
SYSTEMS ENGINEERING AND DESIGN 1689

INTERNATIONAL DESIGN CONFERENCE - DESIGN 2012
Dubrovnik - Croatia, May 21 - 24, 2012.

MODULARITY, VARIANT AND VERSION
MANAGEMENT IN PLANT AUTOMATION –
FUTURE CHALLENGES AND STATE OF THE ART

S. Feldmann, J. Fuchs and B. Vogel-Heuser

Keywords: modularity, variant and version management, concurrent
engineering

1. Introduction
The automation control software created during plant engineering, which is a multi-billion Euro per
year branch of industry, is very large and modified many times during the plant’s operation. Certain
sub-assemblies of machinery – each with its own automation control software – appear many times
within a plant and across plants, and plant-specific variants of such sub-assemblies are created during
plant start-up or operation for resolving process-specific issues of one particular plant. Therefore,
identical reuse with subsequent modification as well as modified reuse of automation control software
is ubiquitous in this domain; hence, modularity plays an enormous role for successful engineering and
maintenance of plant automation control software.
Designing automation systems in machine and plant automation includes different disciplines, i.e.
mechanical design, electrical design and software design. As each plant is unique, yet configured from
standard machines and automation components, the plant’s software is customized and constructed to
a large degree from reusable modules. However, during design, reusability is often neglected in
industry. Due to reduced time to market as well as high cost pressure, companies in machine and plant
manufacturing are trying to find appropriate design methods for designing automation systems, but up
to now there is a lack of design theory in automation compared to design in mechanical engineering.
Although the theory of modular composition in plant manufacturing is understood and the advantages
and necessities for modularization are accepted, there are significant challenges in applying these
concepts in industry. Extensive interconnections between software modules and their physical
representations show that modularity is structured differently in the disciplines and therefore,
modularity structures must be identified and considered to solve the modularity task for its application
in industry. Besides providing an appropriate module composition technique, engineers must be
supported in managing modules regarding variability and versioning of modules not only in single
disciplines but also across disciplines.
This paper provides a survey on the state of the art, industrial practise in plant automation design and
the resulting challenges and requirements focussing especially on modularity as a prerequisite for
reuse to start developing an integrated or coupled approach with well-established design methods from
mechanical engineering [Lindemann et al. 2009]. Two detailed analyses will show the differences
between modularity structures in mechanical engineering, electrical engineering and software
engineering and the resulting problems and challenges that need to be solved to prepare a solution for
module, variant and version management.
The paper is structured as follows: The main requirements and challenges in plant automation, e.g.
module management regarding variants and versions and the desired support for variability and
change management are shown in chapter 2 using a small application scenario. The current research

 SYSTEMS ENGINEERING AND DESIGN 1690

focus and state of the art concerning the problems to be solved in plant automation engineering is
discussed in chapter 3. Using two detailed analyses in market-leading German companies, the current
industrial practise and tool application is shown to deepen the understanding of the challenges and to
derive requirements for further research work in chapter 4. Finally, the results of the analyses are
discussed and future work in this field is outlined.

2. Application scenario for module management in plant automation
As plants and machines in plant automation are distributed locally and as changes lack in
documentation and support, a lot of problems occur concerning module, variant and version
management. In the following, a small application scenario is presented to illustrate the desired
support, and thus the challenges for coping with variants and versions in plant management.

2.1 Exemplary module kit

In Figure 1, a module kit of a small exemplary module, i.e. a conveyor belt, is shown that consists of
basic modules being parameterized according to their specific application. The module contains a
mandatory basic module, which defines the possible configurations, e.g. the locations and constraints
of optional basic modules and interfaces for optional basic modules that can be added with respect to
the possible configurations. In the illustrated scenario, the conveyor belt contains a light barrier, a
drive and an optional light barrier that can be substituted by a bar code scanner.

Figure 1. Module library for the conveyor belt containing the mandatory (conveyor belt) and

optional (drive, light barrier, bar code scanner) basic modules with their discipline
representations

Each module is represented through its discipline-specific documentations, i.e. mechanical, electrical
and software representations that are subject to variant and version management. After having
designed, verified and tested the conveyor belt, the mechatronic module can be used for its operation
in new projects by configuring and parameterizing the mandatory and – if present – optional basic
modules. In the following chapters, regarding the module’s variant and version management, the
conveyor belt module’s software engineering representations are considered not taking the other
discipline representations into account in terms of reducing the application example’s complexity.

2.2 Variant and version management

As illustrated in Figure 2, three different variants (var1MK, var2MK and var3MK) have been configured
from the module kit and used for different engineering projects at locations spread around the world.
The figure shows the software representations of the module variants and their adjustment versions
neglecting the mechanical and electrical representations as mentioned before. Having completed the

SYSTEMS ENGINEERING AND DESIGN 1691

start-up phases, the current revision statuses are var1Am, var2An and var3Ap. During operation, an error
in the acceleration ramp of var3Ap has been identified (step 1), hence, a new revision status var3A(p+1)
has been implemented for the customer (step 2) to adjust the acceleration ramp.
Unfortunately, the programmer at the customer’s location is not capable of identifying the problem’s
source and whether it has to be applied to existing variants as well. Therefore, the adjustment in the
acceleration ramp has to be extrapolated (step 3) to eliminate the eventuality that the adjustments
var3A0 to var3Ap caused the problem. Afterwards, the adjustment Ap → A(p+1) is isolated and then
applied to the related components in the module kit (step 4 and 5). To ensure that the acceleration
ramps of the other variants are adjusted as well, the adjustment is performed on the other module
variants in case the problem has not been solved during the versioning tasks var1A0 to var1Am as well
as var2A0 to var2An (step 6).

2.3 Resulting challenges and current problems

It is desirable to trace changes in mechatronic systems to provide an integrated and correct module for
each module developer, but up to now the different steps for the scenario are rarely applied in
industry. As changes in plant automation occur during operation and maintenance at the customer’s
location, there is still a lack of change documentation in order to provide change management during
late engineering phases. Furthermore, depending on the type of the system, i.e. mono-technology
systems or mechatronic systems, the interconnection between a module’s representations in other
disciplines must be considered to be able to provide variability management; additional disciplines
may add further constraints on the existing system, e.g. magnetic behaviour of the barcode scanner in
Figure 2. These problems have not been solved yet.
Additionally, there are significant differences in module, variant and version management regarding
engineering of mechatronic products and plant engineering. Compared to mechatronic products, plants
are unique and manufactured only once; therefore, standardization potentialities are limited due to
reduced time to market and high cost pressure; in consequence, appropriate modularization techniques
must be developed to support an integrated module management.

Figure 2. Variant management and tracing of changes for the conveyor belt

 SYSTEMS ENGINEERING AND DESIGN 1692

3. State of the art and resulting challenges in design of automation in plant
manufacturing industry
Despite huge efforts spent on research initiatives in Germany, modularity is rarely fully implemented
in automation control software for the machine and plant manufacturing industry in contrast to the
sophisticated results in modularizing and analysing product architectures [Lindemann et al. 2009]. The
importance of version and variant management was highlighted by a study with international experts
[Vogel-Heuser 2009], who named modularity and reuse of variants as well as version and change
management as most important criteria for automation engineering in 2020.

3.1 Plant engineering as a simultaneous process

Engineering in plant automation is a simultaneous process as engineers from different disciplines work
at the same time on the same project. During engineering and planning processes, different
documentation for discipline specific representations is generated, e.g. Computer Aided Design (CAD)
drawings, electric circuit diagrams and software programs, that provide different views on the system
and deliver different partially overlapping information to describe the whole plant.
The lifecycle of a plant in plant engineering lasts 20 – 30 years and starts with design and construction
of the technical, i.e. mechanical, system. Subsequently, the electrical platform is designed and finally,
the application of the plant is programed in the languages for Programmable Logic Controllers (PLC)
standardized in IEC 61131-3. After the design and start-up phase is completed, the operational phase
of the plant starts and in many cases, customer-specific adaptations need to be implemented locally.
Considering the simultaneous engineering process, many discipline-specific or interdisciplinary
changes have to be done during a plant’s design, operation and maintenance. Some adaptations during
start-up and re-engineering processes can be applied locally by maintenance personnel in the
customer’s own factory, e.g. adjustment of software parameters; some are more complex making the
support of the plant manufacturer necessary, e.g. replacing an old type of automation device (PLC) by
a newer one. As the plant manufacturer often does not know the basic changes, new plant designs may
contain the same deficiencies as the old design; therefore, techniques for modularization, variant and
version management need to be provided.
New software tools are currently developed to support the interdisciplinary design and modularization
of machines and plants, e.g. EPLAN Engineering Center (EEC). The application of these engineering
tools often lacks in finding appropriate granularity levels for all disciplines participating in plant
automation and is currently not state of the art in automation engineering [Maga et al. 2011].

3.2 Modularity, module size and granularity

A plant is unique in design and development and during design, reusability is scarcely considered. As
a result, modules often represent whole plants or huge parts of the mechatronic system and are
therefore very complex and difficult to manage and maintain.
To increase reusability and flexibility in plant automation, mechatronic systems must be subdivided
into granular pieces and different representations of a system must be integrated into flexible, reusable
modules. Mechatronic modules are separable units consisting of software and hardware, whereupon
hardware includes both electrical and mechanical components. As described in [Katzke et al. 2004], an
application module for the design of a production plant has well-defined interfaces and variation
possibilities and is composed of different basic modules which can consist of a single piece of
software, an electronic platform, mechanical context (mono-technology systems) or a combination of
these components (mechatronic systems).
Maga et al. mention the level of granularity in automation systems as an aspect that deserves attention
to avoid problems preventing reuse of modules [Maga et al. 2011]. According to the authors,
conflicting interests concerning model granularity arise, namely fine-grained models enhance
reusability and flexibility but implicate difficult search in specific projects, whereas coarse-grained
models increase efficiency and robustness but hinder reusability because complex adaptations are
necessary. Therefore, one challenge is to find the appropriate module sizes in between having many
small components which make it difficult to identify all required parts and cumbersome to combine

SYSTEMS ENGINEERING AND DESIGN 1693

the many parts of a solution, and few large components which constrain flexibility. To make things
worse, what is small or large depends on the engineering phases suggesting that hierarchical
component models may be needed [Jazdi et al. 2011]. Recently, more and more companies in machine
and plant automation start analysing their module structure to find suitable module sizes and, at the
same time, to cope with the problems of interlocking, error handling, and modes of operation.
Kortler et al. proposed a flexible modelling approach using matrices for mapping between different
domains and to provide consistent change integration into the system [Kortler et al. 2011]. The
applicability of the approach in machine and plant manufacturing must be evaluated in further steps.
These fundamental design problems are exacerbated by a lack of acceptance due to incomplete tool
support or psycho-social problems, as a module used by an engineer might not be acknowledged
because the module has been invented by another engineer or – even worse – by external partners and
thus, might not be reliable. On a research level, UML has been evaluated as a technique for
modularization of plant automation software [Secchi et al. 2007]; furthermore, a corresponding tool
has been implemented in the IEC 61131-3 development environment [Vogel-Heuser et al. 2011].
Despite huge efforts spent on different research projects regarding modularity in machine and plant
industry in Germany, modularity is rarely fully applied in automation software: ”Reusable artefacts are
mostly fine-grained and have to be modified on different positions, so that errors are probable and
important reuse potential is wasted” [Maga et al. 2011]. Reuse is mostly achieved through copy, paste
and modification actions [Katzke et al. 2004].
Among the identifiable reasons for this situation are the following:

 the multitude of disciplines involved (such as software engineering, automation engineering,
mechanical engineering, electrical engineering, safety engineering, perhaps also chemical
engineering),

 the interdependencies of software modules with mechanical and electrical modules [Maga et
al. 2011],

 the interconnectedness induced by exception handling and different modes of operation.
Maga et al. proposed the separation of Domain Engineering from Application Engineering, whereupon
Domain Engineering provides suitable analysis methods, design methods, and reusable components to
enhance reusability of discipline modules and Application Engineering employs these to construct the
plant’s automation software more easily and specifically for customer-specific projects [Maga et al.
2011]. In order to construct Domain Engineering approaches with success, it is necessary to
understand the current practise of modularity and reuse in automation software, the development
processes and the interplay of the forces at work behind these processes in the automation domain.

3.3 Variant and version management

Managing variants and versions in automation engineering is an upcoming research topic. Lauder et al.
consider the orthogonal problem dimensions concurrent engineering disciplines, metamodelling,
domain customization, abstraction and evolution in plant automation (see Figure 3), but not in context
of variant and version management [Lauder et al. 2010].
Lauder’s approach, namely Concurrent Model Driven Automation Engineering (CMDAE), uses these
dimensions to identify reusable concepts and design elements addressing the integration of standard
file formats and existing engineering tools instead of supporting an integrated modelling approach
considering the required disciplines in a single model. The concept has been evaluated using an
implementation of a bidirectional synchronisation between an ECAD tool and a PLC programming
environment (SIMATIC STEP 7); however, depending on the level of detail and number of interfaces
between tools in automation engineering, the application of CMDAE for plant automation can be very
complex, e.g. due to continuous tool changes and updates.
Helms et al. present a modular modelling approach for the physical domain that uses the Systems
Modelling Language (SysML) as a foundation containing a formal grounding based on bond graphs
and dividing a model into three abstraction layers, i.e. Function, Behaviour and Structure [Helms et al.
2011]. In these approaches structural resources allocate physical effects as behaviours, which are
assigned to for physical functions. A concept for defining interfaces between modules inside and in
between these abstraction layers is introduced that uses the modelling element port of SysML.

 SYSTEMS ENGINEERING AND DESIGN 1694

Figure 3. Dimensions of Concurrent Model Driven Automation Engineering (CMDAE)

according to [Lauder et al. 2010]

4. Analyses of current industrial practise
To prepare a solution for providing module, variant and version management in automation
engineering, the industrial aspects and the current industrial practise need to be considered for further
work. Within two detailed analyses, the current practises in modularizing plant software implemented
in IEC 61131-3 and in modularizing electric circuit diagrams have been evaluated with two different
market-leading companies in the field of plant manufacturing.

4.1 Case study I – Modularity in PLC software design

Reuse of automation software in case study I is currently limited to the use of universal projects
containing the maximum functionality of a machine or plant, i.e. the software is parameterized
according to the customer requirements. Unnecessary software parts are disabled or negated leading to
several problems, e.g. failure diagnosis, code comprehensibility, complexity and memory
requirements.
The modularity structure chosen by the company has been quantified measuring the number of
variables passed on between software units. Due to the sequential engineering process in plant
automation, software modules are designed analogously to the module structure in mechanical
engineering and the challenge in software design is to adapt the mechanical module structure to
software modularity neglecting the requirements from a software point of view. The requirements on
the mechanical part of a mechatronic system often differ from the software part, therefore, a function-
oriented modularization of software is difficult to implement.
In this case study the interconnection between software units is currently very closely intertwined. Due
to confidentiality agreements only abstract results may be published as shown for the interconnection
between software modules in Figure 4. A circle in the illustration represents a function block; an arrow
illustrates global data exchange. Software modules consisting of several function blocks are illustrated
using different textures. The arrows’ length is inversely proportional to the number of data exchanges
whereas the diameter of the circles represents the complexity of the function blocks based on their
pages of code. A long arrow indicates little interconnections between function blocks; a short one
shows, that software units are connected strongly.

SYSTEMS ENGINEERING AND DESIGN 1695

Figure 4. Schematic diagram of differences between mechanical-structured function calls and

functional-structured data exchange

Currently, extensive communication, represented through short arrows, between different modules
hampers modularization as software units have a huge number of connections to each other. The
software is basically function-oriented according to the production process, despite having been
modularized according to the mechanical modularization. Due to this a well-organized modularization
is currently not really achievable; calls of software functions are structured according to the
mechanical structure (see Figure 4, left), but in contradiction the exchange of global data is structured
according to the functional structure (see Figure 4, right). Currently, both principles structuring the
modularity exist in a single plant software, thus, the modules are connected via huge interfaces which
make it hard to provide exchangeability and flexibility. For instance, if a single module is eliminated,
large interfaces remain; thus, the effort to adapt the software is higher compared to applying a
universal project as an alternative approach. Therefore, new approaches to provide consistent
modularity structure in software design are required taking the functional character of plant
automation software into account to consider the resulting function-oriented modularization criteria
subsequently.

4.2 Case study II – Modularity in design of electrical engineering

In mechanical design, modules are defined according to their physically definable representation as
devices, assemblies, etc.; in software design, modularity represents the functional composition of a
plant. At first view, concerning modularity in electrical engineering for the design of local and central
control cabinets and the corresponding circuit diagrams, there is a lack in such a simple modularity
principle. For many years, modularity in electrical engineering implied reuse of circuit diagram pages,
meaning that a reusable part should be on one page. These pages may be copied and then changed
through eliminating or adding fragments, i.e. circuit diagram pieces, depending on the number of
sensors or actuators of the devices, e.g. the necessary encoders and frequency converters. The second
principle of modularity was the modularity of control cabinet arrangements, e.g. how many frequency
converters may be mounted in one field of control cabinets, and the third principle was the modularity
of input/ output (IO) modules for automation devices, i.e. the available granularity.
Case study II showed that more and more companies start analysing their module structure to find
appropriate module sizes supporting modularity and reuse in plant engineering, especially in electrical
engineering. In contrast to function-oriented module structures in software engineering, the chosen
electrical module structure of the company is device-oriented. Devices must be connected to each
other and are chosen by the customer; therefore, devices differ from project to project as different
device manufacturers result in variability. As a result, electrical devices in different machines are not

 SYSTEMS ENGINEERING AND DESIGN 1696

identical in construction and functionality, hence, substituting or changing a device’s functionality
results necessarily in affecting the mechanical part of the system and, of course, the plant software.

4.3 Tool application

In the last few years, tools have been introduced providing an engineering framework for plant
automation engineering. For instance, EPLAN Engineering Center (EEC) supports module and variant
management independently from the application domain of the modelled mechatronic system and
divides the engineering phases into tasks independently from projects and tasks according to precise
projects. The tool integrates existing engineering tools, e.g. Electrical Computer Aided Design
(ECAD) and PLC development systems and provides abstract modelling of complex mechatronic
systems both interdisciplinary as well as for specific disciplines and, subsequently, the automatic
generation of plant documentation.
For a deeper knowledge of already existing approaches and their quality regarding modularity the
modularity and module library in the Computer Aided Engineering (CAE) system was analysed, i.e.
EEC, which is one of the most advanced tools in this area [Maga et al. 2011], of a plant manufacturing
company, which is one of the most advanced companies in building such modules. The following
approaches for building mechatronic modules were found:

 universal project as foundation for an approach using copy, paste and modify by parameters,
 division of plants into plant units, plant areas etc. according to the structure of the technical

process and the different machinery (see Figure 5).
The decomposition of the plant roughly represents the separation into basic modules, application
modules and plant modules according to [Katzke et al. 2004], namely functions and devices are basic
modules, whereas assemblies, machine units and machines represent application modules. Plant areas,
plant units and plants belong to plant modules. The definition of basic modules is recursive, i.e. basic
modules can contain basic modules.
The interdisciplinary decomposition of the mechatronic system is therefore similar to a mechanical
decomposition. To provide a more flexible modelling technique and to avoid rigid structures, basic
modules, i.e. functions and devices, can be used in plant modules, application modules and basic
modules in the case study.
Further problems occur during the discipline-specific modelling of the system, for instance, an
electrical module contains its representation through parameters, e.g. reference tags, on the one hand
and its graphical representations, e.g. device symbols in an electric circuit diagram, on the other hand,
and is therefore structured according to the electrical devices. Interfaces between electrical modules
are defined through wirings that may contain physical information, e.g. diameter and length, in the
field of the plant, but also precise electrical information, e.g. reference tags.

Figure 5. Layer configuration in electrical engineering framework of a plant (example) similar

to the international standard ANSI/ISA-95

SYSTEMS ENGINEERING AND DESIGN 1697

The engineering process is separated into discipline-specific, i.e. ECAD and PLC, and
interdisciplinary, i.e. mechatronic, design. The engineer can implement the domain-specific layer
configuration (see Figure 5) depending on the company’s requirements. The libraries either represent
the discipline modules, e.g. ECAD and PLC modules, or an additional discipline, i.e. mechatronic
modules, defining the general composition of a plant (see Figure 6). Discipline-specific modules can
be added to mechatronic modules and connected through parameters written in a specific language
based on rules which can be filled with values by the engineer himself or using external data storages,
e.g. information for circuit diagrams and information to disable or enable components. These values
contain the discipline-specific information needed to generate the plant documentation, e.g. a
parameter for an assembly’s wire manufacturer definition can be imported from the list of parts in a
database to automatically generate the reference tags for the wiring in the circuit diagrams. To
instantiate and thereby use a mechatronic module and its discipline-specific representations, the
engineer can drag and drop the module defined in the mechatronic library into the plant-specific
project according to the layer configuration.
Module variants can be created applying two different methods:

 parameters that are filled according to the necessary configuration disable or negate specific
modules to implement the concept of a universal project,

 interfaces that are used to provide instantiating necessary modules according to the module
combination.

Constraints on the combination of modules or number of instances can be customized, e.g. to ensure
that the conveyor belt in Figure 1 may contain a light barrier or a barcode scanner but not both at the
same time.

Figure 6. Exemplary information flow and data storage in an engineering framework

However, there are deficiencies concerning variability handling and experiences of engineers as
defining and maintaining variants can be very complex and time-consuming when considering
multiple disciplines [Maga et al. 2011]. Up to now there is a lack in version management, as tested
module versions are managed using hard copies of databases. Different engineering phases from
requirements’ definition to the operation and maintenance phases are currently not supported.

5. Conclusion and outlook
In this paper a survey on the industrial practise in design of plants in plant manufacturing industry was
given, focussing on the interdisciplinarity and the challenges in module, variant and version
management. Using two detailed analyses in market-leading German plant manufacturing companies,
one analysis in software engineering and one in electrical engineering, the challenges and problems to
be solved were introduced.
The results show that module structures in different disciplines differ. The case studies demonstrate
that modularity structures in software engineering are different from structures in electrical

 SYSTEMS ENGINEERING AND DESIGN 1698

engineering: Software modules are structured according to their functions whereas electrical modules
are structured according to the electrical devices. Subsequently, according to the different modularity
paradigms, the term function in software engineering refers to an action that can be called, whereas in
electrical engineering a device’s functionality is addressed. To solve the modularity, variant and
version management tasks in automation engineering, the modularity structures of all disciplines, i.e.
mechanical engineering, electrical engineering and software engineering, need to be analysed,
understood and connected. Besides, challenges during runtime of industrial plants, e.g. dynamic
reconfiguration and operation modes, must be considered.
Further research work will examine approaches from mechanical design methods as well as from
product lines to support systematic modularization covering all disciplines and taking variant and
version management into account to provide increased reuse during design. To provide an integrated
module management, semantic interoperability between modules needs to be considered and formally
described to support better discovering and reusing similar mechatronic modules. The system
behaviour varying as a reason of the combination and configuration of different modules and
disciplines is an aspect that needs to be considered to identify an automation system’s functionality.
Furthermore, change documentation and, thus, version management must be implemented to provide a
better change management in a plant’s engineering lifecycle.

References
Helms, B., Schultheiß, H., Shea, K., “Automated assignment of physical effects to functions using ports based on
bond graphs”, ASME International Design Engineering Technical Conferences & Computers and Information
in Engineering Conference (IDETC/CIE), ASME New York, USA, 2011.
Jazdi, N., Maga, C., Göhner, P., “Reusable models in industrial automation: experiences in defining
appropriate levels of granularity”, 18th World Congress of the International Federation of Automatic Control
(IFAC), Elsevier Amsterdam, Netherlands, 2011, pp 9145–9150.
Katzke, U., Vogel-Heuser, B., Fischer, K., “Analysis and state of the art of modules in industrial automation”,
Automation Technology in Practice International (atpi), Vol.2, No.1, 2004, pp 23–31.
Kortler, S., Helms, B., Shea, K. and Lindemann, U., “A more flexible way of modeling structure with multiple
domains”, 13th Internationak Dependency and Structure Modelling Conference (DSM), Cambridge, USA, 2011,
pp 19–29.
Lauder, M., Schlereth, M., Rose, S., Schürr, A., “Model-driven systems engineering: state-of-the-art and
research challenges”, Bulletin of the Polish Academy of Sciences: Technical Sciences, Vol.58, No.3, 2010, pp
409–421.
Lindemann, U., Maurer, M., Braun, T., “Structural complexity management: an approach for the field of
product design”, Springer-Verlag Berlin Heidelberg, Germany, 2009.
Maga, C., Jazdi, N., Göhner, P., “Requirements on engineering tools for increasing reuse in industrial
automation”, 16th IEEE Conference on Emerging Technologies and Factory Automation (ETFA), IEEE New
York, USA, 2011, pp 1–7.
Secchi, C., Bonfè, M., Fantuzzi, C., Borsari, R., Borghi, D., “Object-oriented modeling of complex mechatronic
components for the manufacturing industry”, IEEE/ASME Transactions on Mechatronics, Vol.12, No.6, 2007,
pp 696–702.
Vogel-Heuser, B., “Visions of automation engineering in 2020”, Automation Technology in Practice (atp),
Vol.2009, No.5, 2009, pp 49–56.
Vogel-Heuser, B., Braun, S., Kormann, B., Friedrich, D., “Implementation and evaluation of UML as modeling
notation in object oriented software engineering for machine and plant automation”, 18th World Congress of
the International Federation of Automatic Control (IFAC), Elsevier Amsterdam, Netherlands, 2011, pp 9151–
9157.

Stefan Feldmann
Institute of Automation and Information Systems, Technische Universität München
Boltzmannstr. 15, 85748 Garching near Munich, Germany
Telephone: +49 89 289-16441
Telefax: +49 89 289-16410
Email: feldmann@ais.mw.tum.de
URL: http://www.ais.mw.tum.de/

