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1. Introduction 
Decisions in the course of product design are often characterized by a lack of knowledge about future 
product properties, acting disturbances within the product life cycle, existing interdependencies etc. 
For the development of robust products these effects must be considered as early as possible. At the 
same time, well known and common methods of probabilistic uncertainty analysis often cannot be 
applied adequately in early design stages. They require a mathematical description of the underlying 
cause and effect relationships as well as a full stochastic description of possible variations. 
Consequently, adequate strategies for the analysis of uncertainty in product design are necessary. 
In this contribution, an approach for the analysis of uncertainty in life cycle processes and 
opportunities for the application of non-probabilistic analysis methods based on simpflified models are 
shown. The paper is structured into six sections. Based on a short review on uncertainty in product 
design in section two, a consistent approach to describe and visualize uncertainty in process chains of 
the product life cycle is presented. It is the basis for an evaluation of uncertain influences already 
during early design stages and thus for the evaluation of concepts in terms of robustness. Thereby, 
section three also includes existing challenges for the application of quantitative analysis methods. In 
section four a fuzzy analysis is presented. Afterwards, the example of a multilevel process chain for 
the manufacturing of precision holes illustrates the applicability, the achievable accuracy and 
respective benefits of a simulation compared to a fuzzy analysis approach. The conclusion shows 
further research topics and possibilities to derive adequate strategies for the analysis of uncertainty in 
different stages of the design process by means of non-probabilistic analysis methods. 

2. Uncertainty in product design 
The aim of product design is the development of products that fulfill the customer expectations in 
terms of performance, reliability, appearance, etc. From the usually large space of possible solutions, 
the designer has to find adequate concepts and has to choose an appropriate final design. Within a 
structured approach, the product is gradually specified based on subsequent design decisions until the 
complete shape of components, the overall layout, materials etc. are defined. 
Product design is characterized by a high degree of uncertainty due to the complex nature of 
development processes, the increasing requirements, the lack of knowledge about varying influences 
within the products life cycle, etc. For example, if actual properties of products, processes, or the 
underlying cause and effect relationships are unknown, design decisions are based on assumptions. 
The same applies, if there is no time for an extensive analysis of possible scenarios and of the value 
ranges of influences. Frequently, the consequences are poor concepts and inappropriate solutions that 
require iteration cycles within the development process or in the worst case cause numerous faults 
during use [Dentsoras 2008]. In case of a load-carrying mechanical system, designers misjudgments 
regarding achievable power, stress, strength and disturbances may have a significant impact on the use 
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process and could cause severe failures of components or the whole product. There are numerous 
types of uncertainty occurring in different stages of the design process. They have gained growing 
interest in literature [Kreye et al. 2011]. Available approaches describe possible causes of uncertainty 
within development [Aughenbaugh and Paredis 2006], [Vandepitte and Moens 2011], propose a 
holistic classification of uncertainty in development [Kreye et al. 2011], focus on uncertainty that 
affect the efficiency and the duration of development processes [Chalupnik et al. 2009], or offer a 
direct support for the choice of analysis methods based on a structured description of the possible 
value ranges [Engelhardt et al. 2010]. 
An important aspect of uncertainty in product design is the available level of information for adequate 
design decisions. Usually, uncertainty of data and uncertainty of the applied model are distinguished. 
It is obvious that every model is a simplification of real world relationships, particularly product and 
process models used for concept evaluation [Dentsoras 2008]. An example are physical effects or 
working principles which usually neglect existing disturbances. In contrast, there are different reasons 
for uncertain data. On the one hand, uncertainty directly results from sequential design decisions 
because the future product is still unknown. Especially in early design stages, neither the full range of 
possible solutions and the corresponding product properties, nor their possible variations due to 
uncertainty in production processes can be described explicitly. On the other hand, even if external 
influences, e.g. use conditions for the product or machines, are relatively well known, their variation 
often cannot be specified exactly due to the finite sample of data, unawareness of extreme events, etc. 
[Aughenbaugh and Paredis 2006], [Vandepitte and Moens 2011]. Uncertainty of the design process 
itself is primarily connected to a changing context, like market conditions or the political situation, and 
to the complexity inherent in the process [Kreye et al. 2011], [Chalupnik et al. 2009]. The complex 
execution of development processes, e.g. coordination of resources probably within an international 
network of different locations, could result in a delayed and costly development process. 
This contribution focuses on the uncertainty of used models and available data, i.e. the effect in terms 
of applicability and accuracy of quantitative analysis methods for an evaluation of uncertainty and 
product robustness in early design stages. A lack of knowledge about technical influences within the 
product life cycle, the existing cause and effect relationships, as well as the resulting effects may lead 
to severe deviations of the expected product behavior during use and need to be taken into account. 

3. Analysis of uncertainty in process chains 
To support the design of robust products and to increase the probability of a market success, the effect 
of uncertain, technical disturbances must be considered as early as possible. Two different aspects 
need to be distinguished. Uncertain influences within the product life cycle either lead to a product 
that does not meet the expectations after production or result in unfavorable process output because of 
the product performance during use. In any case, uncertainty results from processes and could lead to 
unexpected process results in terms of product properties or product behavior. [Eifler et al. 2011]. 
Consequently, a consistent approach for the evaluation and the identification of relevant influencing 
factors in process chains is essential for the analysis of uncertainty in product design. 
First, a simple process model for the structured visualization of life cycle processes and the existing, 
technical disturbances as well as an uncertainty model for the description of possible variations are 
presented. Second, the main challenges for a probabilistic analysis during early stages of the design 
process are summerized. 

3.1 Consistent description of uncertainty in process chains 

For a consistent description of relevant influences as well as their interdependencies in and between 
processes a process model specifically adapted to an analysis of uncertainty was elaborated, see Figure 
1. Based on a structured description of states and processes, the elaborated model offers a consistent 
approach for the identification and visualization of relevant influencing factors within a chain of 
technical processes. Between two states, properties of material, components, or the whole product are 
changed by use of different appliances, e.g. forming, machining, assembly devices or the product 
during use processes. Thereby, the initial variation of properties as well as external noise factors, such 
as temperature, dirt, humidity and manual operations, can affect the resulting variation after the 
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process. Possible external influences are grouped into four categories, disturbances, information, 
resources, and user. Essential for the analysis of influences in processes is the system boundary that 
delimits the object of analysis and thereby defines the considered cause and effect relationships [Eifler 
et al. 2011]. 

 
Figure 1. Modelling uncertain influences in process chains [Eifler et al. 2011] 

The structured modeling of uncertain processes is complemented by a description of product 
properties, process properties, or external influences based on an uncertainty model, see Figure 2. 
According to the available information about the resulting effect as well as the range of possible value, 
uncertainty is described by three categories, “Unknown uncertainty”, “Estimated Uncertainty”, and 
“Stochastic Uncertainty”. The level of uncertainty changes with the available amount of trusted 
information. An essential aspect of the uncertainty model are smooth transitions, i.e. a gradually 
increasing accuracy of description. An example is a one-sided enclosure of possible values between 
“Unknown Uncertainty” and “Estimated Uncertainty” [Engelhardt et al. 2010]. 

 
Figure 2. Categories of uncertainty [Engelhardt et al. 2010] 

In comparison to concepts such as aleatoric uncertainty (variability) and epistemic uncertainty 
(imprecision) [Aughenbaugh and Paredis 2006], [Chalupnik et al. 2009], [Vandepitte and Moens 
2011], the description mainly refers to uncertainty due to a lack of knowledge. In product design as 
well as for the description of existing processes, uncertainty is in some extent reducible by a 
systematic collection of data in an effort to allow a more accurate description of the possible range of 
values. This particularly holds true in early design stages. Possible variations within the product life-
cycle, technical influencing factors and the underlying cause and effect relationships can either not be 
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described accurately or are still completely unknown. Additionally, the indication of the duration of a 
process under consideration, i.e. the time between initial state tn and final state tn+1 in Figure 1, is 
essential. A relatively long time span of the process usually leads to a less precise description of the 
resulting variation of product properties. Thus, a precise evaluation of usually time-dependent 
influencing factors and their interdependencies becomes more difficult [Eifler et al. 2011]. 

3.2 Model-based challenges for the application of quantitative analysis methods 

A main challenge for the application of quantitative analysis methods is the uncertainty introduced by 
the available mathematical descriptions. Every model is a simplified representation of the real world 
interdependencies under consideration. Its inaccuracy results from a general difficulty to model 
comprehensively all relevant cause and effect relationships as well as from a simplification due to 
economic reasons in terms of model building, computing time, etc. Therefore, usually not all 
influencing factors are considered, the physical behavior of components is based on assumptions, 
different models may fit the observations, etc. The transformation of qualitatively modeled 
interdependencies into a mathematical description further increases the occurring uncertainty [Kreye 
et al. 2011]. 
Especially during concept evaluation, the available, usually highly simpliefied models do not 
necessarily fit the object of analysis. Due to a lack of knowledge about future product and processes, 
existing cause-effect relationships are only captured qualitatively, essential influencing factors are not 
included, etc. [Dentoras 2008]. For example, the geometry of active surfaces, the systems layout as 
well as possible internal or external disturbances are not yet considered [Vanderpite and Moens 2011], 
[Kreye et al. 2011]. Thus, diverse assumptions about correlations or relationships between influences 
can be found in different approaches [Vanderpite and Moens 2011]. Whereas abstract product or 
process models by nature do not consider all influences, detailed models are often also uncertain. 
Especially in complex systems, the number of relevant influences and interdependencies is so large 
that it is at least difficult to include all of them into a sufficiently efficient model. In combination with 
unlikely assumptions to facilitate the computation, this leads to an inevitable increase of uncertainty 
even in the later stages of product design [Vandepite and Moens 2011]. 

3.3 Parameter-based challenges 

In addition to the mentioned uncertain model representation, the second challenge for a quantitative 
analysis of uncertain influences during concept evaluation is the available description of input 
parameters, i.e. the existing variation of product properties, disturbances, information etc. Whereas the 
possible range of future product properties, depending on future design decisions, cannot be described 
by a single probability density function, the probability of internal and external influences within 
existing processes is at least hard to assess [Vanderpite, Moens 2011 ]. Summarized, three aspects 
need to be distinguished. First and most important, the available data is incomplete due to sequential 
design decisions, gaps in the data set, finite samples, etc. Second, measurement inaccuracy leads to an 
inaccurarcy of the collected data. The concluding third aspect is a wide variation of data that cannot be 
described adequately [Kreye et al. 2011]. 

4. Fuzzy analysis 
Computations in engineering are often done with real numbers or intervals, e.g. to determine safety 
factors of machine elements. Intervals are used to calculate a possible variation of a quantity by a 
closed bounded set of real numbers. However, often a more general form than intervals is necessary to 
describe the imprecision of real data. In this respect, the concept of fuzzy numbers offers an extension 
to an analysis based on real numbers. A fuzzy number refers to a connected set of possible values. 
Each value of a fuzzy number gets a weight between 0 and 1 which is called membership function in 
contrast to intervals where each value inside the interval gets weight 1 [Wiebel et al. 2011], [Wu and 
Rao 2006]. Figure 3 shows an example of a trapezoidal fuzzy number, see Figure 3a). Intervals in 
Figure 3b) and crisp numbers in Figure 3c) are special cases of fuzzy numbers. Thus, fuzzy numbers 
could be used to represent both, objective physical values and a degree of subjective confidence that 
particular values actually occur. 
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Figure 3. Examples of fuzzy numbers: a) trapezoidal fuzzy number, b) interval, c) real number 

Using fuzzy analysis, the resulting variation of a system or a process, i.e. the fuzzy output, can be 
computed based on an expression of the uncertain input parameters by membership functions. All 
fuzzy input parameters are discretized using the same sufficient high number of α-levels. With the aid 
of the deterministic model possible solutions are computed. When the smallest and the largest possible 
solutions are found the two points of the fuzzy output are known for the actual α-level (see Figure 4). 

 
Figure 4. Fuzzy analysis - mapping of fuzzy input parameters on fuzzy output parameters 

(www.uncertainty-in-engineering.de) 

5. Example use case 
Depending on the processes of the product life cycle, the variation of product properties as well the 
product behaviour during use will differ. Therefore, a modification of the chosen product concept or 
an adaption of the corresponding process chain could be necessary to match the specific customer 
requirements. Based on the presented approach for the consistent identification and description of 
uncertainty in process chains, an analysis of relevant influencing factors is necessary. Differences 
between probabilistic and non-probabilistic methods for the analysis of existing, uncertain influences 
as well as the respective benefits in early design stages are shown, using the example of the process 
chain for the production of precision holes. Even for this standard process which is relatively well 
known, there is a variety of assumptions about the effects of existing influences during the design 
process. Thus, as early as possible, a way to deal with a wide variety of influences, possible quality 
measures, substitutional processes, etc. must be found. 
First of all, the multilevel process chain and a simplified, mechanical model, used to evaluate the 
influences of uncertainty on required product properties, are presented. Afterwards, the comparison 
between a standard Monte Carlo simulation and a fuzzy analysis approach shows limits of a 
probabilistic analysis as well as possible benefits of non-probabilistic analysis methods. 

5.1 Example system 

Especially the manufacturing of precision holes has a high importance in production engineering, e.g. 
the machining of cylinder heads in the automobile production. To reach the required hole quality a 
combination of a drilling and a reaming process is necessary. With a precedent clamping of the 
workpiece, a multilevel process chain results. These three subsequent processes, shown in Figure 5, 
have an important influence on the resulting hole quality, like roundness or radial deviation.  
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Figure 5. Example of a multilevel process chain for the machining of precision holes 

A more detailed analysis of the process chain for precision holes identifies the reaming process as the 
quality determinant key process at the end of the value chain. Thus, the reaming process is the most 
critical manufacturing step in terms of costs per piece and reject costs. Furthermore, the reaming 
process also has to deal with an increased number of uncertainties. Like the drilling process, the 
reaming process is exposed to uncertainties like material influences, e.g. a strength gradient and 
blowholes, or tool influences, like grinding errors of the cutting edges which lead to runout errors. 
Additionally, uncertainty results from the pre-drilled hole. For example, a missalignement error 
between the axes of the pre-drilled hole and the reaming tool is caused by an insufficient positioning 
accuracy of the machine tool. Also the properties of the pre-drilled hole have an important influence 
on the resulting quality of the reamed hole. For example, the skewness of the pre-drilled hole, 
resulting from a radial deviation of the twist drill, leads to a varying depth of cut and thus to 
fluctuating process forces at the blades during one revolution of the reaming tool. The consequence of 
unequal process forces is a directed resulting radial force Frad which deviates the reaming tool. 
For an early evaluation of uncertainty and its effect on product properties, a simple mechanical model 
is used. The possible variation of the required hole quality due to a deviation of the reaming tool 
(Figure 6a)) is explained by a model of a beam (Figure 6b)) and the estimation of the maximum 
deviation at the blades (Figure 6c)). The measured deviation of the reamed hole for a pre-drilled hole 
skewness of 200 µm is exemplarily shown in Figure 6d). 

 
Figure 6. Real tool (a), mechanical model (b), deviation calculation (c) and measured deviation 

5.2 Monte Carlo simulation 

Sampling based methods of uncertainty analysis are well known and widely used in science as well as 
in industrial practice [Vanderpite and Moens 2011]. The best-known method is the Monte Carlo 
simulation. With a random number generator, a large quantity of samples for the input variables is 
created. A calculation of the model output per sample, results in an approximated density function of 
the output variable whose accuracy depends on the number of samples. 
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Based on simplified, quantitive models of products or processes in early design stages, a Monte Carlo 
Simulation allows only a first rough calculation. For example, the presented, simplified model, 
equation (1), could be used to analyze the resulting tool deviation of the reaming process, and thus to 
assess the consequences for the required product quality and the relevance of different influencing 
factors. However, a large number of assumptions are necessary. 
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The existing variation of the radial force ΔFrad or other influences is assumed first, e.g. as a gaussian 
distribution around the mean μΔF = 0 N with a standard deviation σΔF = 4 N, Figure 7a). Afterwards, 
based on the generation of n=10.000 samples and the corresponding calculations of equation (1), an 
approximated density function for the resulting deviation Δwmax is calculated, Figure 7b).  

 
Figure 7. Simulated tool variation Δwmax 

5.3 Non-probabilistic methods 

According to the presented approach for an analysis of uncertainty (see section 3.1), the next step is a 
detailed examination of these relevant influences within the production process, i.e. the identification 
of reasons that result in varying process parameters and thus product properties. Consequently, 
influencing factors that result in a radial force Frad leading to a tool deviation w(z) need to be 
identified. As already mentioned, the main uncertainty factors are the skewness of the pre-drilled hole 
depending on the accuracy of the upstream process as well as misalignment and runout errors, i.e. 
inaccuracies of tools or machines. They cause a variation of the chip-cross section at each cutting edge 
and lead to unequal cutting forces at the blades. The consequence is a deviation from an ideal process 
with a radial force Frad = 0 N. For the example of a reaming tool with six blades, the resulting radial 
force Frad is calculated by the sum of cutting forces Fc and the passiv forces Fp, equation (2). 
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However, uncertainties or process errors, like a misalignment or the skeweness of a pre-drilled hole, 
cause a time-dependet variability of the width of cut b. As a consequence this leads to a variation of 
the depth of cut ap and the resulting radial force Frad during the machining process. The examples of 
the pre-drilled hole skewness, the conditions at the cutting edges, and the machining variables are 
shown in Figure 8. The variation of the width of cut b in Figure 8b) shows the rising difference 
between the minimum bmin and maximum bmax width of cut over an increasing process time and so a 
rising depth of drill. Thus, a resulting radial force Frad ≠ 0 appears which causes a tool deviation 
depending on the process time and the corresponding hole depth and tool length l, see Figure 6. In 
contrast, an assumed density function would indicate a possible variation of the entire hole. 
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Consequently, instead of an assumption about probabilistic distributions, an adequate non-probabilisitc 
description of influences could offer advantages for a first reliable identification of relevant influences. 

 
Figure 8. Conditons at the cutting edges a) and simulates width of cut and chipping thickness b) 

Another example for an effect that cannot be described accurately by stochastic means is the time-
dependent tool wear. Tools are usually changed according to an abort criterion, i.e. the maximum tool 
wear accepted. A precise description of the nonlinear degeneration of the reamer cutting edges over 
time is not available. Whereas a description by density functions is at least difficult, the information 
about abort criteria can directly be transferred into a non-probabilistic description of a possibility 
function. Thereby, an increasing time span of the analysis leads to a decreasing accuracy of available 
information.  
The example of existing influences within a reaming process of a precision hole shows the necessity of 
non-probabilistic analysis methods. Consequently, a fuzzy analysis approach is used for the 
assessment of possible tool deviations instead of a stochastic description. It is based on the simplified 
mechanical model of the resulting tool deviation, equation (1), which is extended by an elaborated 
model of acting process forces [Abele et al. 2011]. The cutting force Fc as well as the passive force Fp 
depend on the depth of cut ap, the cutting speed vc, and the feed rate fz, equation (3). The cutting force 
model was determined by a multivariate regression function using empirical data.  

3,6541,0
z

0724,0
c

407,0
pzcpp

333,8996,0
z

153,0
c

909,0
pzcpc

),,(

),,(

efvafvaF

efvafvaF








 (3) 

In the fuzzy analysis, uncertainty is described by a possibility function π(Δap) which describes the 
possibility for a certain value to occur. It either can rely on objective physical values, i.e. data sets, 
available models, etc., or expresses a degree of subjective confidence based on an expert assessment. 
Under the assumption that all influences are independent, the individual effects of different influences 
on the depth of cut are described, see Figure 9a), and an overall possibility function is derived, see 
Figure 9b). In comparison to the assumed gaussian distribution for a Monte Carlo simulation in Figure 
7, specific information about different influencing factors is considered. For example, the possibility 
function for tool wear indicates an interval due to the available description of the possible range of 
values by an abort criterion. 
The effect of specific events, not regarded within the probability density function, can also be 
considered. If the skewness of the pre-drilled hole exceeds the chosen depth of cut an air cut appears. 
This leads to a strong deviation of the reaming tool due to the missing guiding function of the cutting 
edges in the area of the aircut. Machining test show that the skewness of the pre-drilled hole usually is 
about 20 to 30 µm. For some cases, also a skewness up to 100 µm or even up to 200 µm is possible. 
However, higher deviations have a significantly smaller possibility of occurrence than ideal pre-drilled 
holes. The possible variation is described by the possibility function shown in Figure 9a). 
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Figure 9. Possibility functions for the variation of the depth of cut Δap 

The overall function indicates the α-level, i.e. the possibility of occurrence, for a deviation of the depth 
of cut Δap ≠ 0 mm. Based on the overall function, the calculation of the resulting radial force Frad and 
thus the resulting tool deviation wmax is possible based on an α-level discretization of the possibility 
function π(Δap) and the mathematical description of cause and effect relationships in equations (1), 
(2)and (3), see Figure 10. 

 
Figure 10. Calculation of the resulting tool deviation wmax 

6. Conclusion and outlook 
The paper presents a consistent approach for the analysis of uncertainty in processes and opportunities 
for an application of a fuzzy analysis based on simple conceptual models. Thereby, the paper focuses 
on the identification and the assessment of relevant influencing factors within processes of the product 
life cycle, e.g. for the evaluation of product concepts or corresponding processes in early stages of 
product design. Based on a short literature review, these aspects are delimited from other uncertain 
influences affecting the design process itself. The possibilities for an application of a fuzzy analysis 
are shown by the example of a multilevel process chain for the manufacturing of precision holes. A 
consideration of different influencing factors in a reaming process, i.e. misalignement, skewness of a 
pre-drilled hole, runout errors or tool wear, illustrates the applicability of non-probabilistic analysis 
methods. Especially, if the existing influences within the process under consideration can hardly be 
described by stochastic means, due to their complexity, to their multitude, to their time-dependency, 
etc., an analysis based on possibility function offers considerable benefits. Thereby, the paper further 
explains the necessity for other applications of fuzzy analysis, for example in the field of tolerance 
allocation [Wu and Rao 2006]. 
However, a fuzzy analysis approach does not necessarily meet the requirements of an uncertainty 
analysis in product design. The example of the reaming process shows that a a common Monte Carlo 
simulation allows a first rough assessment of relevant influences though it largely depends on made 
assumptions. Another essential aspect is the usually wide range of influences within use or production 
processes. Methods that for example allow a first rough assessment of relevant influences even if no 
mathematical description of interdependencies is available, are necessary. 
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Therefore, future research will focus on the derivation of adequate strategies for the application of 
quantitative analysis methods in the course of development. According to different task on subsequent 
stages of the design process as well as to the available amount of information, adequate methods are 
necessary. The aim is a considerable decision support for the designer to choose promising concepts, 
to identify relevant design parameters and to realize an appropriate final design, thus to facilitate the 
development of robust products and corresponding processes. 
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