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1. Introduction 
Products of mechanical engineering and related industrial sectors, such as the automotive industry, are 
increasingly based on the close interaction of mechanics, electronics and software engineering, which 
is aptly expressed by the term mechatronics. Therefore, the development of such products is a highly 
interdisciplinary task. In order to support the development, a modeling language for the domain-
spanning specification of the principle solution of an advanced mechatronic system has been 
developed in the Collaborative Research Center (CRC) 614. The principle solution is the result of the 
first, domain-spanning conceptual design phase and serves as a starting point for the following 
domain-specific concretization phase. In the course of the concretization, the involved domains work 
in parallel and use their own domain-specific methods, tools and models. As changes to these domain-
specific models may affect other domains, the principle solution is further refined and extended during 
the concretization phase and becomes the domain-spanning system model. 
Model transformation techniques are used to derive initial domain-specific models from the principle 
solution. Thus, we have a number of isolated, but interdependent models which capture the domain-
specific aspects. The levels of abstraction differ between the models, i.e., domain-specific models 
contain more detailed information that should not be reflected in the domain-spanning system model. 
The domain-specific models are then refined by the respective domains. Most changes only add more 
detailed information not relevant to other domains, but some changes may have an influence on the 
overall system model and other domains. One particular challenge is to ensure the consistency 
between the models during the whole development, as inconsistencies are likely to increase 
development time and costs. According to the methodology of the CRC 614, all domain-spanning 
relevant changes which occur in the involved domains during the concretization must be propagated to 
the domain-spanning system model. From the system model, those changes are propagated to the other 
domain-specific models. Changes in domain-specific models that are not considered to be domain-
spanning relevant must not be propagated to the system model. 
In general, model synchronization techniques can be employed in such a scenario. However, no 
techniques exist for model synchronization engines to distinguish domain-spanning relevant changes 
from domain-specific refinements. Thus, existing model synchronization approaches would propagate 
every change. Furthermore, even if we would be able to detect domain-specific refinements, we must 
take precautions not to lose such refinements on subsequent propagation of other changes. 
As the novel contribution of this paper, we present a) a way to specify whether a change is a domain-
specific refinement and thus not domain-spanning relevant, and b) an improved model synchronization 
technique which is capable of handling such refinements. We show how these techniques are 
employed to ensure the consistency of models on different abstraction levels. 
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We use the innovative railway system RailCab as a case study. RailCabs are small, driverless vehicles 
that autonomously drive on railway tracks and dynamically form convoys to save energy. In particular, 
we describe how discrete behavioral models are used for modeling the interaction between RailCabs; 
the focus lies on the formation of convoys. We show how such behavioral models are used in the 
domains software engineering and control engineering, which domain-specific refinements and 
domain-spanning relevant changes occur and how the latter are propagated. 
For the software development we use MechatronicUML, a comprehensive technique for modeling and 
verifying the software of mechatronic systems with a special focus on real-time behavior, hybrid 
software components, and dynamic systems [Becker et al. 2011]. MechatronicUML is based on a 
subset of UML diagrams that supports the development of structural and behavioral aspects of 
mechatronic systems. For the development of the structure, a component-based approach is used. 
Components can communicate with each other by sending and receiving messages. Their behavior is 
specified by Real-Time Statecharts, which are based on UML state machines [Object Management 
Group 2010]. In the control engineering, the behavior of a system is specified using 
MATLAB/Simulink/Stateflow. In addition to the discrete behavior, the control engineer defines the 
RailCab’s speed controllers. 
The paper is structured as follows. In Section 2, we give an overview over the development process 
for mechatronic systems and the specification technique for the domain-spanning description of the 
principle solution. Furthermore, the running example is introduced. As the main contribution of this 
paper, we describe the challenges when synchronizing behavioral models during the development 
process and present our solution in Section 3. Finally, we conclude the paper in Section 4. 

2. Development of advanced mechatronic systems  

2.1 The design methodology for the domain-spanning conceptual design of mechatronic systems 

Established design methodologies (cf. [Pahl et al. 2007] or the VDI Guideline 2206) focus on the 
particular disciplines; the system as a whole is only considered rudimentarily. This especially concerns 
mechatronic systems, as they are based on a close integration of mechanics, control engineering, 
electrics/electronics and software engineering. In the CRC 614, a new methodology for the domain-
spanning conceptual design of mechatronic systems has been developed [Gausemeier et al. 2009a]. 
The core of the methodology is 1) the specification technique CONSENS (CONceptual design 
Specification technique for the ENgineering of complex Systems) and 2) a respective procedure 
model. 

2.1.1 Procedure model for the development of advanced mechatronic systems  

On the highest level of abstraction, the development process of mechatronic systems can be 
subdivided into the domain-spanning conceptual design and the domain-specific concretization (see 
Figure 1). Within the conceptual design, the basic structure, the operation modes of the system and its 
desired behavior are defined. The result of the conceptual design phase is the principle solution – a 
significant milestone in the mechatronic product development process. The domain-spanning 
specification of the principle solution forms the basis for the communication and cooperation of 
experts from different involved domains in the course of the further concretization. 

 
Figure 1. Synchronization of domain-specific models with each other and with the domain-

spanning system model during the domain-specific concretization 
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During the concretization, the domains work in parallel using their domain-specific methods, tools and 
models (e.g., MechatronicUML for software engineering [Becker et al. 2011] and Simulink/Stateflow 
for control engineering). In the course of the concretization, the principle solution is further refined 
and extended and becomes the domain-spanning system model. Whenever a domain-spanning relevant 
change takes place, this system model has to be updated. For a more detailed description of the 
conceptual design, concretization and their particular phases, see [Gausemeier et al. 2009a]. 

2.1.2 Specification technique CONSENS 

The specification technique CONSENS is used for the description of the principle solution of 
mechatronic systems. It is divided into different aspects (see Figure 2). These aspects are computer-
internally represented as partial models. For a detailed description of the partial models, please refer to 
[Gausemeier et al. 2009a]. In contrast to other system modeling approaches such as UML [Object 
Management Group 2010] or SysML [Friedenthal et al. 2008], the specification technique is highly 
interconnected with the underlying procedure model and focuses strongly on mechatronic systems. 

 
Figure 2. Aspects of the domain-spanning description of the principle solution 

A dedicated software tool, the Mechatronic Modeller, has been developed [Gausemeier et al. 2010]; it 
supports this specification technique and the aligned design methodology. As the core of the tool, the 
metamodel for the specification technique defines which model elements are available during the 
description of the principle solution as well as how they are related to each other (abstract syntax). 
Furthermore, it defines how model elements have to be linked in order to have a meaning (static 
semantics) [Stahl et al. 2006]. A principle solution is computer-internally represented as a model, 
which is an instance of the metamodel. The use of a metamodel has a number of advantages, which 
were described in [Gausemeier et al. 2010]. In particular, a metamodel enables the use of automated 
transformation and consistency management techniques that are introduced Section 3. 

2.2 Application example: the innovative railway system RailCab  

The innovative railway system RailCab1 is used as a demonstrator of the CRC 614 and serves as a case 
study throughout this paper. The core of the system consists of autonomous vehicles, called RailCabs, 
which transport passengers and goods according to individual demands rather than based on a 
timetable. To reduce the energy consumption, RailCabs may autonomously form convoys. A test 
facility on a scale of 1:2.5 has been built at the University of Paderborn (Figure 3 a). 

                                                        
1 RailCab – Neue Bahntechnik Paderborn, project web site: http://railcab.de 
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Figure 3. The innovative autonomous railway system RailCab 

Figure 3 b) shows a cut-out of the active structure of the RailCab. In particular, it shows system 
elements responsible for the velocity control and the formation of convoys. Within a convoy, a 
RailCab can take the role of a leader or a follower. A follower RailCab must keep a safe distance to 
the RailCab ahead to prevent a collision. Two different control strategies for the speed of the RailCab 
are necessary. The default strategy is based upon sustaining a particular reference speed; it is 
implemented by the “Velocity Controller”. The strategy for follower RailCabs in a convoy is based on 
keeping a particular safety distance to the RailCab ahead; it is implemented by the “Distance 
Controller”. Thus, the “Distance Controller” is active as long as the RailCab has the follower role; 
otherwise, the “Velocity Controller” is active. The decision whether a convoy is formed or not is made 
by the system element “Configuration Control”. In order to manage convoys, RailCabs must 
communicate with each other. The hardware level of this communication is realized via the system 
element “Communication Module”. For further details on the RailCab’s control strategy, please refer 
to [Henke et al. 2008]. 
During the domain-specific development, control engineers typically use Simulink block diagrams to 
refine the continuous behavior of the controllers. Additionally, the change of the controller strategies 
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must be specified in a discrete manner, e.g., using Stateflow. However, as the communication 
protocols for this discrete behavior are developed in the software engineering, it is crucial to 
synchronize the behavioral models of both domains. Initially, the Stateflow model and the behavior 
specification in the software engineering are based on the partial model behavior–states. 
A cut-out of the partial model behavior–states that describes the formation of a convoy is shown in 
Figure 3 c). Three states are modeled: “noConvoy”, “convoyLeader”, and “convoyFollower”. At the 
beginning all RailCabs start in the state “noConvoy”. A RailCab can send a “createConvoy” message 
to the RailCab driving ahead. During the change to the state “convoyFollower”, the follower RailCab 
must adjust its speed with regard to the distance to the leader RailCab; the “Distance Controller” is 
thus activated. This change of the controller configuration and the exchange of messages cannot be 
carried out in zero time. Therefore, each transition is annotated with a maximum delay that the system 
needs for switching to the target state. For instance, it is specified, that the follower RailCab switches 
from the “noConvoy” to the “convoyFollower” state within 500 ms. While driving in a convoy, the 
follower RailCab can break the convoy by sending the “breakConvoy” message to the convoy leader. 

2.3 Challenges for the consistency management in the domain-specific concretization 

In this section, we illustrate the challenges for the consistency management of the different models 
with an exemplary development process. The starting point of the concretization is the domain-
spanning principle solution. We map its model elements and relationships to the corresponding 
elements and relationships in the domain-specific models. These interlinked models form the basis for 
the consistency management and orchestration of the concretization process. In particular, we need to 
detect changes in the domain models which are conflicting with the domain-spanning system model 
and are likely to be relevant to other domains. These changes need to be propagated to the domain-
spanning system model first and then to the other domain-specific models. 
In the remainder of this paper, we use an example concretization scenario from the development of the 
RailCab system. Figure 4 shows the versions of the domain-spanning system model and domain-
specific models that are created in the course of this example scenario as well as the propagation of 
domain-spanning relevant changes from one domain to other relevant domains. 

 
Figure 4. Propagation of relevant changes between the domain-specific models and the domain-

spanning system model 

First, we derive initial domain-specific models from the principle solution (marked with 1 in Figure 4). 
This can be done automatically using model transformation techniques. In our previous work, we 
presented such a transformation, focusing on the structural aspects of the system, e.g., transforming 
the active structure to a software component model [Gausemeier et al. 2009b]. 
In the course of the further concretization, the domains work concurrently using their domain-specific 
methods and tools. In particular, they extend and refine their domain-specific models. For instance, the 
control engineers (CE) insert additional fading states in which the actual transition between the control 
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strategies is performed (2). This is done for stability reasons, i.e., to avoid an abrupt switch between 
the controllers. This change does not affect other domains, as long as the fading time does not exceed 
the timing constraint specified in the principle solution (see Figure 3 c)). Thus, no update of the 
domain-spanning system model shall be performed. 
The domain software engineering (SE) refines their models as well and performs a number of analysis 
tasks. In this example, it turns out that the initially specified behavior for forming a convoy does not 
consider the case that the leader RailCab may need to reject a convoy proposal for safety reasons, e.g., 
if the leader RailCab transports dangerous cargo. Thus, the software engineers extend the convoy 
communication protocol by modifying the corresponding statechart (3). As this modification may 
affect other domains, it is propagated to the principle solution (4), using model synchronization 
methods that we described in our previous work [Gausemeier et al. 2009b]. 
These changes in the behavioral model are also important for other domains; e.g., in control 
engineering, the switching between the control strategies must be adapted. However, the changed 
statechart cannot be simply copied to the control engineering model, as this model has already 
undergone some changes (the addition of the fading states) and these changes would be overwritten 
otherwise. The difficulty here is to update the control engineering model so that it reflects the changes 
from the software engineering, but in a way that the domain-specific refinement that happened before 
are not overwritten (5). 
To sum up, there are two main challenges in this scenario. First, we have to specify which changes are 
domain-spanning relevant and which are refinements. To address this, we present a technique to 
formally define how domain-specific refinements look like: Domain experts create a set of so called 
refinement rules where each rule captures a general refinement operation. This rule set is then used by 
the model synchronization engine to detect whether a change is a domain-specific refinement, that 
must not be propagated, or a change is domain-spanning relevant. 
Second, when domain-spanning changes are propagated to another domain-spanning model, domain-
specific refinements in that target model may be overwritten, as they are not contained in other 
models. To address this issue, we describe how our model synchronization engine avoids the loss of 
such domain-specific information by reusing elements. 

3. Behavioral consistency management 
In the following, we describe in detail how we address these two challenges. Figure 5 shows the 
different behavioral models that evolve during the example scenario (the Stateflow and 
MechatronicUML models have been simplified for presentation purposes). 
First, domain-specific models are generated from the principle solution using automatic model 
transformation techniques (marked with 1 in Figure 5). For software engineering, a MechatronicUML 
model is generated which contains a Real-Time Statechart that specifies the behavior for the convoy 
management (1 left). For control engineering, we generate initial MATLAB/Simulink and Stateflow 
models, e.g., a Stateflow chart for the convoy management (1 right). 
Next, the control engineers implement the controllers using MATLAB/Simulink. Furthermore, they 
modify the Stateflow model by incorporating additional states which describe the fading behavior 
during the switching of the controller configurations (2). Such a change is considered as a domain-
specific refinement that does not affect other domains. Therefore, it must neither be propagated to the 
domain-spanning system model nor to the other domains. So the model synchronization engine has to 
know that it must not propagate the change. 
We propose that domain experts define a set of so-called refinement rules that describe which kinds of 
changes to a domain-specific model are regarded as domain-specific refinements. A refinement rule 
formally describes a refinement by a precondition (left-hand side) and how this precondition is 
replaced (right-hand side). Figure 6 shows a refinement rule which defines that adding an intermediate 
state is a domain-specific refinement. It describes that a transition may be replaced by a combination 
of a transition, a state and another transition. In addition, it is specified by a constraint that the new 
state and transitions must not violate the maximum duration of the original transition. 
This refinement rule covers the addition of the fading states. Using this rule, the model 
synchronization can now detect that adding the fading states is just a refinement. Thus, it would not 
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propagate the change. However, as described later, it is important to store the information that a 
refinement took place, i.e., that the transition “createConvoy/” in the system model (v1.0 in Figure 5) 
now corresponds to the transition-state-transition combination in the control engineering model (2). 

 
Figure 5. Evolution of the different behavioral models during the development process 
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Figure 6. Refinement rule for adding intermediate states in the control engineering models 

When choosing the language to define refinements, we sought to cover as many refinements as 
possible on the one hand and, on the other hand, not making the language too complex to make 
analyses impractical. We identified several different refinements from different domains (e.g., fault-
tolerance patterns like triple modular redundancy, functional partitioning of components, load 
balancing) which can be described in terms of such rules. However, it remains to be investigated 
further whether we may need a more sophisticated language for other kinds of refinements. 
At the same time, software engineers work on their model, too. They refine the behavior of the 
software by adding the possibility to reject a convoy proposal (3). The Real-Time Statechart is 
extended by two states “waitForResponse” and “receivedConvoyProposal” and new transitions and 
messages (see v1.1 of the software model in Figure 5). Instead of switching to the state 
“convoyFollower” directly after a “createConvoy” message is send, the follower RailCab switches to 
the new state “waitForResponse”. There, it waits for the leader RailCab to accept or to reject the 
convoy formation proposal. The leader RailCab receives the “createConvoy” message and changes to 
the new state “receivedConvoyProposal”, in which it decides whether it accepts or rejects the convoy 
proposal. If the convoy proposal is accepted, the leader RailCab changes its state to “convoyLeader” 
and the follower RailCab changes to the state “convoyFollower”. If the convoy proposal is rejected, 
both RailCabs return to the state “noConvoy”. This change in the discrete behavior affects other 
domains and must be propagated to the domain-spanning model and to other domains, as described in 
the following. 
In general, model synchronization algorithms work in two steps: First, for everything that has been 
deleted in one model, the corresponding elements in the other model are also deleted. Second, for 
everything that has been added, new corresponding elements are created. When updating the domain-
spanning system model to create version 1.1 (4), the automatic model synchronization does basically 
the same that happened in the software model: Amongst other things, it deletes the original transition 
“createConvoy” (from the “noConvoy” to the “convoyLeader” state) in the domain-spanning system 
model and creates a new state “receivedConvoyProposal” as well as three new transitions instead. The 
result is shown in Figure 5 (version 1.1 of the domain-spanning model). 
The changes then must be propagated to other affected domains. Thus, the control engineering model 
has also to be updated to reflect the changed communication behavior (5). The challenge here is that 
the control engineering model has undergone some changes in the meantime (the addition of fading 
states). We have to assure that when propagating changes, no domain-specific refinement, e.g., the 
added fading states, is overwritten or disregarded. 
Again, in the first step of the synchronization, for everything that has been deleted in the system 
model, the corresponding elements in the control engineering model are also deleted. In the example, 
the “createConvoy/” transition was deleted from the system model during the synchronization in (4). 
However, this “createConvoy/” transition from the system model corresponds to a refinement 
introduced in (2), i.e., the combination of the transition “createConvoy”, the state “fading_N2L” and 
the transition to the “convoyLeader” state in the control engineering model. Thus, a naïve model 
synchronization approach would delete the complete refinement (see Figure 7 a)). 
As such an information loss must be prevented, we propose an improved model synchronization 
approach. The main idea is not to delete such corresponding parts right away, but to mark them for 
deletion first, so they can be reused later [Greenyer et al. 2011]. Only unreusable elements marked for 
deletion are actually deleted. After propagating deletions by marking for deletion, we have to 
transform the added elements in the principle solution to the control engineering models. Previous 
model synchronization approaches would simply create new corresponding parts in the control 
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engineering model. Our improved synchronization tries to reuse elements marked for deletion instead: 
it performs a search in the set of elements marked for deletion and tries to reuse fitting elements; if 
they fit, they are not deleted. Only if no fitting previously deleted elements are found, new elements 
are created. For details of the improved synchronization algorithm, please refer to [Greenyer et al. 
2011]. Refinements introduce information to a domain-specific model that is not covered by the 
domain-spanning model and the synchronization. Due to this additional information, there may be 
several possibilities to reuse previously deleted elements, which leads to differently updated models. 
All of these possibilities are “correct” in terms of consistency with the system model, but some may be 
more reasonable than others. In our example, the question is where the newly added states 
waitForResponse and receivedConvoyRequest should be added: before (Figure 7 b)) or after the 
fading states (Figure 7 c))? Of course, an expert can quickly see that c) is the correct way of updating, 
as the controller strategy must not be switch before every RailCab has actually approved the convoy. 
An automatic synchronization, however, cannot decide this. 

 
Figure 7. Cut-outs from Stateflow models updated in different ways: a) Lost fading state b) 

“wrong” propagation of the change, c) correctly updated Stateflow model 

Thus, our improved synchronization algorithm explicitly computes all reuse possibilities, rates them 
with respect to information loss, and asks the user in ambiguous cases which of the update possibilities 
is the correct one [Greenyer et al. 2011]. In the example, the refinement in the control engineering 
model that has been marked for deletion (consisting of the transition “createConvoy”, the state 
“fading_N2L” and the transition to the “convoyLeader” state) may be reusable as the corresponding 
control engineering part for three new transitions in the system model v1.1 (“createConvoy/”, 
“/rejectConvoy”, and “/convoyAccept”). However, the deleted refinement is not reusable as is. Some 
additional modifications have to be made to make it reusable in a certain case. For instance, when 
reusing elements marked for deletion as corresponding part for the new transition “createConvoy/” 
(which would result in Figure 7 b)), the target of the outgoing transition must be modified to point to 
the state “receivedConvoyProposal”. 
We can sort the different update possibilities by the amount of modifications that must be made to 
reuse the elements: the less modifications must be made, the more likely it is that this is a reasonable 
reuse possibility. In the example, we can reuse the refinement for the transition “createConvoy/” (see 
Figure 7 b)), as the source of the transition (the “noConvoy” state) is the same as before, but we must 
alter the target state. We can also reuse the refinement for the transition “/convoyAccept” (see Figure 
7 c)), as the target of the transition is the same (the “convoyLeader” state). It is, however, 
unreasonable to reuse the refinement for the transition “/convoyReject”, as neither the source nor the 
target state is the same as before. Thus, the user is asked which of the two reasonable reuse 
possibilities that are depicted in Figure 7 b) and c) should be used. 

4. Concluding remarks 
In this paper, we have shown how behavioral models are specified in the different domains during the 
development process of a mechatronic system. We have employed model synchronization techniques 
to automatically propagate changes that occur during the domain-specific concretization phase and are 
domain-spanning relevant. A central challenge here is that the models used are modeled on different 
levels of abstraction. That means that a domain-specific model may contain more detailed information 
than the domain-spanning system model; e.g., additional states may be added to a statechart. We 
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argued that a model synchronization must consider these refinements when synchronizing the models. 
As the main contribution of this paper, we described how such refinement possibilities can be formally 
captured using refinement rules, and we showed how the model synchronization must be extended in 
order to preserve such domain-specific refinements during subsequent propagations of changes from 
other domains. Usually, several alternative ways for updating the refined model exist. Our model 
synchronization approach calculates all alternatives, rates them, and asks the expert in ambiguous 
cases. We have illustrated the technique using behavioral models, but this technique can also be 
employed for refinements and consistency management of structural models. For instance, adding a 
triple-modular redundancy for a safety-critical sensor can also be seen as a refinement and captured by 
the refinement rules. We have implemented the extended model synchronization in our model 
synchronization tool, the TGG Interpreter2. Currently, we are developing the automatic integration of 
refinement rules into the model synchronization as well as the user interaction in ambiguous cases. 
For future work, we plan on investigating how other techniques for multi-domain system 
development, such as DSM/Multiple-Domain Matrices, can be combined with our approach. 
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