for a consideration, 
to buy or sell something at a predetermined price by a certain time in the future”. This point of time is 
called “expiration date” or “maturity date” wheras the price is defined as “exercise price” or “strike 
price” [Black and Scholes 1973]. For this definition the characteristic of the mentioned “something” 
does not matter: it could, for example, be a share, a house or any other contract. 

Financial options 

At the stock markets the idea of options is a rather old one: in the beginning an option could only be 
exercised at the expiration date of the option. These kinds of financial options are today called 
“European-style-options”. On the other hand, if options can be exercised at any time up to the 
expiration date, they are called “American-style options” [Ward 2004]. Analysts also distinguish “call 
options” and “put options”. A “call option” is “the right to buy a single share of common stock” 
[Black and Scholes 1973] whereas a “put option” is the right to sell shares [Higham 2004]. One has to 
keep in mind that within the automotive industry the term option is often used with a very different 
meaning from the one presented here for the financial world. It is used with the meaning of the 
possibility of choice when configuring a car. 
The following paragraph will concentrate on the European call option. [Higham 2004] provides a 
definition as giving “(…) its holder the right (but not the obligation) to purchase from the writer a 
prescribed asset for a prescribed price at a prescribed time in the future”. Since the exercise price 
[Black and Scholes 1973] is fixed, the buyer will only make profit if the market value of the asset at 

System 
performance

R
el

at
iv

e 
p

ro
b

ab
ili

ty

OpportunityRisk

Uncertainty
distribution

Actual
requirement



 SYSTEMS ENGINEERING AND DESIGN 1794 

the time of the expiry date is worth more than the striking price; the exact profit depends on the 
performance of the asset. Theoretically, the maximum profit is unlimited. In the event of the asset 
price being lower than the striking price, the buyer does not lose any money, since he is not obliged to 
exercise his option. The seller, on the other hand, might lose a great (theoretically unlimited) amount 
of money, and it is impossible for him to make profit. These uneven positions are balanced by the 
price for the option, also referred to as “option value” [Higham 2004] which the buyer has to pay to 
the seller – regardless of whether he will exercise his option later or not. Taking into account the 
option prize OP, the profit of the option for the buyer depends on the asset prize at expiry date S(T) 
and the exercise prize X and can be calculated as: 

Profit = max (S(T) - X - OP, - OP)  (1) 

The maximum loss of the option holder is equal to the option prize and he will make profit as soon as 
the asset prize is exceeds the sum of the exercise prize and the option prize. This results in the pay-off 
diagram illustrated in figure 3. 

 
Figure 3. Pay-off diagram [Higham 2004] 

Until the 1970s the option value was established completely intuitively by the traders [Moore and Juh 
2006], [Engel and Browning 2008]. In 1973 [Black and Scholes 1973] published a paper about the 
pricing of options that attracted a great deal of attention. They derived a formula, which became an 
important tool in today’s finance theory and is widely known as the Black-Scholes formula. As for all 
models, certain boundary conditions apply [Black and Scholes 1973], the most relevant being: 

 The short-term interest rate is known and is constant through time. 
 The stock price follows a random walk in continuous time with a variance rateproportional to 

the square of the stock price. Thus, the distribution of possible stockprices at the end of any 
finite interval is lognormal and the variance rate of the returnon the stock is constant. 

 The stock pays no dividends or other distributions. 
 The option is “European,” that is, it can only be exercised at maturity. 
 There are no transaction costs in buying or selling the stock or the option. 

The input parameters needed to utilize the approach are listed in the following table. 
Besides the Black-Scholes formular, two other main approaches for the calculation of option value 
exist, the binominal lattice approach as well as the Monte Carlo Simulation [Hull 2011]. 
In finance, the binomial options pricing model provides a generalizable numerical method for the 
valuation of options. The approach introduced by [Cox et al. 1979] uses a dicrete time, lattice based 
model of variable market value over time. In general, binomial options pricing models do not have 
closed-form solutions. The binomial lattice model and the Black–Scholes formula are based on similar 
assumptions and for European options the binomial model and the Black–Scholes formula essentially 
converge in calculation of Option Value as the number of time steps increases. [Rieger 2009] 
Monte Carlo Simulation models calculate thousands of random possible paths of the evolution of stock 
prices and the resulting pay-off. The Option Value is obtained by averaging and discounting the pay-
offs of the different paths [Rieger 2009]. 
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Table 1. Input parameters used in the Black-Scholes formula [Black and Scholes 1973] 

 
All three approaches require the input data given in table 1 and both the binominal lattice model as 
well as the monte carlo simulation support the option value calculated in the black scholes formular 
for European type options for European options, but offer greater flexibility as to diverging option 
types, influence factors and boundary condtions. [Rieger 2009] 

Real options 

Real options are derived from the financial area. But in contrast to the financial options, real options 
are not only linked to money but they deal with physical assets. [Myers 1984] provides the examples 
of trading “a Federal lease for offshore exploration for oil or gas” as well as selling objects on the 
second hand market. The main difference between financial and real options is that the financial 
options are restricted to the decision of either selling or buying stocks, whereas real options more 
broadly evaluate the option to “do something” [Wang 2005] Since real options always deal with 
physical assets, these options usually last longer and are also more complex than financial options 
[Myers 1984]. Furthermore, [Myers 1984] proposes that option pricing might also be useful to 
estimate the value of strategic decisions. For instance, [Ford and Sobek 2005] suggest applying a real 
options approach for product development decisions. 
[McGrath and MacMillan 2000] emphasize the analogy between real options and financial option 
contracts, as in both cases one deals with “a limited-commitment investment in a asset with an 
uncertain payoff that conveys the right […] to make further investments should the payoff look 
attractive.” Additionally, they state that real options are usually less liquid than financial options and – 
above all – real options are more difficult to evaluate than financial ones since “the real value of an 
investment to one firm may differ a lot from its value to another firm” [McGrath and MacMillan 
2000]. This is due to the value of any investment, i.e. real option, is not a universally valid number but 
depends critically on the resources and the competences available within a firm. For any quantification 
method that will be derived, the magnitude of the calculated real option values will always depend 
crucially on the estimated probability of taking the option. [McGrath and MacMillan 2000] believe 
that precisely calculating the option value of real options is not meaningful but that instead “real 
options reasoning represents a robust and coherent way of thinking about highly uncertain situations”. 
Being convinced of the options idea, [De Weck et al. 2004] state that real options provide flexibility 
and they therefore consider real options within technical systems as technical elements initially 
embedded into a design. This provides the decision makers “the right but not the obligation […] to 
react to uncertain conditions”.  
Similarly, [Engel and Browning 2008] state that real options analysis combines technical with market 
considerations and also “hints at a way to estimate the value of system flexibility”. Challenges 
however are related to the acquisition of accurate data. [Eschenbach et al. 2007] conclude that 
especially the volatility, which is required for the Black- Scholes equation as the measure of 
uncertainty, is too difficult to ascertain. In the same way [Wang 2005] describes the volatility as the 
weakest part of the evaluation of real options. Although it is the key input data of the real option 
analysis, at the same time its value is especially difficult to determine. He further states that for some 
real options applications it might even be impossible to estimate because of unavailable data. 

Parameter Symbol Description

Current stock price S(T) The current stock price

Exercise price X
The excercise (or strike price) is the fixed price defined the holder of
the option has to pay in case of activation the option

Interest rate R The short term interest rate (assumed to be const. over time)

Volatility v
The volatility of the stock; statistical measure which expresse the
uncertainty of the stock price

Maturity T Time span between now (t) and the expiration date (t‘)
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Therefore, he regards the insights obtained during the real option analysis in some cases to be “more 
important than a specific quantitative result” [Wang 2005]. 

Options in product development 

Further developing the idea of real options, [De Neufville 2002] suggests distinguishing two types of 
real options in an systems engineering context: Real options ‘on’ projects and real options ‘in’ projects 
(ROOP and ROIP, respectively). The first one deals with the decisions whether to launch a technical 
project or not. In contrast to the classic financial options, these deal with technical issues instead of 
assets. It does not concern the system design itself but it rather treats the underlying technical system 
as a “black box”. Therefore, the decision taker does not require any technical knowledge about the 
underlying technical system. [De Neufville 2002] calls these “real options ‘on’ projects”. Another 
important difference to financial options is the longer time horizon of the real option ‘on’ projects 
compared to financial options. Also, the value of financial options can be determined by utilizing data 
of its past performance, whereas real options ‘on’ projects necessitate uncertain assumptions of the 
future.  
“Real options ‘in’ projects”, on the other hand, take account of the options within a technical system 
design. In this case the decision taker requires detailed inside knowledge of the underlying system and 
again utilize uncertain assumptions of the future in order to evaluate the option accurately [De 
Neufvill 2002] . Instead of evaluating investment opportunities (as ROOP do) real options ‘in’ projects 
concentrate on evaluating the flexibility of a design [Wang 2005]. While ROOP are relatively easy to 
define, ROIP are not. Within an engineering system there are always numerous design variables. Each 
of those represents a possible ROIP for the designer. Therefore, ROIP are more difficult to define than 
ROOP and the identification of the appropriate option that might lead to the desired flexibility is a 
significant task of ROIP [Wang 2005] . 

4. Architecture options 
Within the AMISA project the concept of option theory is taken further into the domain of systems 
engineering and defined as Architecture Options [European Commission 2011] to indicate the 
architecting of adaptable systems. Architecture Options provide a quantitative means for decision 
support on the degree of adaptability to design a system for and optimizing the respecitve system‘s 
architecture towards maximum lifetime value to its stakeholders. Ultimately, those options should be 
incorporated into a system have the highest ratio of option value to option cost. 
Hence, an architecture option describes a possible future system adaption the stakeholder has a right to 
but not an obligation to activate. This might be a system upgrade, for example the exchange of a 
certain component, or a change of system scope that might consist of many singular adaptions. In this 
paper one respective examples is presented and utilized to expand the analogies to option theory.: The 
upgrade of a navigation system of an unmanned vehicle. The optimization of the systems architecture 
towards future adaption is aimed for. 
Within this chapter the application of option theory on the architectural level of technical systems is 
examined. The chapter follows a top-down approach and and begins with discussing the basic setup of 
options in an engineering context as to the type of option that is analog and the calculation method 
most suitable. Then the main mathematical terms used in the calculation method are addressed and 
finally the interpretation of the singular input parameters for the calculation of option value is 
conducted. The focus is put on the correct interpretation and establishment of analogies as to the 
meaning of input variables and comprehending the ”big picture”. 

5. Analogies between financial and engineering option scenarios 
Figure 4 depicts the basic finance option scenario. The seller of the option offers the buyer the right 
but not the obligation to buy a certain paper at a certain time and at a certain price. The buyer in return 
pays the Option Price (OP) to the seller. In a fair setting the Option Price equals the Option Value at 
the day of trade. 
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Figure 4. Basic finance option scenario 

An analogous setting in engineering is depicted in figure 5. It considers a producer of an engineering 
system and a buyer of the same. The option in this case is a component upgrade. In this case the seller 
of the option is the manufacturer of a technical system, here an unmanned vehicle, who offers the 
buyer the right but not the obligation to upgrade the navigation system at a certain time (expiration 
day) and at a certain price (upgrade cost). This results in additional engineering effort for the producer 
and additional value for the buyer, who in return pays the Option Price. 

 
Figure 5. Upgrade design option scenario 

The Option Price represents the value created by the option for the buyer and at the same time the 
maximum amount of money the system developer is allowed to spend on technically making that 
option possible. That includes all engineering effort needed to develop and physically incorporate the 
option into the system and is defined as Option Cost (OC). It is reflected by the delta of the cost of the 
system that is designed for adaptability (System A) in comparison to the initial system not designed 
for adaptability (System 0). 

OC = Delta (Cost System A – Cost System 0)  (2) 

The option cost shall be lower than the Option Price in order to be economically interesting to the 
system producer. In a fair setting the Option Price – the amount a buyer is willing to pay for having 
the option – equals the option value at the day of trade as well. Where Option Cost and Option Price 
are considered to be equal in a financial setting, it is substantial in an engineering setting that they are 
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not. Otherwise the additional effort for the producer, which usually also results in a more complex 
technical system, is not justified. 

OP >! OC  (3) 

Calculation model for option value 

Different calculation models for the calculation of option value, namely the Black-Scholes formula, 
Binomial lattice models and Monte Carlo Simulation, were discussed in the state of the art. Whereas 
the Black-Scholes formula is a closed analytical equation that is suitable for European type options 
only, Binomial lattice models as well as the Monte Carlo simulation are numerical approaches that can 
be used either for European or American type of options. European and American type of options 
differ only in the way, that latter allows the exercise of the option at any time up to the expiration day 
where European options can only be exercised at maturity. American options offer more flexibility 
and are thus more valuable [Rieger 2009]. 
In the basic engineering setting a component within a system is designed to be interchanged, so that 
the buyer of the system can conduct a system upgrade when desired. Usually the buyer of the system 
is not bound as to when to upgrade. Should there be rapid evolution of the components performance 
parameters a quick update would be just as possible as a late update in case of slow development, 
which is analogue to the American type options that can be activated at any time. Fundamentally, 
architecture options would not have an expiration day in many cases. Influence factors might be the 
business models or certain technical boundary conditions (i.e. obsolesce of certain interface type). As 
described before, American type options are generally more valuable than European type options.  
The conclusion that the Black-Scholes formula, representing European type options, is unsuited for the 
assessment of engineering option could be drawn. But since it is sensible from an engineering point of 
view from to have extra security, it is proposed to take advantage of the simplicity of the calculatory 
model all the same. However, a sensitivity analysis as to the influence of the calculatory model is 
recommended as future research. Since the Binomial lattice model and the Monte Carlo simulation 
require equal input parameters as the Black-Scholes approach, the analogies established in the 
following part are valid for those also. The fact that Engineering options often do not have an 
expiration day furthermore adds to the safety factor of the calculation. 
For the establishment of an analogue setup the Black Scholes formula is most suited though, especially 
because it is a closed formula and an understanding and interpretation of the equations terms is 
substantial.  

 
Figure 6. Black Scholes formula – main terms 

The Option Price is determined by two terms as shown in Figure 6. The first term SN(d1) describes the 
expected benefit from acquiring the option. To obtain the option value, the present value of paying the 
exercise price on expiration day, described in the second term, is subtracted from the first term [Hull 
2007]. The equation can be rearranged so that the expected benefit equals the Option Price plus the 
(present value) of the exercise price, which helps for an understanding of the formula. 
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Figure 7. Black Scholes formula – singular parameters 

Figure 7 depicts the terms in more detail. The term describing the expected benefit is made up of the 
current stock price times a factor N(d1) which is the factor by which the present value of contingent 
receipt of the stock exceeds the current stock price taking into account uncertainty by using risk-
adjusted probabilities [Nielsen 1992]. 
The term describing the present value of the exercise price consists of the Strike price times a 
discountation factor (taking into account time until deployment and risk-free interest rate) times N(d2), 
the risk-adjusted probability that the option will be exercised. This is only the case if the Stock price at 
expiration day exceeds the strike price [Nielsen 1992]. 

 
Figure 8. Black-Scholes formula – analogies in upgrade design scenario 

Figure 8 shows the analogous setup of the Black Scholes equation in the basic upgrade scenario. The 
option under examination is that of a possible navigation system upgrade. The Option Price (in a fair 
scenario equal to Option Value) is defined by the estimated benefit from acquiring the option minus 
the present value of paying the exercise price on expiration day, as in the financial scenario. The 
current value of the component to the system is defined by its performance parameters. In the case of a 
navigation system this could be accuracy and reliability for instance. The benefit results from positive 
development of the components performance parameters that result in additional System Value. As in 
finance, that development includes uncertainties and therefore the factor N(d1) is used accordingly. 
The strike price in case of a component upgrade is the price that the buyer will have to pay to replace 
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the component and therefore coined as Upgrade Price. Discount factor and N(d2), the risk-adjusted 
probability that the option will be exercised, remain unchanged. 
As described in the state of the art, the uncertainty factors N(d1) and N(d2) necessitate volatility as an 
input parameter. It is a statistical measure of the dispersion of returns for a given market index. 
Volatility can either be measured by using the standard deviation or variance between returns from 
that same market index. Commonly, the higher the volatility, the higher the Option Price. This is due 
to the asymmetric pay-off inherent to options. Volatility refers to the amount of uncertainty or risk 
about the size of changes in a security's value. A higher volatility means that a security's value can 
potentially be spread out over a larger range of values. A lower volatility means that a security's value 
does not fluctuate dramatically, but changes in value at a steady pace over a period of time. 

6. Input parameters: Commonalities and restrictions 
In the following commonalities and discrepancies for the input parameters between finance and 
engineering are discussed in more detail. 

(Current) Stock price/ Component value “S” 
Where the share price is clearly visible and historical data is easy to acquire, the component value of 
the to be adapted component to the system has to be determined. A means of doing so is to define 
performance parameters and associate a incremental unit for each parameter with a monetary value. In 
order to determine future value, both the development of the performance parameters as well as the 
monetary value of each incremental unit to the system, which may also change, have to be taken into 
account and therefore there are two sources of uncertainty. It is proposed to incorporate this factor into 
the volatility. 

Strike price/Upgrade price “X” 

The Upgrade Price, being the amount of money the buyer has to invest in case of activating the option 
and the strike price are analog. In the upgrade scenario, however, the Upgrade Price is mainly defined 
by two factors: the price of the new component and the price of the upgrade process. Both factors are 
related to other parameters of the formula. The price of the new component will be dependent on its 
performance parameters, which have an influence on the component value. A high performance 
component will be more expensive than a low performance one. The price of the upgrade process will 
be dependent on the degree the system is prepared for the adaption. This ranges from a plug and play 
interface, which may result in high effort in engineering but offers most easy and convenient 
interchange and thus minimal Upgrade Price, to mere reservation of space. In latter case the initial 
effort is low but the upgrade price will be high due to major changes within the system. So there can 
be a shift of effort between initial system design and the upgrade process and thus between Option 
Cost and Upgrade Price. It can be made use of to act most suitably to uncertainty situation. Another 
difference is that the replaced component may have a market value and can thus be subtracted from 
the upgrade price. 

Volatility “v” 

Volatility generally refers to the amount of uncertainty or risk about the size of changes in market 
values. Where, in finance, volatility can be measured by using the standard deviation or variance 
between stock-prices, data acquisition in engineering is far more critical. If the value of a component 
is defined by its performance parameters and the monetary value each increment of those parameters 
can be assigned with, volatility may be derived by tracking those historically or by accounting the 
standard deviation of (expert) estimations of future development. 
One criticism about the Black-Scholes model is the lognormal distribution used, which does not 
account for volatility clusters and disruptive events [Scherer 2010]. Alternative approaches in that area 
have been developed and analogously the inhomogeneous development of technology can be taken 
into account by evolutionary forecasting and technology screening. The value is to some degree 
predictable due to technological evolution and expected rapid development which can be taken 
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advantage of. Furthermore it is to be expected that the performance of components will develop 
strictly positively, as depicted in the following figure [Orloff 2005]. 

 
Figure 9. Comparison of volatility in finance and engineering 

Payback function 

Like financial options, architecture options offer an asymmetric payback function, the loss being 
limited to the Option Price. The unlimited payback opportunity potential due to stock price 
development is not realistic in architecture options, though. Realistically, there would be a limit at 
approximately the level of system value plus Option and Upgrade Price, since customers would prefer 
to buy a whole new system instead of performing an update. Advantages resulting from quicker 
deployment in the case of adaption in comparison to redesigning and rebuilding the system might turn 
the balance towards adaption still, but will probably only be relevant for major modifications in big 
systems. 

7. Conclusions 
This paper discusses the use of option theory on an architectural level of technical products or 
systems. The assessment of the value of possible future adaptions is identified as prerequisite for 
decision support on which adaptabilities to design into a technical system at an early product 
development phase. After presenting option theory for financial and for real options the establishment 
and examination of analogies of scenarios, calculatory models and input parameters for architectural 
options are conducted. 
Analogies and discrepancies are outlined and discussed using the Black-Scholes equation and an 
industry example from the AMISA project context. The general set-up of financial and engineering 
settings is assessed in a top-down approach, with the overall idea defining the top- and the singular 
input parameters for the Calculation of Option Value defining the bottom-level.  
Major discrepancies are identified in the definition of value, the composition of the Upgrade price as 
well as the pay-off function of architecture options. The input parameters need to be adjusted in order 
to fit the financial equation requiring a profound understanding of option theory. Those adjustments 
are proposed and need to be validated by conducting Option Value Assessments for different technical 
Systems in different industry cases. That will be performed in the course of the AMISA research 
project. 
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