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1. Introduction 
The automation control software created during plant engineering, which is a multi-billion Euro per 
year branch of industry, is very large and modified many times during the plant’s operation. Certain 
sub-assemblies of machinery – each with its own automation control software – appear many times 
within a plant and across plants, and plant-specific variants of such sub-assemblies are created during 
plant start-up or operation for resolving process-specific issues of one particular plant. Therefore, 
identical reuse with subsequent modification as well as modified reuse of automation control software 
is ubiquitous in this domain; hence, modularity plays an enormous role for successful engineering and 
maintenance of plant automation control software. 
Designing automation systems in machine and plant automation includes different disciplines, i.e. 
mechanical design, electrical design and software design. As each plant is unique, yet configured from 
standard machines and automation components, the plant’s software is customized and constructed to 
a large degree from reusable modules. However, during design, reusability is often neglected in 
industry. Due to reduced time to market as well as high cost pressure, companies in machine and plant 
manufacturing are trying to find appropriate design methods for designing automation systems, but up 
to now there is a lack of design theory in automation compared to design in mechanical engineering. 
Although the theory of modular composition in plant manufacturing is understood and the advantages 
and necessities for modularization are accepted, there are significant challenges in applying these 
concepts in industry. Extensive interconnections between software modules and their physical 
representations show that modularity is structured differently in the disciplines and therefore, 
modularity structures must be identified and considered to solve the modularity task for its application 
in industry. Besides providing an appropriate module composition technique, engineers must be 
supported in managing modules regarding variability and versioning of modules not only in single 
disciplines but also across disciplines. 
This paper provides a survey on the state of the art, industrial practise in plant automation design and 
the resulting challenges and requirements focussing especially on modularity as a prerequisite for 
reuse to start developing an integrated or coupled approach with well-established design methods from 
mechanical engineering [Lindemann et al. 2009]. Two detailed analyses will show the differences 
between modularity structures in mechanical engineering, electrical engineering and software 
engineering and the resulting problems and challenges that need to be solved to prepare a solution for 
module, variant and version management. 
The paper is structured as follows: The main requirements and challenges in plant automation, e.g. 
module management regarding variants and versions and the desired support for variability and 
change management are shown in chapter 2 using a small application scenario. The current research 
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focus and state of the art concerning the problems to be solved in plant automation engineering is 
discussed in chapter 3. Using two detailed analyses in market-leading German companies, the current 
industrial practise and tool application is shown to deepen the understanding of the challenges and to 
derive requirements for further research work in chapter 4. Finally, the results of the analyses are 
discussed and future work in this field is outlined. 

2. Application scenario for module management in plant automation 
As plants and machines in plant automation are distributed locally and as changes lack in 
documentation and support, a lot of problems occur concerning module, variant and version 
management. In the following, a small application scenario is presented to illustrate the desired 
support, and thus the challenges for coping with variants and versions in plant management. 

2.1 Exemplary module kit 

In Figure 1, a module kit of a small exemplary module, i.e. a conveyor belt, is shown that consists of 
basic modules being parameterized according to their specific application. The module contains a 
mandatory basic module, which defines the possible configurations, e.g. the locations and constraints 
of optional basic modules and interfaces for optional basic modules that can be added with respect to 
the possible configurations. In the illustrated scenario, the conveyor belt contains a light barrier, a 
drive and an optional light barrier that can be substituted by a bar code scanner.  

 
Figure 1. Module library for the conveyor belt containing the mandatory (conveyor belt) and 

optional (drive, light barrier, bar code scanner) basic modules with their discipline 
representations 

Each module is represented through its discipline-specific documentations, i.e. mechanical, electrical 
and software representations that are subject to variant and version management. After having 
designed, verified and tested the conveyor belt, the mechatronic module can be used for its operation 
in new projects by configuring and parameterizing the mandatory and – if present – optional basic 
modules. In the following chapters, regarding the module’s variant and version management, the 
conveyor belt module’s software engineering representations are considered not taking the other 
discipline representations into account in terms of reducing the application example’s complexity.  

2.2 Variant and version management 

As illustrated in Figure 2, three different variants (var1MK, var2MK and var3MK) have been configured 
from the module kit and used for different engineering projects at locations spread around the world. 
The figure shows the software representations of the module variants and their adjustment versions 
neglecting the mechanical and electrical representations as mentioned before. Having completed the 
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start-up phases, the current revision statuses are var1Am, var2An and var3Ap. During operation, an error 
in the acceleration ramp of var3Ap has been identified (step 1), hence, a new revision status var3A(p+1) 
has been implemented for the customer (step 2) to adjust the acceleration ramp. 
Unfortunately, the programmer at the customer’s location is not capable of identifying the problem’s 
source and whether it has to be applied to existing variants as well. Therefore, the adjustment in the 
acceleration ramp has to be extrapolated (step 3) to eliminate the eventuality that the adjustments 
var3A0 to var3Ap caused the problem. Afterwards, the adjustment Ap → A(p+1) is isolated and then 
applied to the related components in the module kit (step 4 and 5). To ensure that the acceleration 
ramps of the other variants are adjusted as well, the adjustment is performed on the other module 
variants in case the problem has not been solved during the versioning tasks var1A0 to var1Am as well 
as var2A0 to var2An (step 6).  

2.3 Resulting challenges and current problems 

It is desirable to trace changes in mechatronic systems to provide an integrated and correct module for 
each module developer, but up to now the different steps for the scenario are rarely applied in 
industry. As changes in plant automation occur during operation and maintenance at the customer’s 
location, there is still a lack of change documentation in order to provide change management during 
late engineering phases. Furthermore, depending on the type of the system, i.e. mono-technology 
systems or mechatronic systems, the interconnection between a module’s representations in other 
disciplines must be considered to be able to provide variability management; additional disciplines 
may add further constraints on the existing system, e.g. magnetic behaviour of the barcode scanner in 
Figure 2. These problems have not been solved yet. 
Additionally, there are significant differences in module, variant and version management regarding 
engineering of mechatronic products and plant engineering. Compared to mechatronic products, plants 
are unique and manufactured only once; therefore, standardization potentialities are limited due to 
reduced time to market and high cost pressure; in consequence, appropriate modularization techniques 
must be developed to support an integrated module management.  

 
Figure 2. Variant management and tracing of changes for the conveyor belt 
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3. State of the art and resulting challenges in design of automation in plant 
manufacturing industry 
Despite huge efforts spent on research initiatives in Germany, modularity is rarely fully implemented 
in automation control software for the machine and plant manufacturing industry in contrast to the 
sophisticated results in modularizing and analysing product architectures [Lindemann et al. 2009]. The 
importance of version and variant management was highlighted by a study with international experts 
[Vogel-Heuser 2009], who named modularity and reuse of variants as well as version and change 
management as most important criteria for automation engineering in 2020. 

3.1 Plant engineering as a simultaneous process 

Engineering in plant automation is a simultaneous process as engineers from different disciplines work 
at the same time on the same project. During engineering and planning processes, different 
documentation for discipline specific representations is generated, e.g. Computer Aided Design (CAD) 
drawings, electric circuit diagrams and software programs, that provide different views on the system 
and deliver different partially overlapping information to describe the whole plant. 
The lifecycle of a plant in plant engineering lasts 20 – 30 years and starts with design and construction 
of the technical, i.e. mechanical, system. Subsequently, the electrical platform is designed and finally, 
the application of the plant is programed in the languages for Programmable Logic Controllers (PLC) 
standardized in IEC 61131-3. After the design and start-up phase is completed, the operational phase 
of the plant starts and in many cases, customer-specific adaptations need to be implemented locally.  
Considering the simultaneous engineering process, many discipline-specific or interdisciplinary 
changes have to be done during a plant’s design, operation and maintenance. Some adaptations during 
start-up and re-engineering processes can be applied locally by maintenance personnel in the 
customer’s own factory, e.g. adjustment of software parameters; some are more complex making the 
support of the plant manufacturer necessary, e.g. replacing an old type of automation device (PLC) by 
a newer one. As the plant manufacturer often does not know the basic changes, new plant designs may 
contain the same deficiencies as the old design; therefore, techniques for modularization, variant and 
version management need to be provided.  
New software tools are currently developed to support the interdisciplinary design and modularization 
of machines and plants, e.g. EPLAN Engineering Center (EEC). The application of these engineering 
tools often lacks in finding appropriate granularity levels for all disciplines participating in plant 
automation and is currently not state of the art in automation engineering [Maga et al. 2011]. 

3.2 Modularity, module size and granularity 

A plant is unique in design and development and during design, reusability is scarcely considered. As 
a result, modules often represent whole plants or huge parts of the mechatronic system and are 
therefore very complex and difficult to manage and maintain. 
To increase reusability and flexibility in plant automation, mechatronic systems must be subdivided 
into granular pieces and different representations of a system must be integrated into flexible, reusable 
modules. Mechatronic modules are separable units consisting of software and hardware, whereupon 
hardware includes both electrical and mechanical components. As described in [Katzke et al. 2004], an 
application module for the design of a production plant has well-defined interfaces and variation 
possibilities and is composed of different basic modules which can consist of a single piece of 
software, an electronic platform, mechanical context (mono-technology systems) or a combination of 
these components (mechatronic systems). 
Maga et al. mention the level of granularity in automation systems as an aspect that deserves attention 
to avoid problems preventing reuse of modules [Maga et al. 2011]. According to the authors, 
conflicting interests concerning model granularity arise, namely fine-grained models enhance 
reusability and flexibility but implicate difficult search in specific projects, whereas coarse-grained 
models increase efficiency and robustness but hinder reusability because complex adaptations are 
necessary. Therefore, one challenge is to find the appropriate module sizes in between having many 
small components which make it difficult to identify all required parts and cumbersome to combine 
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the many parts of a solution, and few large components which constrain flexibility. To make things 
worse, what is small or large depends on the engineering phases suggesting that hierarchical 
component models may be needed [Jazdi et al. 2011]. Recently, more and more companies in machine 
and plant automation start analysing their module structure to find suitable module sizes and, at the 
same time, to cope with the problems of interlocking, error handling, and modes of operation. 
Kortler et al. proposed a flexible modelling approach using matrices for mapping between different 
domains and to provide consistent change integration into the system [Kortler et al. 2011]. The 
applicability of the approach in machine and plant manufacturing must be evaluated in further steps. 
These fundamental design problems are exacerbated by a lack of acceptance due to incomplete tool 
support or psycho-social problems, as a module used by an engineer might not be acknowledged 
because the module has been invented by another engineer or – even worse – by external partners and 
thus, might not be reliable. On a research level, UML has been evaluated as a technique for 
modularization of plant automation software [Secchi et al. 2007]; furthermore, a corresponding tool 
has been implemented in the IEC 61131-3 development environment [Vogel-Heuser et al. 2011]. 
Despite huge efforts spent on different research projects regarding modularity in machine and plant 
industry in Germany, modularity is rarely fully applied in automation software: ”Reusable artefacts are 
mostly fine-grained and have to be modified on different positions, so that errors are probable and 
important reuse potential is wasted” [Maga et al. 2011]. Reuse is mostly achieved through copy, paste 
and modification actions [Katzke et al. 2004]. 
Among the identifiable reasons for this situation are the following: 

 the multitude of disciplines involved (such as software engineering, automation engineering, 
mechanical engineering, electrical engineering, safety engineering, perhaps also chemical 
engineering), 

 the interdependencies of software modules with mechanical and electrical modules [Maga et 
al. 2011], 

 the interconnectedness induced by exception handling and different modes of operation. 
Maga et al. proposed the separation of Domain Engineering from Application Engineering, whereupon 
Domain Engineering provides suitable analysis methods, design methods, and reusable components to 
enhance reusability of discipline modules and Application Engineering employs these to construct the 
plant’s automation software more easily and specifically for customer-specific projects [Maga et al. 
2011]. In order to construct Domain Engineering approaches with success, it is necessary to 
understand the current practise of modularity and reuse in automation software, the development 
processes and the interplay of the forces at work behind these processes in the automation domain. 

3.3 Variant and version management 

Managing variants and versions in automation engineering is an upcoming research topic. Lauder et al. 
consider the orthogonal problem dimensions concurrent engineering disciplines, metamodelling, 
domain customization, abstraction and evolution in plant automation (see Figure 3), but not in context 
of variant and version management [Lauder et al. 2010]. 
Lauder’s approach, namely Concurrent Model Driven Automation Engineering (CMDAE), uses these 
dimensions to identify reusable concepts and design elements addressing the integration of standard 
file formats and existing engineering tools instead of supporting an integrated modelling approach 
considering the required disciplines in a single model. The concept has been evaluated using an 
implementation of a bidirectional synchronisation between an ECAD tool and a PLC programming 
environment (SIMATIC STEP 7); however, depending on the level of detail and number of interfaces 
between tools in automation engineering, the application of CMDAE for plant automation can be very 
complex, e.g. due to continuous tool changes and updates. 
Helms et al. present a modular modelling approach for the physical domain that uses the Systems 
Modelling Language (SysML) as a foundation containing a formal grounding based on bond graphs 
and dividing a model into three abstraction layers, i.e. Function, Behaviour and Structure [Helms et al. 
2011]. In these approaches structural resources allocate physical effects as behaviours, which are 
assigned to for physical functions. A concept for defining interfaces between modules inside and in 
between these abstraction layers is introduced that uses the modelling element port of SysML. 
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Figure 3. Dimensions of Concurrent Model Driven Automation Engineering (CMDAE) 

according to [Lauder et al. 2010] 

4. Analyses of current industrial practise 
To prepare a solution for providing module, variant and version management in automation 
engineering, the industrial aspects and the current industrial practise need to be considered for further 
work. Within two detailed analyses, the current practises in modularizing plant software implemented 
in IEC 61131-3 and in modularizing electric circuit diagrams have been evaluated with two different 
market-leading companies in the field of plant manufacturing.  

4.1 Case study I – Modularity in PLC software design 

Reuse of automation software in case study I is currently limited to the use of universal projects 
containing the maximum functionality of a machine or plant, i.e. the software is parameterized 
according to the customer requirements. Unnecessary software parts are disabled or negated leading to 
several problems, e.g. failure diagnosis, code comprehensibility, complexity and memory 
requirements. 
The modularity structure chosen by the company has been quantified measuring the number of 
variables passed on between software units. Due to the sequential engineering process in plant 
automation, software modules are designed analogously to the module structure in mechanical 
engineering and the challenge in software design is to adapt the mechanical module structure to 
software modularity neglecting the requirements from a software point of view. The requirements on 
the mechanical part of a mechatronic system often differ from the software part, therefore, a function-
oriented modularization of software is difficult to implement. 
In this case study the interconnection between software units is currently very closely intertwined. Due 
to confidentiality agreements only abstract results may be published as shown for the interconnection 
between software modules in Figure 4. A circle in the illustration represents a function block; an arrow 
illustrates global data exchange. Software modules consisting of several function blocks are illustrated 
using different textures. The arrows’ length is inversely proportional to the number of data exchanges 
whereas the diameter of the circles represents the complexity of the function blocks based on their 
pages of code. A long arrow indicates little interconnections between function blocks; a short one 
shows, that software units are connected strongly. 
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Figure 4. Schematic diagram of differences between mechanical-structured function calls and 

functional-structured data exchange 

Currently, extensive communication, represented through short arrows, between different modules 
hampers modularization as software units have a huge number of connections to each other. The 
software is basically function-oriented according to the production process, despite having been 
modularized according to the mechanical modularization. Due to this a well-organized modularization 
is currently not really achievable; calls of software functions are structured according to the 
mechanical structure (see Figure 4, left), but in contradiction the exchange of global data is structured 
according to the functional structure (see Figure 4, right). Currently, both principles structuring the 
modularity exist in a single plant software, thus, the modules are connected via huge interfaces which 
make it hard to provide exchangeability and flexibility. For instance, if a single module is eliminated, 
large interfaces remain; thus, the effort to adapt the software is higher compared to applying a 
universal project as an alternative approach. Therefore, new approaches to provide consistent 
modularity structure in software design are required taking the functional character of plant 
automation software into account to consider the resulting function-oriented modularization criteria 
subsequently. 

4.2 Case study II – Modularity in design of electrical engineering 

In mechanical design, modules are defined according to their physically definable representation as 
devices, assemblies, etc.; in software design, modularity represents the functional composition of a 
plant. At first view, concerning modularity in electrical engineering for the design of local and central 
control cabinets and the corresponding circuit diagrams, there is a lack in such a simple modularity 
principle. For many years, modularity in electrical engineering implied reuse of circuit diagram pages, 
meaning that a reusable part should be on one page. These pages may be copied and then changed 
through eliminating or adding fragments, i.e. circuit diagram pieces, depending on the number of 
sensors or actuators of the devices, e.g. the necessary encoders and frequency converters. The second 
principle of modularity was the modularity of control cabinet arrangements, e.g. how many frequency 
converters may be mounted in one field of control cabinets, and the third principle was the modularity 
of input/ output (IO) modules for automation devices, i.e. the available granularity. 
Case study II showed that more and more companies start analysing their module structure to find 
appropriate module sizes supporting modularity and reuse in plant engineering, especially in electrical 
engineering. In contrast to function-oriented module structures in software engineering, the chosen 
electrical module structure of the company is device-oriented. Devices must be connected to each 
other and are chosen by the customer; therefore, devices differ from project to project as different 
device manufacturers result in variability. As a result, electrical devices in different machines are not 
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identical in construction and functionality, hence, substituting or changing a device’s functionality 
results necessarily in affecting the mechanical part of the system and, of course, the plant software.  

4.3 Tool application 

In the last few years, tools have been introduced providing an engineering framework for plant 
automation engineering. For instance, EPLAN Engineering Center (EEC) supports module and variant 
management independently from the application domain of the modelled mechatronic system and 
divides the engineering phases into tasks independently from projects and tasks according to precise 
projects. The tool integrates existing engineering tools, e.g. Electrical Computer Aided Design 
(ECAD) and PLC development systems and provides abstract modelling of complex mechatronic 
systems both interdisciplinary as well as for specific disciplines and, subsequently, the automatic 
generation of plant documentation. 
For a deeper knowledge of already existing approaches and their quality regarding modularity the 
modularity and module library in the Computer Aided Engineering (CAE) system was analysed, i.e. 
EEC, which is one of the most advanced tools in this area [Maga et al. 2011], of a plant manufacturing 
company, which is one of the most advanced companies in building such modules. The following 
approaches for building mechatronic modules were found: 

 universal project as foundation for an approach using copy, paste and modify by parameters, 
 division of plants into plant units, plant areas etc. according to the structure of the technical 

process and the different machinery (see Figure 5).  
The decomposition of the plant roughly represents the separation into basic modules, application 
modules and plant modules according to [Katzke et al. 2004], namely functions and devices are basic 
modules, whereas assemblies, machine units and machines represent application modules. Plant areas, 
plant units and plants belong to plant modules. The definition of basic modules is recursive, i.e. basic 
modules can contain basic modules.  
The interdisciplinary decomposition of the mechatronic system is therefore similar to a mechanical 
decomposition. To provide a more flexible modelling technique and to avoid rigid structures, basic 
modules, i.e. functions and devices, can be used in plant modules, application modules and basic 
modules in the case study. 
Further problems occur during the discipline-specific modelling of the system, for instance, an 
electrical module contains its representation through parameters, e.g. reference tags, on the one hand 
and its graphical representations, e.g. device symbols in an electric circuit diagram, on the other hand, 
and is therefore structured according to the electrical devices. Interfaces between electrical modules 
are defined through wirings that may contain physical information, e.g. diameter and length, in the 
field of the plant, but also precise electrical information, e.g. reference tags.  

 
Figure 5. Layer configuration in electrical engineering framework of a plant (example) similar 

to the international standard ANSI/ISA-95 
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The engineering process is separated into discipline-specific, i.e. ECAD and PLC, and 
interdisciplinary, i.e. mechatronic, design. The engineer can implement the domain-specific layer 
configuration (see Figure 5) depending on the company’s requirements. The libraries either represent 
the discipline modules, e.g. ECAD and PLC modules, or an additional discipline, i.e. mechatronic 
modules, defining the general composition of a plant (see Figure 6). Discipline-specific modules can 
be added to mechatronic modules and connected through parameters written in a specific language 
based on rules which can be filled with values by the engineer himself or using external data storages, 
e.g. information for circuit diagrams and information to disable or enable components. These values 
contain the discipline-specific information needed to generate the plant documentation, e.g. a 
parameter for an assembly’s wire manufacturer definition can be imported from the list of parts in a 
database to automatically generate the reference tags for the wiring in the circuit diagrams. To 
instantiate and thereby use a mechatronic module and its discipline-specific representations, the 
engineer can drag and drop the module defined in the mechatronic library into the plant-specific 
project according to the layer configuration.  
Module variants can be created applying two different methods:  

 parameters that are filled according to the necessary configuration disable or negate specific 
modules to implement the concept of a universal project, 

 interfaces that are used to provide instantiating necessary modules according to the module 
combination.  

Constraints on the combination of modules or number of instances can be customized, e.g. to ensure 
that the conveyor belt in Figure 1 may contain a light barrier or a barcode scanner but not both at the 
same time. 

 
Figure 6. Exemplary information flow and data storage in an engineering framework 

However, there are deficiencies concerning variability handling and experiences of engineers as 
defining and maintaining variants can be very complex and time-consuming when considering 
multiple disciplines [Maga et al. 2011]. Up to now there is a lack in version management, as tested 
module versions are managed using hard copies of databases. Different engineering phases from 
requirements’ definition to the operation and maintenance phases are currently not supported. 

5. Conclusion and outlook 
In this paper a survey on the industrial practise in design of plants in plant manufacturing industry was 
given, focussing on the interdisciplinarity and the challenges in module, variant and version 
management. Using two detailed analyses in market-leading German plant manufacturing companies, 
one analysis in software engineering and one in electrical engineering, the challenges and problems to 
be solved were introduced. 
The results show that module structures in different disciplines differ. The case studies demonstrate 
that modularity structures in software engineering are different from structures in electrical 
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engineering: Software modules are structured according to their functions whereas electrical modules 
are structured according to the electrical devices. Subsequently, according to the different modularity 
paradigms, the term function in software engineering refers to an action that can be called, whereas in 
electrical engineering a device’s functionality is addressed. To solve the modularity, variant and 
version management tasks in automation engineering, the modularity structures of all disciplines, i.e. 
mechanical engineering, electrical engineering and software engineering, need to be analysed, 
understood and connected. Besides, challenges during runtime of industrial plants, e.g. dynamic 
reconfiguration and operation modes, must be considered. 
Further research work will examine approaches from mechanical design methods as well as from 
product lines to support systematic modularization covering all disciplines and taking variant and 
version management into account to provide increased reuse during design. To provide an integrated 
module management, semantic interoperability between modules needs to be considered and formally 
described to support better discovering and reusing similar mechatronic modules. The system 
behaviour varying as a reason of the combination and configuration of different modules and 
disciplines is an aspect that needs to be considered to identify an automation system’s functionality. 
Furthermore, change documentation and, thus, version management must be implemented to provide a 
better change management in a plant’s engineering lifecycle. 
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